JPS63147952A - Method of controlling supply of fuel for internal combustion engine - Google Patents

Method of controlling supply of fuel for internal combustion engine

Info

Publication number
JPS63147952A
JPS63147952A JP29428386A JP29428386A JPS63147952A JP S63147952 A JPS63147952 A JP S63147952A JP 29428386 A JP29428386 A JP 29428386A JP 29428386 A JP29428386 A JP 29428386A JP S63147952 A JPS63147952 A JP S63147952A
Authority
JP
Japan
Prior art keywords
fuel
engine
fuel injection
valve
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29428386A
Other languages
Japanese (ja)
Other versions
JPH0692753B2 (en
Inventor
Kazunari Toshimitsu
利光 一成
Masamichi Ueno
上野 雅通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP29428386A priority Critical patent/JPH0692753B2/en
Priority to US07/130,635 priority patent/US4825834A/en
Priority to DE19873741914 priority patent/DE3741914A1/en
Publication of JPS63147952A publication Critical patent/JPS63147952A/en
Priority to US07/252,378 priority patent/US4883039A/en
Publication of JPH0692753B2 publication Critical patent/JPH0692753B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To make it possible to satisfactorily distribute fuel among a plurality of engine cylinders, by supplying fuel from only a fuel injection valve upstream of a throttle valve when the temperature of an engine is below a predetermined temperature. CONSTITUTION:In an internal combustion engine 1 comprising a plurality of engine cylinders, an fuel injection valve 6 and an auxiliary fuel injection 6a are disposed respectively upstream and downstream of a throttle valve 3', and an ECU 5 control the supply of fuel. In this arrangement, when the temperature of an engine detected by an engine cooling water temperature sensor 9 is below a predetermined value, fuel is fed from the fuel injection valve 6. Meanwhile, when the temperature of the engine exceeds the predetermined value and the opening degree of the throttle valve detected by a throttle valve opening degree sensor 4 is below a predetermined opening degree, fuel is fed from the auxiliary fuel injection valve 6a. With this arrangement, even though the temperature of the engine is low, it is possible to satisfactorily distributes fuel among engine cylinders, and further, it is possible to a eliminate the necessity of changeover from the auxiliary fuel injection valve 6a to the fuel injection valve 6, thereby it is possible to prevent variations in the supply amount of fuel which are liable to occur upon changeover between the values 6, 6a.

Description

【発明の詳細な説明】 (技術分野) 本発明は内燃エンジンの燃料供給制御方法に関し、特に
、吸気管の途中のスロットル弁の上流側及び下流側に各
1個設けられた燃料噴射弁から複数の気筒に燃料を供給
する場合における制御方法に関する。
Detailed Description of the Invention (Technical Field) The present invention relates to a fuel supply control method for an internal combustion engine, and in particular, the present invention relates to a fuel supply control method for an internal combustion engine. The present invention relates to a control method when supplying fuel to cylinders.

(発明の技術的背景とその問題点) 内燃エンジンの複数の気筒に共通の燃料噴射弁から燃料
を分配供給する形式の従来の燃料供給制御装置としては
、エンジンの中高負荷時に、吸気管集合部上流のスロッ
トル弁の上流側に設けられた燃料噴射弁により燃料供給
を行う一方、エンジンの低負荷時にはスロットル弁下流
側に設けられた補助燃料噴射弁により燃料供給を行うタ
イプがある(特開昭47−35422号)。上記補助燃
料噴射弁として霧化特性の優れたものを使用してエンジ
ン低負荷時の少量燃料の各気筒への分配性を確保するよ
うにした。
(Technical background of the invention and its problems) A conventional fuel supply control device that distributes and supplies fuel from a common fuel injection valve to a plurality of cylinders of an internal combustion engine has been designed to distribute and supply fuel from a common fuel injection valve to multiple cylinders of an internal combustion engine. While fuel is supplied by a fuel injection valve installed upstream of the upstream throttle valve, there is also a type in which fuel is supplied by an auxiliary fuel injection valve installed downstream of the throttle valve when the engine is under low load. No. 47-35422). As the auxiliary fuel injection valve, one having excellent atomization characteristics is used to ensure distribution of a small amount of fuel to each cylinder when the engine is under low load.

この方法に依れば、スロットル弁が全開又はこれに近い
開度となる低負荷運転時においても、気筒に対する燃料
の供給がスロットル弁によって妨げられることがなく、
即ち燃料供給の応答性が良くなる。
According to this method, even during low load operation when the throttle valve is fully open or close to this, the supply of fuel to the cylinders is not obstructed by the throttle valve.
In other words, the responsiveness of fuel supply is improved.

エンジンの温度が高いときは、吸気管内での燃料の霧化
が良いので、気筒に対する燃料供給の応答性の向上及び
微小流量の制御精度確保のために従来通りスロットル上
流の燃料噴射弁より吐出量の小さい補助燃料噴射弁から
燃料の噴射を行なうことが望ましい。
When the engine temperature is high, fuel atomization in the intake pipe is good, so in order to improve the responsiveness of fuel supply to the cylinders and ensure precision in controlling minute flow rates, the amount of fuel discharged from the fuel injection valve upstream of the throttle remains the same as before. It is desirable to inject fuel from an auxiliary fuel injection valve with a small diameter.

しかしながら、エンジンの温度が低いときは、冷間時の
燃料増量が行われるために補助燃料噴射弁の噴射時間が
長くなると共に、吸気管の温度も低くなっており、この
ため、吸気管内での燃料の霧化が悪くなる。この燃料の
霧化の悪化を避けるため吸気管の集合部に近い箇所であ
るスロットル弁下流側に設置された補助燃料噴射弁から
燃料を噴射したのでは、複数の気筒に対する燃料の分配
が悪くなるという問題があった。
However, when the engine temperature is low, the injection time of the auxiliary fuel injection valve becomes longer because the amount of fuel is increased during cold operation, and the temperature of the intake pipe is also low. Fuel atomization deteriorates. In order to avoid this worsening of fuel atomization, if fuel is injected from an auxiliary fuel injection valve installed downstream of the throttle valve, which is close to the gathering part of the intake pipe, the distribution of fuel to multiple cylinders will be poor. There was a problem.

