JPS6314725B2 - - Google Patents

Info

Publication number
JPS6314725B2
JPS6314725B2 JP57004614A JP461482A JPS6314725B2 JP S6314725 B2 JPS6314725 B2 JP S6314725B2 JP 57004614 A JP57004614 A JP 57004614A JP 461482 A JP461482 A JP 461482A JP S6314725 B2 JPS6314725 B2 JP S6314725B2
Authority
JP
Japan
Prior art keywords
thermally conductive
material composition
conductive filler
parts
heat dissipating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57004614A
Other languages
Japanese (ja)
Other versions
JPS58122913A (en
Inventor
Kyoshi Hani
Norimoto Moriwaki
Torahiko Ando
Masao Fujii
Kazunari Nakao
Takahiko Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57004614A priority Critical patent/JPS58122913A/en
Publication of JPS58122913A publication Critical patent/JPS58122913A/en
Publication of JPS6314725B2 publication Critical patent/JPS6314725B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

この発明は、熱䌝導性の優れた可倉圢熱攟散材
組成物に関し、詳しくは、あらゆる圢状をした発
熱機噚、装眮ずの装着性に優れ、しかも接觊熱抵
抗が小さく、か぀熱䌝導性の優れた可倉圢熱攟散
材組成物に関するものである。 熱可塑性暹脂および熱硬化性暹脂あるいはこれ
らの暹脂を有機溶剀に溶解させた暹脂液たたは、
粘皠シリコヌングリヌスなどに熱䌝導性の優れた
フむラヌを倚量に混合した熱䌝導性材料が垂販さ
れおいるこずはよく知られおいる。これらの熱䌝
導性材料は、各皮の機械装眮や電気・電子機噚お
よび郚品などの䜜動䞭に発生する過剰な熱をシダ
フトやフレヌムあるいは熱攟散のためのヒヌトシ
ンクなどぞ導くために䜿甚されおいる。 しかし、前蚘の垂販熱䌝導性材料は、個々に倧
きな欠点を有しおおり、皮々の発熱䜓ぞの適甚が
䞍可胜であり、䜿甚範囲が限定されおいるのが実
情である。 䟋えば、熱可塑性暹脂をマトリツクスにした熱
䌝導性材料は、熱可塑性暹脂の融点以䞊の発熱量
を持぀機噚や装眮に甚いた堎合、熱䌝導性材料が
溶融し流動するため、䜿甚枩床に限界がある。た
た、耐薬品性や耐溶剀性も劣る。さらに、熱可塑
性暹脂に熱䌝導性フむラヌを混入させる堎合、熱
可塑性暹脂の溶融粘床が高いため、熱䌝導性フむ
ラヌの混入量は少量ずなり、熱䌝導性の䜎いもの
しか埗られないずいう欠点を有しおいる。 䞀方、熱硬化性暹脂を甚いた熱䌝導性材料は、
高枩䞋で流動するような欠点がなく、たた硬化前
は液状暹脂が倚いため、熱䌝導性フむラヌも倚量
に混入できる。しかし、硬化埌の硬床が高い暹脂
䟋えば゚ポキシ暹脂や䞍飜和ポリ゚ステル暹脂
などを甚いた堎合には、柔軟性を芁する機噚や
郚品ぞの適甚は䞍可胜である。さらに、熱䌝導性
材料ずの接觊面が䞍均䞀の堎合には、接觊熱抵抗
をできるだけ小さくするため、熱硬化性の液状暹
脂ず熱䌝導性フむラヌの混合物を泚型たたは泚入
する方法もあるが、この堎合には、混合物が液状
であるこずが条件ずなるため、熱䌝導性フむラヌ
の混合量が少なくなり、熱䌝導性が䜎䞋するなど
の欠点がある。 たた、匟性を有する熱硬化性暹脂䟋えばシリ
コヌンゎム、加硫ゎムなどず熱䌝導性フむラヌ
の混合物は、柔軟性に富み各皮発熱䜓ぞの装着も
容易であるが、寞法や圢状が異なる突起物を持぀
発熱䜓や面粟床の粗い発熱䜓、さらには発熱䜓衚
面に狭い隙間を持぀発熱䜓に装着させる堎合、匟
性暹脂の反発匟性によ぀お発熱䜓ず密着しない郚
分ができ、この結果、接觊熱抵抗が増倧し、熱䌝
導性を著しく䜎䞋させる。 第図の各図は、垂販の熱䌝導性ゎムシヌトを
甚いた応甚䟋であり、これら図䞭、は熱䌝導性
ゎムシヌト、は衚面圢状および
寞法が互に異なる発熱䜓、は金属フレヌムなど
の冷华郚分を瀺す。第図の状
態から第図に瀺すように熱䌝
導性ゎムシヌトを発熱䜓に確
実に密着させるためには、で瀺した圧力締め
付け力が必芁であり、発熱䜓
衚面の突起物の寞法差が倧きくなるほど高い圧力
が必芁ずなる。 そしお、突起物の寞法差がmm皋床になるず、
熱䌝導性シヌトのマトリツクスを砎壊させるほど
の圧力が必芁ずなる。たた、発熱䜓ず垞に密着し
た状態を保぀ためには、圧力が均䞀に加わるよ
うに考慮しなければならない。 第図の各図に瀺す熱䌝導性ゎムシヌトを発熱
䜓衚面に確実に密着させお熱䌝導性を向䞊させる
には、ゎムシヌトのマトリツクスを砎壊するよう
な圧力で締め付けるか、たたは密着しない郚分に
熱䌝導性グリヌスなどの充填物を介圚させるなど
の方法があるが、いずれも奜たしい方法ずいえな
い。䟋えば、倖圧によ぀お故障が生じる粟密機噚
や装眮あるいは電気・電子機噚たたは郚品などぞ
の適甚は避けなければならない。たた、グリヌス
などの充填物を甚いた堎合には、䜜業性の䜎䞋や
熱によるグリヌスの流動が倧きな欠点ずなる。 たた、前述した有機溶剀を甚いたコヌテむング
可胜な熱䌝導性材料は、数十ミクロン皋床の隙間
や凞凹をコヌテむングによ぀お平滑にするこずが
できるがmm皋床以䞊の隙間になるず、䜕床もコ
ヌテむングしなければならない。さらに、有機溶
剀を䜿甚する堎合には、䜜業環境が問題ずなた
め、奜たしい方法ずはいい難い。 この発明の発明者らは、前述した各皮の熱䌝導
性材料の欠点を䞀掃し、あらゆる発熱䜓ぞの装着
が可胜であり、しかも、接觊熱抵抗がきわめお小
さい熱攟散材料を埗る目的で鋭意研究を重ねた結
果、前蚘目的が十分に達成できる可倉圢熱攟散材
組成物を埗るこずに成功した。 すなわち、この発明は、融点が30〜130℃でか
