JPH066767B2 - Ti-based alloy with excellent neutron absorption - Google Patents

Ti-based alloy with excellent neutron absorption

Info

Publication number
JPH066767B2
JPH066767B2 JP15693786A JP15693786A JPH066767B2 JP H066767 B2 JPH066767 B2 JP H066767B2 JP 15693786 A JP15693786 A JP 15693786A JP 15693786 A JP15693786 A JP 15693786A JP H066767 B2 JPH066767 B2 JP H066767B2
Authority
JP
Japan
Prior art keywords
neutron absorption
based alloy
corrosion resistance
alloy
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15693786A
Other languages
Japanese (ja)
Other versions
JPS6314833A (en
Inventor
岡田  健
勝洋 安部
誠 原田
義隆 落田
喬 降矢
文夫 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15693786A priority Critical patent/JPH066767B2/en
Publication of JPS6314833A publication Critical patent/JPS6314833A/en
Publication of JPH066767B2 publication Critical patent/JPH066767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、核燃料の製造,取扱い,輸送,保管,貯蔵等
の為の設備や原子炉付帯設備さらには放射性廃棄物処理
設備等の所謂核燃料サイクルを構成する設備等に使用さ
れる中性子吸収能の優れたTi基合金に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to so-called nuclear fuel such as facilities for manufacturing, handling, transportation, storage, storage, etc. of nuclear fuel, nuclear reactor auxiliary facilities, and radioactive waste treatment facilities. The present invention relates to a Ti-based alloy having an excellent neutron absorption ability, which is used for facilities that constitute a cycle.

[従来の技術] 上記核燃料サイクル設備等においては、核分裂物質の未
臨界性の確保が基本的な要請として存在する。即ち核燃
料,使用済核燃料,放射性廃棄物等に含まれるU235
Pu239等の核分裂物質は熱中性子(数eV以下)との
結合エネルギーが高い為高励起状態を作り易く、簡単に
臨界点を超えてしまうという危険がある。そこでこうし
た事態の発生を回避する為上記設備内の熱中性子束密度
を下げて未臨界性を高めておく必要がある。
[Prior Art] In the nuclear fuel cycle facility and the like, it is a basic requirement to ensure the subcriticality of the fissile material. That is, fissionable substances such as U 235 and Pu 239 contained in nuclear fuel, spent nuclear fuel, radioactive waste, etc. have a high binding energy with thermal neutrons (several eV or less), so it is easy to create a high excited state, and the critical point is easily set. There is a danger of exceeding. Therefore, in order to avoid the occurrence of such a situation, it is necessary to lower the thermal neutron flux density in the above equipment and increase the subcriticality.

一方放射性廃棄物処理設備等では使用済み核燃料の溶
解,精製,回収,廃棄に当たり、酸あるいはアルカリで
処理することから機器の腐食並びに健全性の劣化が危惧
され、これに伴ない核燃料物質や放射性物質が漏洩する
恐れがある。その為上記設備の建設に当たっては耐食性
の高い材料を使用する必要がある。
On the other hand, in radioactive waste treatment facilities, etc., when dissolving, refining, recovering, or disposing of spent nuclear fuel, it is feared that the equipment will be corroded and its soundness deteriorated because it is treated with acid or alkali. May leak. Therefore, it is necessary to use materials with high corrosion resistance when constructing the above equipment.

上記の様に核燃料サイクル設備等においては、未臨界性
の確保並びに高耐食性が要求されており、こうした相異
なる2つの要求を満たす為従来は耐食性の優れたステン
レス鋼,Ti,Zr等の材料を使用して設備を構成し、
被処理溶液中にGd等の中性子毒を投入するとい
う対応がとられていた。
As mentioned above, in nuclear fuel cycle equipment, etc., it is required to secure subcriticality and high corrosion resistance. In order to satisfy these two different requirements, conventionally, materials such as stainless steel, Ti, Zr, etc. having excellent corrosion resistance were used. Use to configure equipment,
A countermeasure has been taken to add neutron poison such as Gd 2 O 3 to the solution to be treated.

[発明が解決しようとする問題点] しかるに上記対応にあっては、未臨界性の確保の為に各
工程における中性子毒濃度を夫々適正に制御しなければ
ならず、特に核燃料サイクルにおいては溶解,抽出,濾
過,濃縮等の種々の処理操作が加えられる為中性子毒濃
度の管理が煩雑になるという欠点がある。
[Problems to be Solved by the Invention] However, in the above measures, the neutron poison concentration in each process must be appropriately controlled in order to ensure subcriticality. Since various treatment operations such as extraction, filtration, and concentration are added, there is a drawback that the control of neutron poison concentration becomes complicated.