更に、上記従来の燃料供給制御方法では、冷間時等のエ
ンジンの温度が低いときには低負荷運転状態から高負荷
運転状態へ移行した際に燃料供給を行なう燃料噴射弁が
スロットル弁下流の補助燃料噴射弁からスロットル弁上
流の通常の燃料噴射弁に変るとき、エンジンに実際に供
給される燃料紙に変動があるという問題がある。即ち、
かかる場合、スロットル弁下流の補助燃料噴射弁が最大
限の燃料噴射を行なっていた場合、該弁はこの燃料噴射
を即座に中断し、スロットル弁上流の燃料噴射弁は急に
多量の燃料噴射を開始することになる。このとき、スロ
ットル弁やスロットル弁付近の吸気管内壁は乾燥した状
態から急激に燃料が付着して湿った状態になり、この付
着燃料紙は吸気管壁温度が低いほど多くなるのであるか
ら、冷間時はど実際にエンジンに供給される燃料量の変
動が大きい。この結果、補助燃料噴射弁から通常の燃料
噴射弁への切換時に燃料供給制御の精度が低下するとい
う問題が生じた。
Furthermore, in the conventional fuel supply control method described above, when the engine temperature is low, such as when the engine is cold, the fuel injection valve that supplies fuel when transitioning from a low-load operating state to a high-load operating state is injected with auxiliary fuel downstream of the throttle valve. When changing from an injector to a conventional fuel injector upstream of the throttle valve, there is a problem in that there is variation in the fuel paper actually delivered to the engine. That is,
In such a case, if the auxiliary fuel injection valve downstream of the throttle valve was injecting the maximum amount of fuel, it will immediately interrupt this fuel injection, and the fuel injection valve upstream of the throttle valve will suddenly inject a large amount of fuel. It will start. At this time, the throttle valve and the inner wall of the intake pipe near the throttle valve go from a dry state to a wet state with fuel rapidly adhering to it.The lower the temperature of the intake pipe wall, the more this adhering fuel paper becomes. The amount of fuel actually supplied to the engine varies greatly over time. As a result, a problem arises in that the accuracy of fuel supply control decreases when switching from the auxiliary fuel injection valve to the normal fuel injection valve.

(発明の目的) 本発明は上記事情に鑑みてなされたもので、エンジンの
温度が低い場合に、複数の気筒に対する燃料の分配が悪
くなったり、補助燃料噴射弁から通常の燃料噴射弁への
切換により燃料供給量が変動する等の不具合が生じない
ようにした内燃エンジンの燃料供給制御方法を提供する
ことを目的とする。
(Object of the Invention) The present invention was made in view of the above circumstances, and it is possible that when the temperature of the engine is low, the distribution of fuel to multiple cylinders becomes poor, or the distribution of fuel from the auxiliary fuel injection valve to the normal fuel injection valve becomes poor. An object of the present invention is to provide a fuel supply control method for an internal combustion engine that prevents problems such as fluctuations in the amount of fuel supplied due to switching.

(発明の構成) 上記目的を達成するために、本発明においては、複数の
気筒を備えた内燃エンジンの吸気管集合部より上流のス
ロットル弁の上流側及び下流側にそれぞれ設置された燃
料噴射弁及び補助燃料噴射弁から該エンジンの運転状態
に応じて燃料を供給する内燃エンジンの燃料供給制御方
法において、エンジン温度が所定温度より低いとき、前
記スロットル弁の上流側の燃料噴射弁により燃料供給を
行゛ない、エンジン温度が前記所定温度より高く1つス
ロットル弁開度が所定開度以下のとき、前記スロットル
弁の下流側の補助燃料噴射弁により燃料供給を行なうこ
とを特徴とする内燃エンジンの燃料供給制御方法が提供
される。
(Structure of the Invention) In order to achieve the above object, the present invention provides fuel injection valves installed on the upstream side and the downstream side of a throttle valve upstream of an intake pipe gathering part of an internal combustion engine having a plurality of cylinders. and a fuel supply control method for an internal combustion engine in which fuel is supplied from an auxiliary fuel injection valve according to the operating state of the engine, wherein when the engine temperature is lower than a predetermined temperature, the fuel injection valve on the upstream side of the throttle valve supplies fuel. An internal combustion engine characterized in that when the engine temperature is higher than the predetermined temperature and the throttle valve opening is below the predetermined opening, fuel is supplied by an auxiliary fuel injection valve downstream of the throttle valve. A fuel supply control method is provided.

(発明の実施例) 以下本発明の実施例を図面を参照して説明する。(Example of the invention) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の方法を適用した燃料供給制御装置の全
体柿成図であり、符号1は例えば4気筒の内燃エンジン
を示し、エンジン1にはインテークマニホールドを介し
て吸気管2が接続されている。吸気/P?2の集合部上
流にはスロットルボディ3が設けられ、内部にスロット
ル弁3′が設けられている。スロワ1−ル弁3′にはス
ロットル弁開度(CITM+)センサ4が連設されてス
ロットル弁3′の弁開度を電気的信号に変換し電子コン
トロールユニット(以干rECUJ という)5に送る
ようにされている。
FIG. 1 is an overall diagram of a fuel supply control device to which the method of the present invention is applied. Reference numeral 1 indicates, for example, a four-cylinder internal combustion engine, and an intake pipe 2 is connected to the engine 1 via an intake manifold. ing. Intake/P? A throttle body 3 is provided upstream of the convergence part 2, and a throttle valve 3' is provided inside. A throttle valve opening (CITM+) sensor 4 is connected to the throttle valve 3' and converts the valve opening of the throttle valve 3' into an electrical signal and sends it to an electronic control unit (rECUJ) 5. It is like that.