぀垞枩で固圢である分子量1000〜4000のポリヒド
ロキシブタゞ゚ン重合䜓の氎玠添加物ず、む゜シ
アネヌト化合物からなり末端氎酞基を有するプレ
ポリマヌず、䞋蚘匏 で瀺される―トル゚ンゞむ゜シアネヌトダ
むマヌからなる熱硬化性暹脂100重量郚、および
熱䌝導性フむラヌ50〜1500重量郚からなるこずを
特城ずする可倉圢熱攟散材組成物を芁旚ずするも
のである。 この発明に甚いる熱硬化性暹脂は、宀枩で匟性
に富み、しかも、130℃以䞋の枩床で加熱するこ
ずによ぀お匟性率が極端に䜎くなるものである。
すなわち、第図の線に瀺すシリコヌンゎムな
どの枩床に察する匟性率倉化に察し、この発明に
甚いる熱硬化性暹脂は第図の曲率のような特
性をも぀ものである。 したが぀お、この発明の熱硬化性暹脂は、発熱
䜓などぞ装着する堎合に、加熱するこずによ぀お
非垞に小さな圧力で発熱䜓ず密着し、か぀発熱䜓
の衚面がどのような圢状をしおいおも、すべおの
面に密着する優れた性質を有しおいる。さらに、
この発明の熱硬化性暹脂は、倉圢させた状態で冷
华すれば、倉圢した圢状を保ち、再床加熱すれば
倉圢前の圢状の戻るずいう優れた性質を䜵せ持぀
おいる。 この発明に甚いる熱硬化性暹脂の具䜓的な䟋ず
しおは、分子量1000〜4000のポリヒドロキシブタ
ゞ゚ン重合䜓の氎玠添加物ず分子内に1.5個以䞊
のむ゜シアネヌト基を有する倚官胜む゜シアネヌ
ト化合物よりなる末端氎酞基を有するプレポリマ
ヌおよび前蚘匏で瀺される―トル゚
ンゞむ゜シアネヌトダむマヌによ぀お構成される
熱硬化性暹脂が奜適する。この分子量1000〜4000
のポリヒドロキシブタゞ゚ン重合䜓の氎玠添加物
ずしおは、分子圓り氎酞基を平均1.5個以䞊有
し、奜たしくは1.7〜5.0個有するものである。こ
の分子量1000〜4000のポリヒドロキシブタゞ゚ン
重合䜓の氎玠添加物ずしおは、ブタゞ゚ンのホモ
ポリマヌたたは、ブタゞ゚ンに察しおスチレンや
アクリロニトリル、メタクリル酞、ビニルトル゚
ン、酢酞ビニルなどのビニル系モノマヌが50重量
以䞋存圚する共重合䜓を通垞の方法で氎玠添加
したものがある。 前蚘ポリヒドロキシブタゞ゚ン重合䜓の氎玠添
加物ず反応させる倚官胜む゜シアネヌト化合物ず
しおは、分子内に1.5個以䞊のむ゜シアネヌト基
を有するむ゜シアネヌト化合物であればいずれも
甚いるこずができ、䟋えば゚チレンゞむ゜シアネ
ヌト、プロピレンゞむ゜シアネヌト、テトラメチ
レンゞむ゜シアネヌト、ペンタメチレンゞむ゜シ
アネヌト、オクタメチレンゞむ゜シアネヌト、
―む゜シアネヌトメチル――トリメチ
ルシクロヘキシルむ゜シアネヌト、シクロヘキシ
レン―ゞむ゜シアネヌト、―トル゚
ンゞむ゜シアネヌト、―トル゚ンゞむ゜シ
アネヌト、キシリレン――ゞむ゜シアネヌ
ト、キシリレン――ゞむ゜シアネヌト、
4′―ゞプニルメタンゞむ゜シアネヌト、
―プニレンゞむ゜シアネヌト、―プニレン
ゞむ゜シアネヌト、ナフチレン――ゞむ゜
シアネヌト、P′P″―トリプニルメタン
トリむ゜シアネヌト、ゞプニル―4′―
トリむ゜シアネヌトなどの単独たたは皮以䞊の
混合物を甚いるこずができる。 この発明に甚いる末端氎酞基を有するプレポリ
マヌは、前蚘の倚官胜む゜シアネヌト化合物モ
ルに察しポリヒドロキシブタゞ゚ン重合䜓の氎玠
添加物モルを垞法で反応させるこずによ぀お容
易に補造するこずができる。前蚘プレポリマヌの
硬化剀は前蚘匏で瀺される―トル゚
ンゞむ゜シアネヌトダむマヌをプレポリマヌの氎
酞基に察し0.6〜1.1モル比の範囲で甚いる。
―トル゚ンゞむ゜シアネヌトダむマヌを甚
いるこずにより、宀枩での硬化時間が非垞に長く
なり、䜜業性が良奜ずなる。すなわち、前蚘硬化
剀は、宀枩ではほずんど硬化反応が進たず150℃
以䞊になるず急激に硬化反応が進み、たた、トリ
゚チレンゞアミン、ゞブチル錫ゞラりリレヌト、
オクチル酞錫、酢酞銅などのりレタン化觊媒を甚
いるず、80〜100℃の加熱で硬化反応が完了する
ずいう性質を有しおいる。前蚘硬化剀の配合割合
は前蚘範囲内が奜たしく、モル比が0.6以䞋にな
るず硬化物が粘着性を有し、100℃以䞊になるず
小さな圧力でも流動し、たた、モル比が1.1以䞊
になるず硬化物の匟性率が高くなり、加熱時の匟
性率倉化が小さくなり、この発明の目的である発
熱䜓ぞの密着性が䜎䞋する。 前蚘の配合割合は、次に述べる熱䌝導性フむラ
ヌの添加量によ぀お前蚘範囲内で遞ばれるもので
あり、熱䌝導性フむラヌが少量の堎合には、硬化
物の粘着性を防ぐため、モル比の高い領域を遞
び、熱䌝導性フむラヌが倚量に添加された堎合に
は硬化物の匟性率を䞋げるため、モル比の䜎い領
域を遞ぶ方が奜たしい。 この発明に甚いる熱䌝導性フむラヌは熱䌝導性
を付䞎するために甚いられるものであ぀お、粉末
のベリリりム、アルミニりム、亜鉛、珪玠、マグ
ネシりム、チタンなどの金属酞化物が奜適であ
る。 ずくに熱䌝導性の高い可倉圢攟散材組成物を埗
るためには、平均粒経50ミクロン以䞋の酞化アル
ミニりム粉末ず埮粉末の硬質マむカを䜵甚するこ
ずにより顕著な効果が埗られる。 この発明に䜿甚する熱䌝導性フむラヌの添加量
は、前蚘熱硬化性暹脂100重量郚に察し50〜1500
重量郚であるが、熱䌝導性フむラヌの皮類および
熱硬化性暹脂の硬化前の粘床によ぀お倉えるこず
ができる。前蚘熱䌝導性フむラヌの添加量は可倉
圢熱攟散材組成物に望たれる熱䌝導性によ぀お決
定されるもので、50重量郚以䞋の堎合、熱䌝導性
が䜎すぎるため攟熱効果が小さい。たた、1500重
量郚以䞊になるず、前蚘熱硬化性暹脂䞭に均䞀に
分散せず硬化物も非垞に脆いものずなるため前蚘
範囲が限界ずなる。この発明の実斜においお、前
蚘熱䌝導性フむラヌの添加量は150〜800重量郚の
範囲が最も奜たしい。 たた、この発明の可倉圢熱攟散材組成物には、
硬化反応を捉進させるための觊媒、着色のための
顔料さらには、補匷材ずしおガラスクロス、ガラ
スマツト、䞍織垃、金属板、カヌボンクロス、カ
ヌボンマツトなどを䜿甚するこずができる。 次に、この発明の可倉圢熱攟散材組成物の補造
方法に぀いお説明する。先ず、ポリヒドロキシブ
タゞ゚ン重合䜓の氎玠添加物モルずむ゜シアネ
ヌト化合物モルを反応させたプレポリマヌの所
定量を80〜150℃の枩床で加熱し液状にする。次
いで、熱䌝導性フむラヌを加え、ニヌダヌたたは
真空加熱撹拌機で〜時間混合し、熱䌝導性フ
むラヌを均䞀に分散させる。分散埌、宀枩たで冷
华し、本ロヌルを甚いお硬化剀の―トル
゚ンゞむ゜シアネヌトダむマヌを均䞀に分散させ
