JPS63147273A - Method for detecting alignment pattern - Google Patents

Method for detecting alignment pattern

Info

Publication number
JPS63147273A
JPS63147273A JP61293525A JP29352586A JPS63147273A JP S63147273 A JPS63147273 A JP S63147273A JP 61293525 A JP61293525 A JP 61293525A JP 29352586 A JP29352586 A JP 29352586A JP S63147273 A JPS63147273 A JP S63147273A
Authority
JP
Japan
Prior art keywords
light
latent image
angle
pattern
transparent layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61293525A
Other languages
Japanese (ja)
Inventor
Masato Muraki
真人 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61293525A priority Critical patent/JPS63147273A/en
Publication of JPS63147273A publication Critical patent/JPS63147273A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the aligning pattern signal as a diffracted light signal having a high S/N regardless of the thickness of a transparent layer, by irradiating a latent image formed on the transparent layer at a prescribed angle for the detection of said image. CONSTITUTION:A laser beam source 21 supplies the linear polarized light and this luminous flux is turned into a circular polarized light through a polarized beam splitter 22 and a lambda/4 plate 23 to be made incident on a wafer 4 to which a latent image is formed. Here it is assumed that an incident angle theta'' is secured to the normal line of the wafer 4. Thus the luminous flux traces back the original optical path owing to a refractive index distribution and is made incident on the plate 23 to be turned into a linear polarized light. This luminous flux is reflected by the splitter 22 toward a convergent lens 24 and made incident on a photodetector 25. Then the angle theta' is set properly to secure the maximum signal intensity of the latent image. At the same time, an S/N is improved. Thus it is possible to obtain a refracted light signal having a high S/N regardless of the thickness of a resist 7.

Description

【発明の詳細な説明】 [発明の分野] 本発明は、位置合せ用のパターンの検出方法に関する。[Detailed description of the invention] [Field of invention] The present invention relates to a method for detecting patterns for alignment.

[従来技術] 従来、半導体露光装置における、クエへとレチクルの位
置合せ方法の1つとして、潜像を用いたものがある。
[Prior Art] Conventionally, one method of aligning a reticle to a square in a semiconductor exposure apparatus is to use a latent image.

この方法により位置合せするには、まず、第3図に示す
ように、レチクルll上の位置合せ用パターン14を、
照明系lOより照射される焼付光によって、結像系12
を介し、ウェハ13上の感光層であるレジストに転写す
る。その際、そのレジストがほぼ飽和するように焼付光
を照射する。すると、第4図のような潜像が形成される
。次に、この潜像と、前もってウニ八基板15上に形成
されているマークとを焼付光以外のレーザ光によって走
査させ、その回折光を検知することによって潜像とマー
ク間の相対距離を求め位置合せを行なう。これが潜像を
用いた位置合せ方法である。
To align using this method, first, as shown in FIG.
The imaging system 12 is illuminated by the printing light emitted from the illumination system IO.
The image is transferred to a resist, which is a photosensitive layer, on the wafer 13 through the wafer 13. At that time, the printing light is irradiated so that the resist is almost saturated. Then, a latent image as shown in FIG. 4 is formed. Next, this latent image and the mark previously formed on the Unihachi substrate 15 are scanned with a laser beam other than the printing light, and the relative distance between the latent image and the mark is determined by detecting the diffracted light. Perform alignment. This is an alignment method using latent images.

潜像は、第4図のように、焼付光に照射された部分(斜
線部分)とそうでない部分とで屈折率nl+n2および
透過率TI、T2が異なる。その分布はウェハ基板水平
方向に一次元なものである。
As shown in FIG. 4, the latent image has different refractive index nl+n2 and transmittance TI, T2 between the portion irradiated with the printing light (hatched portion) and the portion not irradiated with the printing light. The distribution is one-dimensional in the horizontal direction of the wafer substrate.

[発明が解決しようとする問題点] しかしながら、このような潜像パターン上にレーザをス
キャンさせその回折光を検知する場合、レーザ光が垂直
入射のときはレジストの厚さによってその回折光の強度
が変化するという欠点があり、斜入射の場合は垂直入射
に比べ回折強度が減少し十分なS/Nが得られないとい
う欠点があった。
[Problems to be Solved by the Invention] However, when scanning a laser over such a latent image pattern and detecting the diffracted light, when the laser light is perpendicularly incident, the intensity of the diffracted light varies depending on the thickness of the resist. There is a drawback that the angle changes, and in the case of oblique incidence, the diffraction intensity is reduced compared to normal incidence, and a sufficient S/N ratio cannot be obtained.

本発明は、上述従来例の欠点を除去すると同時にS/N
の高い回折光信号が得られる位置合せ用パターンの検出
方法を提供することを目的とする。
The present invention eliminates the drawbacks of the conventional example described above and at the same time improves the S/N ratio.
It is an object of the present invention to provide a method for detecting alignment patterns that can obtain a high diffraction light signal.