本発明者等はこうした事情に着目し、未臨界性の確保及
び機器腐食の防止という2つの目的を達成し、しかもそ
の為の管理が容易である様な手段を提供しようと考え、
種々検討を重ねた。その結果機器構成材料自体が優れた
耐食性を有し且つ中性子吸収能の大きなものであれば問
題を一挙に解決することができるのではないかとの方針
を立てるに至った。
The inventors of the present invention have paid attention to such a situation, and have thought to provide a means for achieving the two purposes of ensuring subcriticality and preventing equipment corrosion, and for facilitating management therefor.
Various studies were repeated. As a result, it has been decided that the problem can be solved all at once if the equipment constituent material itself has excellent corrosion resistance and large neutron absorption capacity.

[問題点を解決するための手段] 本発明合金は上記方針の下に更に研究を重ねた結果完成
されたものであって、Gd:0.1〜2%を含み、残部
がTi及び不可避不純物からなる点に第1の要旨が存在
し、又Gd:0.1〜3%,Ta:4〜6%を含み残部
がTi及び不可避不純物からなる点に第2の要旨が存在
する。
[Means for Solving Problems] The alloy of the present invention has been completed as a result of further research under the above-mentioned policy, and contains Gd: 0.1 to 2%, the balance being Ti and unavoidable impurities. The first gist exists in the point consisting of, and the second gist exists in the point that Gd: 0.1 to 3% and Ta: 4 to 6% and the balance is Ti and inevitable impurities.

[作用] 中性子吸収能が大きく且つ耐食性の優れた材料としては
HfやCd等が挙げられるが、これらの材料は極めて高
価であり、且つ構造材料としては機械的性質が劣るとい
う欠点があり、実用に耐え得るものではない。即ち前記
核燃料サイクル設備等の構成材料としては、前記要請を
満足するものであることは勿論であるが、そうした要請
を満足する以前に構造材料としての基本的性質を備える
必要があり、さらに所望の形状に加工するに当たっての
加工性や溶接性等も良好である必要がある。しかるにこ
うした要請の全てを満足する材料がこれまで提供されて
いなかった為に前述の様な耐食性材料の使用と中性子毒
の添加という併用手段をやむをえず採用していたという
のが実状であった。
[Function] Hf, Cd and the like are mentioned as materials having high neutron absorption capacity and excellent corrosion resistance, but these materials are disadvantageous in that they are extremely expensive and have poor mechanical properties as structural materials. Can not stand. That is, as a constituent material of the nuclear fuel cycle equipment and the like, it goes without saying that the above requirements are satisfied, but it is necessary to have basic properties as a structural material before satisfying such requirements, and further desired It is also necessary that the workability and weldability in processing the shape be good. However, since a material satisfying all of these requirements has not been provided so far, it was unavoidable that the above-mentioned combined use of the corrosion-resistant material and addition of neutron poison was unavoidably adopted.

これに対し、本発明者等は耐食性材料に添加しても構造
材料用として母材特性を損なうことがなしに熱中性子吸
収能を付与できる添加元素殊に熱中性子吸収断面積が大
きい元素について研究を進めた。その結果第1表に示す
様にGdは熱中性子吸収断面積が格段に大きくしかも機
械的性質等にも悪影響を与えず、本発明の目的を達成す
る上で最適であるとの知見を得、前記構成で示すところ
の本発明を完成するに至った。
On the other hand, the present inventors have studied additional elements, especially those having a large thermal neutron absorption cross section, that can impart thermal neutron absorption ability without impairing the base material properties for structural materials even when added to corrosion resistant materials. Advanced. As a result, as shown in Table 1, it was found that Gd has a remarkably large thermal neutron absorption cross section and does not adversely affect mechanical properties, etc., and is optimum for achieving the object of the present invention. The present invention having the above-described structure has been completed.

即ち本発明に係るTi合金及びTi−Ta合金は酸ある
いはアルカリに対して優れた耐食性を示す材料であり且
つ構造材料としての諸特性も備えており前述の核燃料サ
イクル設備をはじめとする分野で使用に耐え得るもので
ある。
That is, the Ti alloy and the Ti-Ta alloy according to the present invention are materials exhibiting excellent corrosion resistance against acids or alkalis and have various properties as structural materials, and are used in the fields including the nuclear fuel cycle facility described above. Can withstand.