る。前蚘方法によ぀お埗られたコンパりンドを離
型玙やプラスチツクフむルムに挟み、所望の圢状
に成圢する。成圢にはカレンダヌロヌルや成圢プ
レスを甚いるのが奜たしい。成圢枩床は、70〜
150℃の範囲で行なう。たた、成圢時に前述した
ガラスクロス、金属板などの補匷材を同時にサン
ドむツチするこずができる。 前述の方法によ぀お埗られたこの発明の可倉圢
熱攟散材組成物は、第図に瀺すように、
50℃から130℃以䞋の枩床で加熱すれば、匟性率
が極端に小さくなるため、非垞に小さな圧力で自
由に倉圢する性質を持぀。したが぀お、この状態
で発熱䜓に察しお抌し付ければ第図に瀺
すような耇雑な圢状を持぀た発熱䜓の衚面党
䜓に密着し、熱攟散の効率が極めお高いものずな
る。たた、この発明の可倉圢熱攟散材組成物
は、宀枩で発熱䜓から脱離させれば、第図
に瀺すように発熱䜓の圢状がそのたた転写
されおおり、発熱䜓ずの密着性、装着性が優れお
いるこずがわかる。さらに、この発明の可倉圢熱
攟散材組成物は、再加熱すれば、第図に
瀺すように、もずの圢状に戻るずいう利点を䜵せ
持぀おいる。なお、第図ないし䞭、は
金属フレヌムなどの冷华郚分である。 この発明による可倉圢熱攟散材組成物は、各皮
の機械装眮や電気機噚、電子機噚などの冷华にき
わめお効果が高く、しかも、装着性に優れ、高枩
䞋でも流動しないずいう利点を持぀おいるため、
広範囲の発熱䜓ぞの䜿甚が可胜である。 この発明を、さらに具䜓的に説明するため、実
斜䟋に぀いお述べる。 実斜䟋  ポリヒドロキシブタゞ゚ン重合䜓の氎玠添加物
䞉菱化成(æ ª)補、ポリ゚ヌテル、氎酞基䟡45
2492郚重量郚、以䞋同じをの四ツ口フラ
スコに取り窒玠ガスを流しながら90℃たで加熱し
た。90℃で撹拌を始め、四ツ口フラスコに取り付
けた滎䞋挏斗より―ゞプニルメタンゞむ
゜シアネヌト化成アツプゞペン(æ ª)補、む゜ネヌ
ト143L144郚を埐々に加えた。玄40分間で滎䞋
を完了させた埌、さらに90℃で時間反応を行わ
せお、末端氎酞基を有するプレポリマヌを埗た。
プレポリマヌは融点が玄80℃で氎酞基䟡は21であ
぀た。次いで、前蚘プレポリマヌ100郚を真空加
熱撹拌機に取り、120℃で溶融させ、酞化アルミ
ニりム460郚を加え、同枩床で真空撹拌mm
Hgを玄時間行な぀た。埗られた混合物を宀
枩たで冷华し、本ロヌルで混緎を行な぀た。混
緎䞭に硬化剀ずしお甚いる―トル゚ンゞむ
゜シアネヌトダむマヌ2.9郚を均䞀に分散させお
可倉圢熱攟散コンパりンドを埗た。このコンパり
ンドをmmのスペヌサヌを挿入した加熱プレスを
甚いお150℃で20分間加熱硬化させた。硬化させ
お埗たシヌトの熱䌝導率は1.32Kcal・hr・℃
であり、硬床の枩床特性は80℃付近で急激に䜎䞋
する倉圢枩床を有しおいた。前蚘硬化シヌトを80
℃に加熱し、実装プリント基板に抌し圓おたずこ
ろ、寞法の異なるICや抵抗䜓の党おの衚面に均
䞀に密着した。宀枩たで冷えた時点で硬化シヌト
を取り倖すず、硬化シヌトにICや抵抗䜓の圢状
が転写されおいた。たた、前蚘硬化シヌトを270
℃で20分間加熱しおも流動せず、揮発分も0.3
以䞋であ぀た。 実斜䟋 〜 実斜䟋ず同様の方法で埌蚘第衚の組成から
なるプレポリマヌを合成し、埗られたプレポリマ
ヌ100郚に察し、熱䌝導性フむラヌ、―ト
ル゚ンゞむ゜シアネヌトダむマヌを実斜䟋ず同
様の方法で均䞀に分散させ、実斜䟋〜の可倉
圢熱攟散コンパりンドを埗た。これらのコンパり
ンドを150℃の枩床で成圢プレスにより厚さmm
に成圢した硬化シヌトは第衚に瀺す性質を持぀
おいる。たた、第衚の硬化シヌトはいずれも、
第図に瀺したような耇雑な圢状を持぀た発熱䜓
衚面に容易に密着する硬化シヌトであ぀た。
The present invention relates to a deformable heat dissipating material composition with excellent thermal conductivity, and more specifically, it has excellent compatibility with heat-generating devices and devices of all shapes, has low contact thermal resistance, and has excellent thermal conductivity. The present invention relates to a variable heat dissipating material composition. Thermoplastic resins and thermosetting resins, or resin liquids in which these resins are dissolved in organic solvents,
It is well known that thermally conductive materials such as viscous silicone grease mixed with a large amount of filler having excellent thermal conductivity are commercially available. These thermally conductive materials are used to guide excess heat generated during the operation of various mechanical devices, electrical/electronic devices, and parts to shafts, frames, or heat sinks for heat dissipation. However, the above-mentioned commercially available thermally conductive materials each have major drawbacks and cannot be applied to various heating elements, and the actual range of use is limited. For example, if a thermally conductive material made of a thermoplastic resin matrix is used in equipment