吸気管2のスロットルボディ3の少し上流には燃料噴射
弁6が設けられ、内燃エンジン1の中高負荷運転時等に
該エンジン1の全気筒に燃料を供給するようにしている
。一方、拠気管2のスロットルボディ3の少し下流でR
つ吸気管集合部上流には補助燃料噴射弁6aが設けられ
、内燃エンジン1が十分に暖められた状態における低負
荷運転時に該エンジン1の全気筒に燃料を供給するよう
にしている。燃料噴射弁6及び補助燃料噴射弁6aはE
CU3に電気的に接続されており、 EC:U5からの
信号によって燃料噴射弁6及び補助燃料噴射弁6aの各
々の開弁時間TOυTM及びTouTvaが制御される
A fuel injection valve 6 is provided slightly upstream of the throttle body 3 in the intake pipe 2, and is configured to supply fuel to all cylinders of the internal combustion engine 1 when the internal combustion engine 1 is operated under a medium to high load. On the other hand, a little downstream of the throttle body 3 of the air pipe 2, R
An auxiliary fuel injection valve 6a is provided upstream of the intake pipe gathering portion to supply fuel to all cylinders of the internal combustion engine 1 during low load operation in a sufficiently warmed state. The fuel injection valve 6 and the auxiliary fuel injection valve 6a are E
It is electrically connected to CU3, and the valve opening times TOυTM and TouTva of each of the fuel injection valve 6 and the auxiliary fuel injection valve 6a are controlled by a signal from EC:U5.

また、前記スロットルボディ3のスロットル弁3′の下
流には管7を介して絶対圧(Pe式)センサ8が設けら
れており、この絶対圧センサ8によって電気的信号に変
換された絶対圧信号は前記ECU3に送られる。
Further, an absolute pressure (Pe type) sensor 8 is provided downstream of the throttle valve 3' of the throttle body 3 via a pipe 7, and an absolute pressure signal is converted into an electrical signal by the absolute pressure sensor 8. is sent to the ECU 3.

前記燃料噴射弁6及び補助燃料噴射弁6aは管路21、
ストレーナ15、管路22,23及び24を介して燃料
タンク16内の燃料ポンプ17に接続されている。尚、
燃料ポンプ17はECU3により制御されるようになっ
ている。また、管路22゜23及び24は管路25、プ
レッシャレギュレータ18及び管路26を介して燃料タ
ンク16に接続されている。プレッシャレギュレータ1
8は、管路22〜25内の燃料圧をスロットル弁3′の
下流の吸気管内の負圧(絶対圧Pa^)に応じて調整す
るためのもので、負圧室18aは管路31を介してスロ
ットル弁3′の下流の吸気管2に接続されている。即ち
、管路26の開口端26aを開閉する弁体18bの開弁
圧はコイルスプリング18cの付勢力とスロットル弁3
′の下流の吸気管内の負圧との合成力によって決定され
、管路22〜25内の燃料圧(絶対圧)とスロットル弁
3′の下流の吸気管内絶対圧Pa^との差は常に一定と
なる。従って、補助燃料噴射弁6aの吐出圧は吸気管内
絶対圧Pal^の大きさにかかわらず一定となり、補助
燃料噴射弁6aの燃料噴射量は該補助燃料噴射弁6aの
開弁時間TouTMaのみにより決定することができ、
正確な燃料調量を行うことができる。
The fuel injection valve 6 and the auxiliary fuel injection valve 6a are connected to a pipe line 21,
The strainer 15 is connected to a fuel pump 17 in a fuel tank 16 via lines 22, 23 and 24. still,
The fuel pump 17 is controlled by the ECU 3. Further, the pipes 22, 23, and 24 are connected to the fuel tank 16 via a pipe 25, a pressure regulator 18, and a pipe 26. pressure regulator 1
8 is for adjusting the fuel pressure in the pipes 22 to 25 according to the negative pressure (absolute pressure Pa^) in the intake pipe downstream of the throttle valve 3', and the negative pressure chamber 18a is connected to the pipe 31. It is connected to the intake pipe 2 downstream of the throttle valve 3' through the throttle valve 3'. That is, the valve opening pressure of the valve body 18b that opens and closes the open end 26a of the pipe line 26 is determined by the biasing force of the coil spring 18c and the throttle valve 3.
The difference between the fuel pressure (absolute pressure) in the pipes 22 to 25 and the absolute pressure Pa in the intake pipe downstream of the throttle valve 3' is always constant. becomes. Therefore, the discharge pressure of the auxiliary fuel injection valve 6a remains constant regardless of the magnitude of the intake pipe absolute pressure Pal^, and the fuel injection amount of the auxiliary fuel injection valve 6a is determined only by the opening time TouTMa of the auxiliary fuel injection valve 6a. can,
Accurate fuel metering can be performed.

一方、スロットル弁3′の上流の吸気管2内の圧力は常
にほぼ大気圧に近い圧力であるので、燃料噴射弁6の吐
出圧はスロットル弁3′の下流の吸気管内絶対圧Po^
の大きさに応じて変化する。
On the other hand, since the pressure in the intake pipe 2 upstream of the throttle valve 3' is always close to atmospheric pressure, the discharge pressure of the fuel injection valve 6 is equal to the absolute pressure Po^ in the intake pipe downstream of the throttle valve 3'.
It changes depending on the size of.