尚本発明におけるTi−Ta合金はTaを4〜6%含有
するものであり、これによって耐食性の一層の向上をは
かっている。但しTa量が4%未満の場合には耐食性改
善効果を得ることができず、一方6%を超えると加工性
がやや劣化し、耐食性改善効果はそれ以上期待できな
い。
The Ti-Ta alloy according to the present invention contains Ta in an amount of 4 to 6%, which is intended to further improve the corrosion resistance. However, if the Ta amount is less than 4%, the corrosion resistance improving effect cannot be obtained, while if it exceeds 6%, the workability is slightly deteriorated, and the corrosion resistance improving effect cannot be expected any more.

本発明においては上記耐食性構造材料中にGdを添加し
ているが、母材がTiの場合には添加量を0.1〜2%
とする必要があり、母材がTi−Ta合金の場合には
0.1〜3%とする必要がある。いずれの場合もGd添
加量が0.1%未満の場合には添加効果がなく熱中性子
吸収能を改善することができない。一方Gd添加量がT
iの場合には2%、Ti−Ta合金の場合には3%を超
えると鍛造,圧延等の加工性が悪くなり、耐食性や溶接
部の材料特性の劣化も著しくなる。
In the present invention, Gd is added to the corrosion resistant structural material, but when the base material is Ti, the addition amount is 0.1 to 2%.
If the base material is a Ti-Ta alloy, the content should be 0.1 to 3%. In either case, if the Gd addition amount is less than 0.1%, the addition effect is not obtained and the thermal neutron absorption capacity cannot be improved. On the other hand, the amount of Gd added is T
If it exceeds 2% in the case of i and 3% in the case of Ti-Ta alloy, the workability such as forging and rolling deteriorates, and the corrosion resistance and the deterioration of the material properties of the welded portion become remarkable.

ちなみにTi,Ti−5%Ta合金中へのGdの固溶量
は少なく、1%以上のGdを含有するTi基合金ではG
dリッチな第2相(直径5〜10μm)が存在する。こ
のGdリッチな第2相は母相よりも高い酸素含有量を示
すことが多く、Gd含有量の増加と共に該Gdリッチ相
の体積率が増加する。こうした理由からGd添加量が過
剰になるとGdリッチ相が増加して加工性や材料特性が
劣化する。
By the way, the solid solution amount of Gd in Ti, Ti-5% Ta alloy is small, and in a Ti-based alloy containing 1% or more of Gd,
There is a d-rich second phase (diameter 5-10 μm). This Gd-rich second phase often exhibits a higher oxygen content than the parent phase, and the volume fraction of the Gd-rich phase increases as the Gd content increases. For this reason, when the amount of Gd added is excessive, the Gd rich phase increases and workability and material properties deteriorate.

[実施例] 第2表に示す各種合金をアーク溶解した後、熱間圧延及
び冷間圧延を順次行ない加工性を評価しつつ厚さ1mmの
板材を作成した。次いで550℃×1時間の真空焼鈍を
行なった後金相,機械的性質,酸及びアルカリ中におけ
る耐食性,溶接部特性を調査したところ第3表に示す結
果が得られた。
[Example] Various alloys shown in Table 2 were arc-melted, and then hot-rolled and cold-rolled in order to evaluate workability, and a plate material having a thickness of 1 mm was prepared. Then, after vacuum annealing at 550 ° C. for 1 hour, the metal phase, mechanical properties, corrosion resistance in acid and alkali, and weld characteristics were examined, and the results shown in Table 3 were obtained.

第3表から明らかな様に、本発明Ti基合金は加工性,
機械的性質,溶接性並びに耐食性に優れ且つ熱中性子吸
収能を有する合金であることが確認された。
As is clear from Table 3, the Ti-based alloy of the present invention has a good workability,
It was confirmed that the alloy had excellent mechanical properties, weldability, and corrosion resistance, and had the ability to absorb thermal neutrons.