or equipment that generates a calorific value higher than the melting point of the thermoplastic resin, the thermally conductive material will melt and flow, so there is a limit to the operating temperature. be. It also has poor chemical resistance and solvent resistance. Furthermore, when a thermally conductive filler is mixed into a thermoplastic resin, the amount of the thermally conductive filler mixed in is small due to the high melt viscosity of the thermoplastic resin, which has the disadvantage that only a material with low thermal conductivity can be obtained. are doing. On the other hand, thermally conductive materials using thermosetting resins are
It does not have the disadvantage of flowing at high temperatures, and since it contains a large amount of liquid resin before curing, a large amount of thermally conductive filler can be mixed in. However, if a resin with high hardness after curing is used (for example, epoxy resin or unsaturated polyester resin), it is impossible to apply it to equipment or parts that require flexibility. Furthermore, if the contact surface with the thermally conductive material is uneven, there is a method of casting or injecting a mixture of a thermosetting liquid resin and a thermally conductive filler to minimize the contact thermal resistance. In this case, since the mixture must be in a liquid state, the amount of the thermally conductive filler mixed becomes small, resulting in a disadvantage that the thermal conductivity decreases. In addition, mixtures of elastic thermosetting resins (e.g. silicone rubber, vulcanized rubber, etc.) and thermally conductive fillers are highly flexible and can be easily attached to various heating elements; When attaching to a heating element that is holding an object, a heating element with rough surface precision, or a heating element with a narrow gap on the surface of the heating element, the rebound resilience of the elastic resin creates parts that do not come into close contact with the heating element, and as a result, Contact thermal resistance increases, significantly reducing thermal conductivity. Each figure in Figure 1 is an application example using a commercially available thermally conductive rubber sheet. 3 indicates a cooling part such as a metal frame. In order to ensure that the thermally conductive rubber sheet 1 is brought into close contact with the heating elements 2a, 2b, 2c from the state shown in Fig. 1 a1, b1, c1 to the state shown in Fig. 1 a2, b2, c2, it is necessary to Pressure (tightening force) is required, and heating elements 2a, 2b, 2c
The larger the dimensional difference between the protrusions on the surface, the higher the pressure required. Then, when the difference in the dimensions of the protrusions is about 1 mm,