即ち、燃料噴射弁6の吐出圧1’Dは、エンジンが低負
荷のときはスロットル弁3′の下流の吸気管内絶対圧P
a^が低くなるに従って管路22〜25内の燃料圧が低
くなるので低くなり、またエンジンが高負荷のときはス
ロットル弁3′の下流の吸気管内絶対圧Pa^が高くな
るに従って管路22〜25内の燃料圧が高くなるので高
くなる。従って、エンジンが低負荷のときは同一の燃料
供給量に対して燃圧が低い方が燃料噴射弁6の開弁時間
TOLITMが長くなるので微小流量の燃料調量制御が
可能となり、またエンジンが高負荷のときは同一の燃料
供給量に対して燃料噴射弁6の開弁時間ToυTVが短
かくなるので大流量の燃料供給量が確保でき、高出力を
得ることが容易となる。
That is, the discharge pressure 1'D of the fuel injection valve 6 is equal to the absolute pressure P in the intake pipe downstream of the throttle valve 3' when the engine is under low load.
As a^ becomes lower, the fuel pressure in the pipes 22 to 25 becomes lower, so the fuel pressure in the pipes 22 to 25 becomes lower, and when the engine is under high load, as the absolute pressure Pa^ in the intake pipe downstream of the throttle valve 3' increases, the pressure in the pipes 22 to 25 decreases. It becomes high because the fuel pressure in ~25 becomes high. Therefore, when the engine is under low load, the valve opening time TOLITM of the fuel injection valve 6 becomes longer when the fuel pressure is lower for the same fuel supply amount, making it possible to control the fuel metering at a minute flow rate. When the engine is under load, the opening time ToυTV of the fuel injection valve 6 becomes shorter for the same amount of fuel supplied, so a large amount of fuel can be supplied, making it easy to obtain high output.

尚、燃料噴射弁6の開弁時間TOLITM及び補助燃料
噴射弁6aの開弁時間TOυTMaの夫々の基準値Ti
M、TiMaは後述するECU3の記憶手段5c内に格
納されたマツプに記憶されており、吸気管内絶対圧Pa
^及びエンジン回転数Neの2つのパラメータから基本
開弁時間TiM及びTiMaが検索される。補助燃料噴
射弁6aの開弁時間TouTMaの基準値T i M 
aについては要求空燃比A/Fに対応する基準値は通常
のものと同じように要求燃料供給ff1Qfに比例した
値になっているために微小流量においても正確な計量が
可能となる。しかしながら、燃料噴射弁6の開弁時間T
OUTMの基準値TiMについては要求空燃比A/Fに
対応する基準値は以下のような手順で予め算出した値と
なっている。燃料噴射弁6の吐出圧PDは前述したよう
にスロットル弁3′の下流の吸気管内絶対圧PB^に応
じて変化するので、まず吸気管内絶対圧P8^の複数の
所定値に夫々対応した燃料噴射弁6の複数の吐出圧値P
oが決まり、次に、エンジン回転数Ne及び吸気管内絶
対圧PB^の複数の所定値の組合せに夫々対応した複数
の要求燃料供給量値Qfを決定し、前記吐出圧値Pe+
と要求燃料供給量値Qfとの複数の組合せに夫々対応す
る」ん本開弁時間TjM及びTi Maを求め、これを
マツプ(Pe式−Neマツプ)に記憶している。
Note that the respective reference values Ti of the valve opening time TOLITM of the fuel injection valve 6 and the valve opening time TOυTMa of the auxiliary fuel injection valve 6a are
M, TiMa are stored in a map stored in the storage means 5c of the ECU 3, which will be described later, and the intake pipe absolute pressure Pa
The basic valve opening times TiM and TiMa are retrieved from two parameters: ^ and engine speed Ne. Reference value T i M of valve opening time TouTMa of auxiliary fuel injection valve 6a
As for a, since the reference value corresponding to the required air-fuel ratio A/F is a value proportional to the required fuel supply ff1Qf as in the normal case, accurate metering is possible even at a minute flow rate. However, the opening time T of the fuel injection valve 6
Regarding the reference value TiM of OUTM, the reference value corresponding to the required air-fuel ratio A/F is a value calculated in advance according to the following procedure. As mentioned above, the discharge pressure PD of the fuel injection valve 6 changes according to the intake pipe absolute pressure PB^ downstream of the throttle valve 3', so first, the fuel corresponding to a plurality of predetermined values of the intake pipe absolute pressure P8^ is Multiple discharge pressure values P of the injection valve 6
o is determined, then a plurality of required fuel supply amount values Qf corresponding to the combinations of a plurality of predetermined values of the engine speed Ne and the intake pipe absolute pressure PB^ are determined, and the discharge pressure value Pe+
The actual valve opening times TjM and TiMa corresponding to a plurality of combinations of the required fuel supply amount value Qf are calculated and stored in a map (Pe type-Ne map).

即ち、吐出圧Paは吸気管内絶対圧Pa^に応答して変
化すると共に基本開弁時間’riM及びTiMaの決定
のためのエンジン負荷パラメータも吸気管内絶対圧PH
^であるので、Pa式−Neマツプ上に吐出圧Po及び
各気筒に対する充填効率の2つの現象が同一マツプ上に
表現できるので、その2現象から決定される基本開弁時
間TiM及びTiMaを設定すればよい。換言すれば、
PB八−Neマツプのマツプ値Tiv及びT i M 
aは従来のPa^−Neに応じた充填効率に加えてPB
^に応じた吐出圧Pカをも考慮して設定されている。
That is, the discharge pressure Pa changes in response to the intake pipe absolute pressure Pa^, and the engine load parameters for determining the basic valve opening times 'riM and TiMa also change depending on the intake pipe absolute pressure PH.
^, so the two phenomena of discharge pressure Po and charging efficiency for each cylinder can be expressed on the same map on the Pa equation-Ne map, so set the basic valve opening times TiM and TiMa determined from these two phenomena. do it. In other words,
Map values Tiv and T i M of PB8-Ne map
a is PB in addition to the filling efficiency according to the conventional Pa^-Ne
It is set in consideration of the discharge pressure P according to ^.