[問題点を解決するための手段、] 上記問題点を解決するため本発明は、検出されるべき位
置合せパターンとして、透明層中に該透明層表面に対し
所定角度をなして周期的に繰り返して形成された光透過
率または屈折率の異なる層からなるパターンを用い、こ
れをそれぞれ上記所定角度により限定される角度で照明
および検出するようにしている。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides an alignment pattern that is periodically repeated in a transparent layer at a predetermined angle with respect to the surface of the transparent layer, as an alignment pattern to be detected. A pattern made of layers having different light transmittances or refractive indexes is used, and each pattern is illuminated and detected at an angle defined by the predetermined angle.

[作用] 本発明において検出される好ましい位置合せ用パターン
は、例えば、2つに分割されたコヒーレント光束を用い
、そのうち少なくとも1つの光束には第1の物体上の位
置合せ用パターンを照明してその図形情報をもたせてか
ら、これらの光束を異なる角度で第2の物体上の感光層
の所定部分に照射させることにより第1の物体上の位置
合せ用の潜像パターンとして形成される。
[Operation] A preferable alignment pattern detected in the present invention uses, for example, a coherent light beam divided into two, and at least one of the two beams is illuminated with the alignment pattern on the first object. After imparting the graphic information, these light beams are irradiated onto predetermined portions of the photosensitive layer on the second object at different angles, thereby forming a latent image pattern for positioning on the first object.

本発明においては、上記透明層中の繰返し層の角度に対
応した所定の角度で照明光を入射させその回折光を検出
することによりこの繰返し層からなる位置合せ用パター
ンを検出する。
In the present invention, the alignment pattern made of the repeating layers is detected by entering illumination light at a predetermined angle corresponding to the angle of the repeating layers in the transparent layer and detecting the diffracted light.

[実施例] 以下、図面を用いて本発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の一実施例に係る潜像の検出方法を示す
図である。同図において、4はウェハ、7はレジスト、
8はウェハ基板、21は焼付光とは異なる波長λ′をも
つレーザ光源、22は偏光ビームスプリッタ、23はλ
/4板、24はコンデンサレンズ、25は光検出器であ
る。ウェハ4のレジスト7内には、コヒーレントな2つ
の平行光束Σ1とΣ2を異なる角度で潜像形成用のパタ
ーンを透過させてから結像系を介してウェハ4の所定部
分に照射することにより、光束ΣiとΣ2が形成する干
渉縞(強度)の分布に対応した屈折率および透過率の分
布が形成されている。これがいわゆる潜像である。
FIG. 1 is a diagram showing a latent image detection method according to an embodiment of the present invention. In the figure, 4 is a wafer, 7 is a resist,
8 is a wafer substrate, 21 is a laser light source with a wavelength λ' different from that of the printing light, 22 is a polarizing beam splitter, and 23 is λ
/4 plate, 24 is a condenser lens, and 25 is a photodetector. In the resist 7 of the wafer 4, two coherent parallel light beams Σ1 and Σ2 are transmitted through a pattern for forming a latent image at different angles and then irradiated onto a predetermined portion of the wafer 4 via an imaging system. A distribution of refractive index and transmittance is formed corresponding to a distribution of interference fringes (intensity) formed by the light beams Σi and Σ2. This is the so-called latent image.

第2図は、この潜像が形成されたウェハ4の断面図であ
る。ここでは平行光束Σ1はレジスト7に垂直入射して
いる場合を考える。露光前のレジスト7の屈折率をnl
、焼付光の波長をλ、光束Σ1とΣ2のなす角を20と
すると、スネルの7去則よりレジスト中では光束Σ!、
Σ2はsin 2θ= n 、5in2θ′を満たす2
0′の角度を成している。この時、潜像の縞は2つの光
束Σ1.Σ2のそれぞれの波面W、、W2の交叉点を結
ぶ部分すなわち図面の斜線部にできる。同図より明らか
なように、潜像の縞は両光束の成す角の半角でできてい
る。すなわち縞とウェハ基板8の法線との成す角はθ′
 となる。また、縞ピッチはλ/2n1sin  (θ
′)となる。
FIG. 2 is a cross-sectional view of the wafer 4 on which this latent image is formed. Here, a case will be considered in which the parallel light beam Σ1 is perpendicularly incident on the resist 7. The refractive index of resist 7 before exposure is nl
, the wavelength of the printing light is λ, and the angle between the luminous fluxes Σ1 and Σ2 is 20. According to Snell's rule of seven, the luminous flux Σ! ,
Σ2 is 2 that satisfies sin 2θ = n, 5in2θ'
It forms an angle of 0'. At this time, the fringe of the latent image consists of two light beams Σ1. This occurs at the portion connecting the intersection points of the respective wavefronts W, , W2 of Σ2, that is, the shaded portion of the drawing. As is clear from the figure, the fringe of the latent image is made up of a half angle of the angle formed by both light beams. In other words, the angle between the stripes and the normal to the wafer substrate 8 is θ'
becomes. Also, the fringe pitch is λ/2n1sin (θ
').