A sufficient pressure is required to destroy the matrix of thermally conductive sheets. In addition, in order to maintain close contact with the heating element at all times, consideration must be given to applying pressure P uniformly. In order to ensure that the thermally conductive rubber sheet shown in each figure in Figure 1 is in close contact with the surface of the heating element and to improve its thermal conductivity, it is necessary to tighten it with pressure that will destroy the matrix of the rubber sheet, or to tighten the parts that do not adhere properly. There are methods such as interposing a filler such as thermally conductive grease, but none of these methods can be said to be preferable. For example, application to precision equipment, equipment, electrical/electronic equipment, or parts, etc., which may malfunction due to external pressure, must be avoided. Furthermore, when a filler such as grease is used, there are major drawbacks such as reduced workability and flow of the grease due to heat. In addition, with the thermally conductive material that can be coated using the organic solvent mentioned above, gaps and unevenness of about several tens of microns can be smoothed by coating, but when the gap is about 1 mm or more, it is necessary to coat the material repeatedly. Must. Furthermore, when an organic solvent is used, the working environment becomes a problem, so it cannot be said to be a preferable method. The inventors of this invention have conducted extensive research with the aim of eliminating the drawbacks of the various thermally conductive materials mentioned above, and obtaining a heat dissipating material that can be attached to any heating element and has an extremely low contact thermal resistance. As a result of repeated efforts, we succeeded in obtaining a variable heat dissipating material composition that can fully achieve the above objectives. That is, this invention consists of a hydrogenated polyhydroxybutadiene polymer having a melting point of 30 to 130°C and a molecular weight of 1,000 to 4,000 that is solid at room temperature, a prepolymer made of an isocyanate compound and having a terminal hydroxyl group, and a compound of the following formula ( ) The gist is a variable heat dissipating material composition characterized by comprising 100 parts by weight of a thermosetting resin consisting of a 2,4-toluene diisocyanate dimer represented by: and 50 to 1500 parts by weight of a thermally conductive filler. be. The thermosetting resin used in this invention has high elasticity at room temperature, but its elastic modulus becomes extremely low when heated at a temperature of 130° C. or lower.