エンジン1本体にはエンジン冷却水温センサ(以下rT
wセンサ」という)9が設けられ、Twセセン9はサー
ミスタ等からなり、冷却水が充満したエンジン気筒周壁
内に挿着されて、その検出水温信号をECtJ5に供給
する。エンジン回転数センサ(以下rNeセンサ」とい
う)10がエンジンの図示しないカム軸周囲又はクラン
ク軸周囲に取り付けられており、Neセンサ10はエン
ジンのクランク軸180a回転毎に所定のクランク角度
位置で、即ち、各気筒の吸気行程開始時の上死点(TD
C)に関し所定クランク角度前のクランク角度位置でク
ランク角度位置信号(以下これをrTDC信号」という
)を出力するものであり。
The engine cooling water temperature sensor (rT) is installed on the engine 1 body.
A Tw sensor (referred to as "w sensor") 9 is provided, and the Tw sensor 9 is made of a thermistor or the like, and is inserted into the circumferential wall of the engine cylinder filled with cooling water, and supplies its detected water temperature signal to the ECtJ5. An engine rotation speed sensor (hereinafter referred to as "rNe sensor") 10 is attached around the camshaft or crankshaft (not shown) of the engine, and the Ne sensor 10 is mounted at a predetermined crank angle position every time the engine crankshaft 180a rotates. , Top dead center (TD) at the start of the intake stroke of each cylinder
Regarding C), a crank angle position signal (hereinafter referred to as "rTDC signal") is output at a crank angle position before a predetermined crank angle.

このTDC信号はECU3に送られる。This TDC signal is sent to ECU3.

エンジン1の排気管11には三元触媒12が配置され排
気ガス中のHC,C01NOx成分の浄化作用を行う。
A three-way catalyst 12 is disposed in the exhaust pipe 11 of the engine 1 to purify HC and CO1NOx components in the exhaust gas.

この三元触媒12の上流側には02センサ13が排気管
11に挿着され、このセンサ13は排気中のN1素濃度
を検出し、02濃度信号をECU3に供給する。
An 02 sensor 13 is inserted into the exhaust pipe 11 upstream of the three-way catalyst 12, and this sensor 13 detects the N1 element concentration in the exhaust gas and supplies an 02 concentration signal to the ECU 3.

更に、ECU3には例えば大気圧センサ等の他のパラメ
ータセンサ14が接続されており、他のパラメータセン
サ14はその検出値信号をECU3に供給する。
Furthermore, other parameter sensors 14 such as an atmospheric pressure sensor are connected to the ECU 3, and the other parameter sensors 14 supply their detected value signals to the ECU 3.

EC1J5は各種センサからの入力信号波形を整形し、
電圧レベルを所定レベルに修正し、アナログ信号値をデ
ジタル信号値に変換する等の機能を有する入力回路5a
、中央演算処理回路(以下rCPUJという)5b、C
PU5bで実行される各種演算プログラム及び演算結果
等を記憶する記憶手段5c、及び前記燃料噴射弁6と補
助燃料噴射弁6aとにそれぞれ駆動信号を供給する出力
回路5d等から構成される。
EC1J5 shapes input signal waveforms from various sensors,
An input circuit 5a having functions such as correcting the voltage level to a predetermined level and converting analog signal values into digital signal values.
, central processing circuit (hereinafter referred to as rCPUJ) 5b, C
It is comprised of a storage means 5c for storing various calculation programs and calculation results executed by the PU 5b, and an output circuit 5d for supplying drive signals to the fuel injection valve 6 and the auxiliary fuel injection valve 6a, respectively.

CPU5bは第2図に示す燃料供給制御プログラムを前
記TDC信号が入力される毎に実行する。
The CPU 5b executes the fuel supply control program shown in FIG. 2 every time the TDC signal is input.

該プログラムは入力回路5aを介して供給された前述の
各種センサからのエンジンパラメータ信号に基づいて、
スロットル弁上流の燃料噴射弁(以下、上流弁という)
6及びスロットル弁下流の補助燃料噴射弁(以下、下流
弁という)6aのそれぞれの燃料噴射時間を算出し、こ
れらの噴射時間に基づいた開弁駆動信号を両噴射弁6及
び6aに出力する。
The program is based on engine parameter signals from the various sensors mentioned above supplied via the input circuit 5a.
Fuel injection valve upstream of the throttle valve (hereinafter referred to as upstream valve)
6 and the auxiliary fuel injection valve (hereinafter referred to as downstream valve) 6a downstream of the throttle valve, and outputs a valve opening drive signal based on these injection times to both injection valves 6 and 6a.

以下、第2図の燃料供給制御プログラムの処理手順を詳
細に説明する。
Hereinafter, the processing procedure of the fuel supply control program shown in FIG. 2 will be explained in detail.

本プログラムはTDC信号発生毎に実行される。This program is executed every time the TDC signal is generated.

まず、ステップ1ではエンジン水温Twが所定温度T 
W M^(例えば60℃)より高いか否かを判別し、こ
の答が否定(NO)のとき、即ちエンジン温度が所定温
度より低いときは、下流弁6aの開弁時間TOυ〒Ma
をOに設定する(ステップ8)。
First, in step 1, the engine water temperature Tw is set to a predetermined temperature T.
If the answer is negative (NO), that is, if the engine temperature is lower than a predetermined temperature, the opening time TOυ〒Ma of the downstream valve 6a is determined.
is set to O (step 8).

そして、後述するステップ15以下に進み、上流弁用P
B^−Naマツプより基本開弁時間TiMを検索し、該
T’iM値に基づいて上流弁6の開弁時間TOυTMを
次式(1)に従って算出しくステップ17)、ステップ
6で上流弁6に該TOUTM値に応じた開弁駆動信号を
出力する。
Then, the process proceeds to step 15 to be described later, and the upstream valve P
Search the basic valve opening time TiM from the B^-Na map, and calculate the valve opening time TOυTM of the upstream valve 6 based on the T'iM value according to the following equation (1). A valve opening drive signal corresponding to the TOUTM value is output.

TouTM=TiMXKIM+に2M   −(1)こ
こに、K8閘及びに、Illは前述した各種のエンジン
パラメータ信号に基づいて決定される補正係数及び補正
定数である。
TouTM=TiMXKIM+2M-(1) where K8 and Ill are correction coefficients and correction constants determined based on the various engine parameter signals described above.

この結果、エンジン冷間時は上流弁から燃料が供給さ才
しるようになるので、複数の気筒に対する燃料の分配性
が確保される。
As a result, when the engine is cold, fuel is supplied from the upstream valve, so that the distribution of fuel to a plurality of cylinders is ensured.