この構成において、レーザ光源21(波長λ′)から直
線偏光光を供給すると、その光束は、まず、偏光ビーム
スプリッタ22を透過する。その後、さらにλ/4板2
板金3過することにより円偏光となり、潜像が形成され
たウェハ4に入射する。
In this configuration, when linearly polarized light is supplied from the laser light source 21 (wavelength λ'), the light flux first passes through the polarizing beam splitter 22 . After that, 2 more λ/4 plates
By passing through the sheet metal 3, the light becomes circularly polarized light and enters the wafer 4 on which a latent image is formed.

このとき、ウェハ4の法線に対しθ′ (但しsinθ
” =il、 sin  (re/ 2−θ′)の入射
角をもっとすれば、光束は屈折率分布によりもとの光路
を逆にたどってλ/4板2板金3射し、直線偏光となる
。この光束は、今度は偏光ビームスプリッタ22により
コンデンサレンズ24の方に反射され光検出器25に入
射する。このとき、レーザ光源21から図中の各編に入
射する光束をil+  12.13とすると、検出器2
5までの各光束の光路差はλ/sinθ′ となる。し
たがって、 が成立するようにθ′を決定しておけば潜像の信号強度
が最大となる。信号の外乱となるウェハ4の表面反射の
大部分はレーザ光源21の側と反対側に行くのでS/N
も高くなる。
At this time, θ' (where sin θ
” If the incident angle of =il, sin (re/ 2-θ') is increased, the light beam will reverse the original optical path due to the refractive index distribution and will be incident on the λ/4 plate 2 sheet metal 3, becoming linearly polarized light. This luminous flux is then reflected by the polarizing beam splitter 22 toward the condenser lens 24 and enters the photodetector 25. At this time, the luminous flux that enters each section in the figure from the laser light source 21 is expressed as il+12.13. Then, detector 2
The optical path difference of each light beam up to 5 is λ/sin θ'. Therefore, if θ' is determined so that the following holds true, the signal strength of the latent image will be maximized. Most of the surface reflection of the wafer 4, which causes signal disturbance, goes to the side opposite to the laser light source 21, so the S/N is low.
It also becomes more expensive.

以上のようにして、潜像形成用のパターンを焼付光と同
波長のコヒーレントな2光束により照明して形成した潜
像を、焼付光の波長と異なる波長のレーザ光でレジスト
厚さに関係なく効率良く検出することができる。
As described above, the latent image formed by illuminating the pattern for forming a latent image with two coherent beams having the same wavelength as the printing light is illuminated with a laser beam having a wavelength different from that of the printing light, regardless of the resist thickness. It can be detected efficiently.

ただし、波長によりレジストの屈折率が違うため、若干
、潜像検出時の照明光の入射角を波長に対応させて調整
する必要がある。
However, since the refractive index of the resist differs depending on the wavelength, it is necessary to adjust the incident angle of the illumination light when detecting a latent image to correspond to the wavelength.

[実施例の変形例] 上述においては、入射光と回折光が同一経路をもつが、
同経路間にある角度をもたせてもかまわない。
[Modified example of the embodiment] In the above, the incident light and the diffracted light have the same path,
It does not matter if there is a certain angle between the same routes.

[発明の効果] 以上説明したように本発明によれば、位置合せ用パター
ンの信号を、透明層の厚さに関係なく、S/Nの高い回
折光信号として非常に効率よく検出することができる。
[Effects of the Invention] As explained above, according to the present invention, the signal of the alignment pattern can be detected very efficiently as a diffracted light signal with a high S/N, regardless of the thickness of the transparent layer. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る潜像の検出方法を示
す概略図、 第2図は、潜像パターンの断面図、 第3図は、従来装置の概略図、 第4図は、従来の潜像パターンの断面図である。 7:レジスト、 8:ウニへ基板、 21:潜像検出用レーザ光源、 22:偏光ビームスプリッタ、 23:λ/4板、 24:コンデンサレンズ、 25;光検出器。 特許出願人   キャノン株式会社 代理人 弁理士   伊 東 辰 雄 代理人 弁理士   伊 東 哲 也 第3図
FIG. 1 is a schematic diagram showing a latent image detection method according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a latent image pattern, FIG. 3 is a schematic diagram of a conventional device, and FIG. , is a cross-sectional view of a conventional latent image pattern. 7: resist, 8: substrate for sea urchins, 21: laser light source for latent image detection, 22: polarizing beam splitter, 23: λ/4 plate, 24: condenser lens, 25; photodetector. Patent Applicant Canon Co., Ltd. Agent Patent Attorney Tatsuo Ito Agent Patent Attorney Tetsuya Ito Figure 3