That is, the thermosetting resin used in the present invention has a characteristic as shown in the curvature B in FIG. 2 with respect to the change in elastic modulus with respect to temperature of silicone rubber, etc., shown by the line A in FIG. 2. Therefore, when the thermosetting resin of the present invention is attached to a heating element, etc., it can adhere to the heating element with very small pressure by heating, and it can be attached to the heating element without any shape. It has an excellent property of adhering to all surfaces even when it is covered. moreover,
The thermosetting resin of the present invention has the excellent property that if it is cooled in a deformed state, it will maintain its deformed shape, and if it is heated again, it will return to its pre-deformed shape. A specific example of the thermosetting resin used in this invention is a hydrogenated polyhydroxybutadiene polymer having a molecular weight of 1000 to 4000, and a terminal hydroxyl group made of a polyfunctional isocyanate compound having 1.5 or more isocyanate groups in the molecule. A thermosetting resin composed of a prepolymer having the following formula and a 2,4-toluene diisocyanate dimer represented by the above formula () is suitable. This molecular weight is 1000-4000
The hydrogenated polyhydroxybutadiene polymer has an average of 1.5 or more hydroxyl groups per molecule, preferably 1.7 to 5.0. Hydrogenated materials for this polyhydroxybutadiene polymer with a molecular weight of 1,000 to 4,000 include butadiene homopolymers or vinyl monomers such as styrene, acrylonitrile, methacrylic acid, vinyltoluene, and vinyl acetate in an amount of up to 50% by weight of butadiene. Some existing copolymers are hydrogenated by conventional methods. As the polyfunctional isocyanate compound to be reacted with the hydrogenated product of the polyhydroxybutadiene polymer, any isocyanate compound having 1.5 or more isocyanate groups in the molecule can be used, such as ethylene diisocyanate, propylene diisocyanate, Tetramethylene diisocyanate, pentamethylene diisocyanate, octamethylene diisocyanate, 3
-Isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate, cyclohexylene 1,4-diisocyanate, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, xylylene-1,4-diisocyanate, xylylene-1,3- diisocyanate,
4,4'-diphenylmethane diisocyanate, m
-Phenylene diisocyanate, P-phenylene diisocyanate, naphthylene-1,4-diisocyanate, P,P',P''-triphenylmethane triisocyanate, diphenyl-4,6,4'-
Triisocyanates and the like can be used alone or in combination of two or more. The prepolymer having a terminal hydroxyl group used in the present invention can be easily produced by reacting 2 moles of a hydrogenated polyhydroxybutadiene polymer with 1 mole of the polyfunctional isocyanate compound in a conventional manner. . As the curing agent for the prepolymer, a 2,4-toluene diisocyanate dimer represented by the formula () is used in a molar ratio of 0.6 to 1.1 with respect to the hydroxyl groups of the prepolymer.