ステップ1の判別結果が前室(Yes)のときは。When the determination result of step 1 is the front chamber (Yes).

次のステップ2でスロットル弁開度OT I+が所定の
低スロツトル開度Z 01DL(例えば0.39’)よ
り小さいか否かを判別し、この答が肯定(Ye s )
のとき、即ちエンジン温度が所定温度より高く且つスロ
ットル弁開度が所定開度以下のときは、下流弁用Pa^
−Neマツプより基本開弁時間TiMaを検索し、該”
1’ i Ma値に基づいて下流弁の開弁時間”I’ 
oυ丁Maを次式(2)に従って算出する(ステツブ3
)。
In the next step 2, it is determined whether the throttle valve opening OT I+ is smaller than a predetermined low throttle opening Z 01DL (for example, 0.39'), and the answer is affirmative (Yes).
When the engine temperature is higher than the predetermined temperature and the throttle valve opening is below the predetermined opening, the downstream valve Pa^
-Search the basic valve opening time TiMa from the Ne map and
1' i Based on the Ma value, the opening time of the downstream valve "I'
Calculate oυd Ma according to the following formula (2) (Step 3
).

TOUT Ma=TiMaXK、a+に2a    −
(2)ここに、Kla及びに2aは前述した各種のエン
ジンパラメータ信号に基づいて決定される補正係数及び
補正定数である。
TOUT Ma=TiMaXK, 2a − to a+
(2) Here, Kla and 2a are correction coefficients and correction constants determined based on the various engine parameter signals described above.

次に、後述するステップ9で使用するnTpCAM値を
初期値nTDCAM(例えば3)にリセットしくステッ
プ4)、上流弁の開弁時間TOIJTM値を0に設定す
る(ステップ5)。このため、次のステップ6の実行の
際には上流弁に対して開弁駆動信号は出力されない。更
に、次のステップ7では前記ステップ3で算出されたT
ou〒Ma値に応じた開弁駆動信号を出力し、本プログ
ラムを終了する。
Next, the nTpCAM value used in step 9 described later is reset to the initial value nTDCAM (for example, 3) (step 4), and the valve opening time TOIJTM value of the upstream valve is set to 0 (step 5). Therefore, when the next step 6 is executed, no valve opening drive signal is output to the upstream valve. Furthermore, in the next step 7, T calculated in step 3 is
Outputs a valve opening drive signal according to the ou〒Ma value, and ends this program.

この結果、気筒に対する燃料供給の応答性が向上するよ
うになる。
As a result, the responsiveness of fuel supply to the cylinders is improved.

ステップ2の判別結果が否定(NO)のときは、前記7
17e+cA+w値がOか否かを判別しくステップ9)
、この答が否定(NO)であれば、前記ステップ3と同
様に下流弁用Pa−Neマツプより基本開弁時間Tiv
aを検索し、該TiMa値に基づいて下流弁の開弁時間
TouTMaを算出する(ステップ10)。
If the determination result in step 2 is negative (NO),
Step 9) Determine whether the 17e+cA+w value is O or not.
, if this answer is negative (NO), the basic valve opening time Tiv is calculated from the downstream valve Pa-Ne map as in step 3 above.
a is searched, and the valve opening time TouTMa of the downstream valve is calculated based on the TiMa value (step 10).

次に、nTDCAM値から1を減算しくステップ11)
、ステップ15以下へ進む。
Next, subtract 1 from the nTDCAM value (Step 11)
, proceed to step 15 and subsequent steps.

ステップ9の判別結果が肯定(Yes)のときは、次の
ステップ12.13又はステップ12゜14でエンジン
回転数Neに応じた減少度で前記ステップ10で算出し
たTOLI、T y’a値を減少させる。即ち、ステッ
プ12でエンジン回転数Neが所定値zNeAM(例え
ば900rpm)より高いか否かを判別し、この答が肯
定(Yes)のときは前回TouTMa値から減算値Δ
1’OU T M a2 (例えば1.0m5ec)を
減算し、この答が否定(NO)のときは前回ToutM
a値から減算値ΔTouTMa、(例えば1.0m5e
c)を減算し、その後ステップ15以下へ進む。
If the determination result in step 9 is affirmative (Yes), in the next step 12.13 or step 12.14, the TOLI and T y'a values calculated in step 10 are calculated with the degree of decrease according to the engine speed Ne. reduce That is, in step 12, it is determined whether the engine speed Ne is higher than a predetermined value zNeAM (for example, 900 rpm), and if the answer is affirmative (Yes), the subtracted value Δ from the previous TouTMa value is determined.
1'OUTM a2 (for example, 1.0m5ec) is subtracted, and if the answer is negative (NO), the previous ToutM
Subtract value ΔTouTMa from a value, (for example, 1.0m5e
c), and then proceed to step 15 and subsequent steps.

ステップ15では前記ステップ10.13又は14で算
出したTOUTMa値が下限値TOLIT psaLM
T(例えば3 、0 m5ec)より小さいか否かを判
別し、この答が肯定(Yes)のときはステップ16で
TouTMa値を下限値TouTMaLMTとしてがら
ステップ17に進み、この答が否定(No)のときはそ
のままステップ17に進む。ステップ17では上流弁用
Pa−Neマツプより基本開弁時間TiMを検索し、該
T i M値に基づいて上流弁の開弁時間TOIJTM
を前記式(1)に従って算出する。
In step 15, the TOUTMa value calculated in step 10.13 or 14 is set to the lower limit TOLIT psaLM.
It is determined whether or not it is smaller than T (for example, 3,0 m5ec), and if the answer is affirmative (Yes), the process proceeds to step 17 while setting the TouTMa value as the lower limit value TouTMaLMT in step 16, and if this answer is negative (No). If so, proceed directly to step 17. In step 17, the basic valve opening time TiM is searched from the Pa-Ne map for upstream valves, and the valve opening time TOIJTM of the upstream valve is determined based on the TiM value.
is calculated according to the above formula (1).