[発明の効果] 本発明は以上の様に構成されており、本発明合金を使用
して製作した前述の核燃料サイクル設備等においては長
期に亘り優れた耐食性を得ることができると共に、確実
に未臨界性を保障することができる。又本発明合金は加
工並びに溶接性が良好であるので所望形状の設備を支障
なく製作できると共に、機械的性質も満足し得るもので
あるので構造材料として安心して使用することができ
る。
[Advantages of the Invention] The present invention is configured as described above, and in the above-described nuclear fuel cycle equipment manufactured by using the alloy of the present invention, excellent corrosion resistance can be obtained for a long period of time, and it is possible to ensure that The criticality can be guaranteed. Further, since the alloy of the present invention has good workability and weldability, it is possible to manufacture equipment having a desired shape without any trouble, and since it has satisfactory mechanical properties, it can be safely used as a structural material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Gd:0.1〜2%(重量%の意味、以下
同じ)を含み、残部がTi及び不可避不純物からなるこ
とを特徴とする中性子吸収能の優れたTi基合金。
1. A Ti-based alloy having excellent neutron absorption ability, characterized by containing Gd: 0.1 to 2% (meaning weight%; the same applies hereinafter), the balance being Ti and unavoidable impurities.
【請求項2】Gd:0.1〜3%,Ta:4〜6%を含
み、残部がTi及び不可避不純物からなることを特徴と
する中性子吸収能の優れたTi基合金。
2. A Ti-based alloy having excellent neutron absorption ability, characterized by containing Gd: 0.1 to 3% and Ta: 4 to 6%, the balance being Ti and inevitable impurities.
JP15693786A 1986-07-03 1986-07-03 Ti-based alloy with excellent neutron absorption Expired - Lifetime JPH066767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15693786A JPH066767B2 (en) 1986-07-03 1986-07-03 Ti-based alloy with excellent neutron absorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15693786A JPH066767B2 (en) 1986-07-03 1986-07-03 Ti-based alloy with excellent neutron absorption

Publications (2)

Publication Number Publication Date
JPS6314833A JPS6314833A (en) 1988-01-22
JPH066767B2 true JPH066767B2 (en) 1994-01-26

Family

ID=15638606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15693786A Expired - Lifetime JPH066767B2 (en) 1986-07-03 1986-07-03 Ti-based alloy with excellent neutron absorption

Country Status (1)

Country Link
JP (1) JPH066767B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175593A (en) * 1983-03-25 1984-10-04 松下電器産業株式会社 Electroluminescent display unit
EP1859761A4 (en) 2005-02-28 2009-04-08 Indy & Associate Underwear for lower parts
RU2744837C2 (en) * 2017-10-19 2021-03-16 Зе Боинг Компани Titanium-based alloy and method for producing titanium-based alloy component through additive manufacturing technologies
CN114507795B (en) * 2022-01-30 2023-03-10 西安稀有金属材料研究院有限公司 Nitric acid corrosion resistant titanium-based neutron absorbing material and preparation method thereof
CN115011839B (en) * 2022-06-16 2024-06-18 上海大学 Titanium gadolinium alloy material for nuclear shielding, preparation method and application thereof
CN115572859B (en) * 2022-10-18 2023-11-03 西安稀有金属材料研究院有限公司 Titanium-based neutron absorption material and preparation method thereof

Also Published As

Publication number Publication date
JPS6314833A (en) 1988-01-22

Similar Documents

Publication Publication Date Title
EP0345531B1 (en) Ductile irradiated zirconium alloy
US2805473A (en) Uranium-oxide-containing fuel element composition and method of making same
US4775508A (en) Zirconium alloy fuel cladding resistant to PCI crack propagation
Mariani et al. Metallic fuels: The EBR-II legacy and recent advances
EP0532830A2 (en) Zirconium alloy with superior ductility
US5699396A (en) Corrosion resistant zirconium alloy for extended-life fuel cladding
EP0225226B1 (en) Aluminum alloy with superior thermal neutron absorptivity
CN114507795B (en) Nitric acid corrosion resistant titanium-based neutron absorbing material and preparation method thereof
US3563728A (en) Austenitic stainless steels for use in nuclear reactors
US5334345A (en) Zirconium-based alloy for components in nuclear reactors
JPH066767B2 (en) Ti-based alloy with excellent neutron absorption
JP3057074B2 (en) Zirconium alloy composition for nuclear fuel cladding
EP0195155A1 (en) Water reactor fuel cladding tubes
US4933136A (en) Water reactor fuel cladding
JP2726299B2 (en) High corrosion resistant zirconium alloy for nuclear reactors
JP2526744B2 (en) Hafnium-containing alloy
JPS5835252B2 (en) Corrosion-resistant aluminum alloy for structural use with excellent neutron shielding effect
JP3128620B2 (en) Neutron absorbing alloy
JP2645626B2 (en) Structural alloys for nuclear fuel handling equipment
Pierce Uranium metal dissolution in the presence of fluoride and boron
KR20240011625A (en) Chemical compositions of Ti-Gd based alloys with improved neutron absorbing capability and tensile properties, and neutron absorbing structural materials manufactured through the same
CN117568660A (en) Multi-element rare earth nickel-based alloy material for thermal neutron shielding and preparation method thereof
Farina et al. Current status of Zirconium alloys for fission cladding
CN115572859A (en) Titanium-based neutron absorption material and preparation method thereof
Kato et al. ZIRCONIUM PROGRESS REPORT FOR THE PERIOD JUNE 15-SEPTEMBER 15, 1956