By using 2,4-toluene diisocyanate dimer, the curing time at room temperature becomes extremely long, resulting in good workability. In other words, the curing reaction of the curing agent does not proceed at room temperature and at 150°C.
If the temperature is higher than that, the curing reaction will proceed rapidly, and triethylenediamine, dibutyltin dilaurylate,
When a urethanization catalyst such as tin octylate or copper acetate is used, the curing reaction can be completed by heating at 80 to 100°C. The blending ratio of the curing agent is preferably within the above range; when the molar ratio is 0.6 or less, the cured product becomes sticky, when the temperature is 100°C or higher, it flows even under small pressure, and when the molar ratio is 1.1 or higher, the cured product becomes hard. The elastic modulus of the object becomes high, and the change in elastic modulus upon heating becomes small, and the adhesion to the heating element, which is the object of this invention, decreases. The above blending ratio is selected within the above range depending on the amount of the thermally conductive filler added, which will be described below.If the amount of the thermally conductive filler is small, the molar ratio should be adjusted to prevent stickiness of the cured product. It is preferable to select a region with a high molar ratio and to select a region with a low molar ratio because if a large amount of thermally conductive filler is added, the elastic modulus of the cured product will be lowered. The thermally conductive filler used in this invention is used to impart thermal conductivity, and metal oxides such as powdered beryllium, aluminum, zinc, silicon, magnesium, and titanium are suitable. In particular, in order to obtain a variable shape dissipating material composition with high thermal conductivity, remarkable effects can be obtained by using aluminum oxide powder with an average particle size of 50 microns or less in combination with finely powdered hard mica. The amount of the thermally conductive filler used in this invention is 50 to 1,500 parts by weight per 100 parts by weight of the thermosetting resin.
The parts by weight can be changed depending on the type of thermally conductive filler and the viscosity of the thermosetting resin before curing. The amount of the thermally conductive filler added is determined by the desired thermal conductivity of the variable heat dissipating material composition; if it is less than 50 parts by weight, the thermal conductivity is too low and the heat dissipating effect is small. Moreover, if it exceeds 1500 parts by weight, the above range becomes the limit because it is not uniformly dispersed in the thermosetting resin and the cured product becomes very brittle. In practicing this invention, the amount of the thermally conductive filler added is most preferably in the range of 150 to 800 parts by weight. Further, the variable heat dissipating material composition of the present invention includes:
In addition to catalysts for accelerating the curing reaction and pigments for coloring, glass cloth, glass mat, nonwoven fabric, metal plate, carbon cloth, carbon mat, etc. can be used as reinforcing materials. Next, a method for manufacturing the variable heat dissipating material composition of the present invention will be explained. First, a predetermined amount of a prepolymer prepared by reacting 2 moles of a hydrogenated polyhydroxybutadiene polymer with 1 mole of an isocyanate compound is heated at a temperature of 80 to 150°C to liquefy it. Then, the thermally conductive filler is added and mixed for 2 to 3 hours using a kneader or vacuum heated stirrer to uniformly disperse the thermally conductive filler. After dispersion, the mixture is cooled to room temperature, and 2,4-toluene diisocyanate dimer as a hardening agent is uniformly dispersed using two rolls. The compound obtained by the above method is sandwiched between release paper or plastic film and molded into a desired shape. It is preferable to use a calendar roll or a molding press for molding. Molding temperature is 70~
Perform at a temperature of 150℃. Furthermore, reinforcing materials such as the glass cloth and metal plate mentioned above can be simultaneously sanded during molding. The variable heat dissipating material composition 11 of the present invention obtained by the method described above has the following characteristics as shown in FIG. 3a:
When heated at temperatures between 50°C and 130°C or lower, its elastic modulus becomes extremely low, allowing it to deform freely under very small pressure. Therefore, if it is pressed against the heating element 12 in this state, it will come into close contact with the entire surface of the heating element 12, which has a complicated shape as shown in FIG. 3b, and the efficiency of heat dissipation will be extremely high. . Further, the variable heat dissipating material composition 11 of the present invention
When removed from the heating element 12 at room temperature, the shape of the heating element 12 is directly transferred as shown in FIG. Furthermore, the deformable heat dissipating material composition 11 of the present invention has the advantage that it returns to its original shape when reheated, as shown in FIG. 3d. In addition, in FIGS. 3a to 3d, 13 is a cooling part such as a metal frame. The variable heat dissipating material composition according to the present invention is extremely effective in cooling various mechanical devices, electrical equipment, electronic equipment, etc., and has the advantage of being easy to wear and not flowing even at high temperatures. ,
Can be used for a wide range of heating elements. In order to explain this invention more specifically, examples will be described. Example 1 Hydrogenated polyhydroxybutadiene polymer (manufactured by Mitsubishi Kasei Corporation, Polyether H, hydroxyl value 45)
2492 parts (parts by weight, same hereinafter) was placed in a four-necked flask (No. 3) and heated to 90°C while flowing nitrogen gas. Stirring was started at 90°C, and 144 parts of 4,4-diphenylmethane diisocyanate (Isonate 143L, manufactured by Kasei Upjiyon Co., Ltd.) was gradually added through a dropping funnel attached to a four-necked flask. After completing the dropwise addition in about 40 minutes, the reaction was further carried out at 90°C for 1 hour to obtain a prepolymer having terminal hydroxyl groups.