次のステップ18では前記ステップ17で算出したTO
IJTM値が所定値Me −Tou T L M Tよ
り大きいか否かを判別する。ここに、MeはTDC信号
の発生間隔であり、これは吸気行程の時間に対応するも
のである。また、T OLITLM Tは高負荷時にお
ける下流弁の開弁時間を上流弁の開弁時間に換算した値
であり、下流弁が噴射する燃料量を表わす。所定値M 
e −T o u t L M〒は上流弁が噴射した燃
料が気筒内へ実際に吸引される分を表わし、TouTM
値がこの所定値Me −Tou T L M Tを上回
るときは、その上回った分の燃料はまずスロットル弁等
に付着し、その後スロットル弁から蒸発してスロットル
弁下流の吸気管内壁に付着する。
In the next step 18, the TO calculated in step 17 is
It is determined whether the IJTM value is larger than a predetermined value Me-TouTLMT. Here, Me is the generation interval of the TDC signal, which corresponds to the time of the intake stroke. Further, TOLITLM T is a value obtained by converting the opening time of the downstream valve to the opening time of the upstream valve during high load, and represents the amount of fuel injected by the downstream valve. Predetermined value M
e −T o u t L M〒 represents the amount of fuel injected by the upstream valve that is actually drawn into the cylinder;
When the value exceeds the predetermined value Me -Tou T L MT, the excess fuel first adheres to the throttle valve etc., and then evaporates from the throttle valve and adheres to the inner wall of the intake pipe downstream of the throttle valve.

しかしながら、スロットル弁下流の吸気管内壁に付着す
る分の燃料を下流弁によって供給するようにすれば、ス
ロットル弁からの蒸発斌が減るので、スロットル弁の燃
料付着量の変化は小さくなり、燃料供給制御の精度が更
に良くなる。従って、ステップ18の判別結果が肯定(
Yes)のときは、次式(3)によって下流弁の開弁時
間を算出する(ステップ19)。
However, if the amount of fuel that adheres to the inner wall of the intake pipe downstream of the throttle valve is supplied by the downstream valve, the amount of evaporation from the throttle valve will be reduced, so the change in the amount of fuel adhering to the throttle valve will be small, and the fuel will be supplied Control accuracy is further improved. Therefore, the determination result in step 18 is affirmative (
If Yes), the opening time of the downstream valve is calculated using the following equation (3) (step 19).

”110LIT Ma=(TouTM−(Me−TOL
ITLM T))XKAux+Tva・・・(3) ここに、KAuxは上流弁に対する下流弁の流量比であ
り、Tvaはバッテリ電圧の変動に応じた補正値である
。ステップ19の実行後、ステップ6に進む。また、ス
テップ18の判別結果が否定(NO)のときは、スロッ
トル弁や吸気管内壁に付着する分の燃料が必要でない場
合、即ちエンジンが減速状態である場合等であるので、
ステップ19をスキップして直接ステップ6に進む。
”110LIT Ma=(TouTM-(Me-TOL
ITLM T))XKAux+Tva... (3) Here, KAux is the flow rate ratio of the downstream valve to the upstream valve, and Tva is a correction value according to fluctuations in battery voltage. After executing step 19, proceed to step 6. Further, if the determination result in step 18 is negative (NO), it means that the amount of fuel that adheres to the throttle valve or the inner wall of the intake pipe is not needed, that is, the engine is in a deceleration state, etc.
Skip step 19 and proceed directly to step 6.

最後に、ステップ6でTouTM値に応じた開弁駆動信
号を上流弁に出力し、ステップ7でTourMa値に応
じた開弁駆動信号を下流弁に出力し1本プログラムを終
了する。
Finally, in step 6, a valve opening drive signal corresponding to the TouTM value is output to the upstream valve, and in step 7, a valve opening drive signal corresponding to the TourMa value is output to the downstream valve, and one program is completed.

(発明の効果) 以上詳述したように、本発明の内燃エンジンの燃料供給
制御方法によれば、複数の気筒を備えた内燃エンジンの
吸気管集合部より上流のスロットル弁の上流側及び下流
側にそれぞれ設置された燃料噴射弁及び補助燃料噴射弁
から該エンジンの運転状態に応じて燃料を供給する内燃
エンジンの燃料供給制御方法において、エンジン温度が
所定温度より低いとき、前記スロットル弁の上流側の燃
料噴射弁により燃料供給を行ない、エンジン温度が前記
所定温度より高く且つスロットル弁開度が所定開度以下
のとき、前記スロットル弁の下流側の補助燃料噴射弁に
より燃料供給を行なうようにしたので、エンジンの温度
が低い場合にも、複数の気筒に対する燃料の分配を良好
にすることができる。また、エンジンの温度が低い場合
には低負荷運転状態から高負荷運転状態への移行時にス
ロットル弁下流の補助燃料噴射弁からスロットル弁上流
の燃料噴射弁への切換をしないで済み、このような切換
に伴なう燃料供給量の変動を防止することができる。更
に、エンジンの温度が高い場合の燃料噴射弁の切換はス
ロットル弁が開いた瞬間、即ち吸気流社が変化した瞬間
に行うようにしたため、吸気管内の吸気状態の変化によ
って燃料供給量が変化することを防止できる。
(Effects of the Invention) As described in detail above, according to the fuel supply control method for an internal combustion engine of the present invention, the upstream side and the downstream side of the throttle valve upstream of the intake pipe gathering part of an internal combustion engine equipped with a plurality of cylinders In the fuel supply control method for an internal combustion engine, in which fuel is supplied according to the operating state of the engine from a fuel injection valve and an auxiliary fuel injection valve respectively installed in the engine, when the engine temperature is lower than a predetermined temperature, the upstream side of the throttle valve When the engine temperature is higher than the predetermined temperature and the throttle valve opening is below the predetermined opening, fuel is supplied by the auxiliary fuel injection valve downstream of the throttle valve. Therefore, even when the engine temperature is low, fuel can be distributed favorably to a plurality of cylinders. In addition, when the engine temperature is low, there is no need to switch from the auxiliary fuel injection valve downstream of the throttle valve to the fuel injection valve upstream of the throttle valve when transitioning from a low-load operating state to a high-load operating state. Fluctuations in the amount of fuel supplied due to switching can be prevented. Furthermore, when the engine temperature is high, the fuel injection valve is switched at the moment the throttle valve opens, that is, at the moment the intake air flow changes, so the amount of fuel supplied changes depending on the intake air condition in the intake pipe. This can be prevented.