Claims (1)

【特許請求の範囲】 1、透明層中に該透明層表面に対し所定角度をなして周
期的に繰り返して形成された光透過率または屈折率の異
なる層からなるパターンをそれぞれ上記所定角度により
限定される角度で照明し検出することを特徴とする位置
合せ用パターンの検出方法。 2、前記所定角度により限定される角度が、照明光と検
出光とで同一である特許請求の範囲第1項記載の位置合
せ用パターンの検出方法。 3、前記透明層が感光層であり、前記パターンが、第1
の物体上の位置合せ用パターンを第1のコヒーレント光
で照明して第2の物体上の感光層の所定部分に転写する
のと並行して該所定部分に第2のコヒーレント光を上記
第1のコヒーレント光と異なる角度で照射して該第1の
コヒーレント光と干渉させることにより上記第2の物体
上の感光層に第1の物体の位置合せ用潜像パターンとし
て立体的に形成したものである特許請求の範囲第1項記
載の位置合せ用パターンの検出方法。
[Claims] 1. A pattern consisting of layers having different light transmittances or refractive indexes formed periodically and repeatedly at a predetermined angle with respect to the surface of the transparent layer in the transparent layer, each of which is limited by the predetermined angle. A method for detecting alignment patterns characterized by illuminating and detecting at an angle at which the positioning pattern is detected. 2. The alignment pattern detection method according to claim 1, wherein the angle defined by the predetermined angle is the same for the illumination light and the detection light. 3. The transparent layer is a photosensitive layer, and the pattern is a first
The alignment pattern on the object is illuminated with the first coherent light and transferred to a predetermined portion of the photosensitive layer on the second object, and in parallel, the second coherent light is applied to the predetermined portion of the photosensitive layer on the second object. A latent image pattern for alignment of the first object is three-dimensionally formed on the photosensitive layer on the second object by irradiating the coherent light at a different angle with the first coherent light and causing interference with the first coherent light. A method for detecting alignment patterns according to claim 1.
JP61293525A 1986-12-11 1986-12-11 Method for detecting alignment pattern Pending JPS63147273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61293525A JPS63147273A (en) 1986-12-11 1986-12-11 Method for detecting alignment pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61293525A JPS63147273A (en) 1986-12-11 1986-12-11 Method for detecting alignment pattern

Publications (1)

Publication Number Publication Date
JPS63147273A true JPS63147273A (en) 1988-06-20

Family

ID=17795867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61293525A Pending JPS63147273A (en) 1986-12-11 1986-12-11 Method for detecting alignment pattern

Country Status (1)

Country Link
JP (1) JPS63147273A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661499B2 (en) 1998-06-12 2003-12-09 Nikon Corporation Projection exposure apparatus with a catadioptric projection optical system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661499B2 (en) 1998-06-12 2003-12-09 Nikon Corporation Projection exposure apparatus with a catadioptric projection optical system

Similar Documents

Publication Publication Date Title
KR100700444B1 (en) Self referencing mark independent alignment sensor
EP0634702B1 (en) Measuring method and apparatus
JP2514037B2 (en) Detection optical system
US4311389A (en) Method for the optical alignment of designs in two near planes and alignment apparatus for performing this method
US5272501A (en) Projection exposure apparatus
US5184196A (en) Projection exposure apparatus
US5751426A (en) Positional deviation measuring device and method for measuring the positional deviation between a plurality of diffraction gratings formed on the same object
US7072040B2 (en) Mask for inspecting an exposure apparatus, a method of inspecting an exposure apparatus, and an exposure apparatus
WO1992008167A1 (en) Proximity alignment using polarized illumination and double conjugate projection lens
JPH02192114A (en) Aligner
CN103154819A (en) Projection exposure tool for microlithography and method for microlithographic imaging
JP2634620B2 (en) Projection type exposure method and apparatus
JP3008633B2 (en) Position detection device
JPH0145973B2 (en)
JP2650396B2 (en) Position detecting device and position detecting method
CN111505914A (en) Optical alignment device and photoetching system
JPS63147273A (en) Method for detecting alignment pattern
CN113448189B (en) Alignment system and photoetching machine
JPH02133913A (en) Alignment apparatus
JP2796347B2 (en) Projection exposure method and apparatus
JPS63180801A (en) Alignment apparatus
JPH08186069A (en) Aligner
JP2808595B2 (en) Position detecting apparatus and projection exposure apparatus using the same
JPS63147320A (en) Formation of pattern for alignment
JPH0621877B2 (en) Surface condition measuring device