【図面の簡単な説明】 第1図は本発明方法を実施する内燃エンジンの燃料供給
制御装置の全体構成図、第2図は第1図のECUで実行
される燃料供給制御プログラムのフローチャートである
。 ■・・・内燃エンジン、3′・・・スロットル弁、4・
・・スロットル弁開度センサ、5・・・電子コントロー
ルユニット(ECU) 、5b−CPU、5 c −記
憶手段、6・・・燃料噴射弁、6a・・・補助燃料噴射
弁。 8・・・吸気管内絶対圧センサ、10・・・エンジン回
転数センサ。
[Brief Description of the Drawings] Fig. 1 is an overall configuration diagram of a fuel supply control device for an internal combustion engine that implements the method of the present invention, and Fig. 2 is a flowchart of a fuel supply control program executed by the ECU shown in Fig. 1. . ■... Internal combustion engine, 3'... Throttle valve, 4.
...Throttle valve opening sensor, 5...Electronic control unit (ECU), 5b-CPU, 5c-storage means, 6...Fuel injection valve, 6a...Auxiliary fuel injection valve. 8... Intake pipe absolute pressure sensor, 10... Engine rotation speed sensor.

Claims (1)

【特許請求の範囲】[Claims] 1、複数の気筒を備えた内燃エンジンの吸気管集合部よ
り上流のスロットル弁の上流側及び下流側にそれぞれ設
置された燃料噴射弁及び補助燃料噴射弁から該エンジン
の運転状態に応じて燃料を供給する内燃エンジンの燃料
供給制御方法において、エンジン温度が所定温度より低
いとき、前記スロットル弁の上流側の燃料噴射弁により
燃料供給を行ない、エンジン温度が前記所定温度より高
く且つスロットル弁開度が所定開度以下のとき、前記ス
ロットル弁の下流側の補助燃料噴射弁により燃料供給を
行なうことを特徴とする内燃エンジンの燃料供給制御方
法。
1. Fuel is supplied from fuel injection valves and auxiliary fuel injection valves installed on the upstream and downstream sides of the throttle valve upstream of the intake pipe assembly of an internal combustion engine equipped with a plurality of cylinders according to the operating state of the engine. In the internal combustion engine fuel supply control method, when the engine temperature is lower than a predetermined temperature, fuel is supplied by a fuel injection valve on the upstream side of the throttle valve, and when the engine temperature is higher than the predetermined temperature and the throttle valve opening is A fuel supply control method for an internal combustion engine, characterized in that when the opening degree is below a predetermined opening degree, fuel is supplied by an auxiliary fuel injection valve downstream of the throttle valve.
JP29428386A 1986-12-10 1986-12-10 Fuel supply control method for internal combustion engine Expired - Lifetime JPH0692753B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP29428386A JPH0692753B2 (en) 1986-12-10 1986-12-10 Fuel supply control method for internal combustion engine
US07/130,635 US4825834A (en) 1986-12-10 1987-12-09 Fuel supply control method for internal combustion engines
DE19873741914 DE3741914A1 (en) 1986-12-10 1987-12-10 FUEL SUPPLY CONTROL METHOD FOR INTERNAL COMBUSTION ENGINES
US07/252,378 US4883039A (en) 1986-12-10 1988-09-30 Fuel supply control method for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29428386A JPH0692753B2 (en) 1986-12-10 1986-12-10 Fuel supply control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS63147952A true JPS63147952A (en) 1988-06-20
JPH0692753B2 JPH0692753B2 (en) 1994-11-16

Family

ID=17805697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29428386A Expired - Lifetime JPH0692753B2 (en) 1986-12-10 1986-12-10 Fuel supply control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0692753B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249940A (en) * 1988-08-11 1990-02-20 Japan Electron Control Syst Co Ltd Fuel supply control device of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249940A (en) * 1988-08-11 1990-02-20 Japan Electron Control Syst Co Ltd Fuel supply control device of internal combustion engine

Also Published As

Publication number Publication date
JPH0692753B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US5934249A (en) Engine control system and the method thereof
US6382188B2 (en) Fuel injection control system of internal combustion engine
US4883039A (en) Fuel supply control method for internal combustion engines
US20030029427A1 (en) Method for determining the fuel content of the regeneration gas in an internal combustion engine comprising direct fuel-injection with shift operation
US6536414B2 (en) Fuel injection control system for internal combustion engine
JPS63147952A (en) Method of controlling supply of fuel for internal combustion engine
JPH06102999B2 (en) Fuel supply control method for internal combustion engine
JPH0316498B2 (en)
JPS61135948A (en) Method of controlling injection quantity of fuel in internal combustion engine
JPS63147951A (en) Method of controlling supply of fuel for internal combustion engine
JPH057546B2 (en)
JPS63147955A (en) Method of controlling supply of fuel for internal combustion engine
JP2001090581A (en) Control device for internal combustion engine
JPH07259630A (en) Intake air quantity calculating device by intake pipe pressure
JPS62168957A (en) Fuel pressure control device
JPS6221735Y2 (en)
JPS627949A (en) Fuel injection amount control device of internal-combustion engine
JPH0573911B2 (en)
JPH03496B2 (en)
JPH077560Y2 (en) Engine fuel injection amount control device
JPH01240742A (en) Fuel supply device for engine
JPH03121223A (en) Fuel injection controller of internal combustion engine
JP2591318B2 (en) Diesel engine exhaust recirculation system
JPS59141730A (en) Method of controlling fuel injection quantity of internal-combustion engine
JPS58144640A (en) Electronically controlled fuel injecting method for internal-combustion engine