The prepolymer had a melting point of about 80°C and a hydroxyl value of 21. Next, 100 parts of the prepolymer was placed in a vacuum heating stirrer, melted at 120°C, 460 parts of aluminum oxide was added, and the prepolymer was vacuum stirred at the same temperature (1 mm
Hg) was carried out for about 1 hour. The resulting mixture was cooled to room temperature and kneaded using two rolls. During kneading, 2.9 parts of 2,4-toluene diisocyanate dimer used as a curing agent was uniformly dispersed to obtain a variable heat dissipation compound. This compound was cured by heating at 150° C. for 20 minutes using a heating press into which a 2 mm spacer was inserted. The thermal conductivity of the cured sheet is 1.32Kcal/m・hr・℃
The temperature characteristics of hardness had a deformation temperature that rapidly decreased around 80°C. The cured sheet is 80
When heated to ℃ and pressed against a mounted printed circuit board, it adhered uniformly to all surfaces of ICs and resistors of different sizes. When the cured sheet was removed once it had cooled to room temperature, the shapes of the IC and resistor had been transferred to the cured sheet. In addition, the cured sheet was heated to 270
Does not flow even after heating at ℃ for 20 minutes, volatile content is 0.3%
It was below. Examples 2 to 6 A prepolymer having the composition shown in Table 1 below was synthesized in the same manner as in Example 1, and a thermally conductive filler and 2,4-toluene diisocyanate dimer were added to 100 parts of the obtained prepolymer. Variable heat dissipation compounds of Examples 2 to 6 were obtained by uniformly dispersing the mixture in the same manner as in Example 1. These compounds are molded into a 2mm thick molding press at a temperature of 150℃.
The cured sheet molded into the sheet has the properties shown in Table 2. In addition, all of the cured sheets in Table 2 are
The cured sheet easily adhered to the surface of the heating element, which had a complicated shape as shown in FIG.

【衚】【table】

【衚】【table】

【衚】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第図は垂販熱䌝導性ゎムシ
ヌトを互いに異な぀た発熱䜓ぞ装着する以前の断
面図、第図は同装着した埌の
第図にそれぞれ盞圓する断面
図、第図はこの発明の可倉圢熱攟散材組成物お
よび垂販熱䌝導性ゎムシヌトの匟性率―枩床䟝存
曲線を瀺す図、第図はこの発明
による可倉圢熱攟散材組成物の䜿甚に぀いお説明
するための互いに異な぀た状態の断面図である。  熱䌝導性ゎムシヌト、 
発熱䜓、 冷华郚分、 可倉圢熱攟散材組
成物、 発熱䜓、 冷华郚分。なお、図
䞭同䞀笊号は同䞀たたは盞圓郚分を瀺す。
Fig. 1 a1, b1, c1 are cross-sectional views before attaching commercially available thermally conductive rubber sheets to different heating elements, Fig. 1 a2, b2, c2 are cross-sectional views after attaching the same to different heating elements. Fig. 2 is a diagram showing the elastic modulus-temperature dependence curve of the variable heat dissipation material composition of the present invention and a commercially available thermally conductive rubber sheet, and Fig. 3 is a, b, c, d. 2A and 2B are cross-sectional views of different states for explaining the use of the variable heat dissipation material composition according to the present invention. 1... Heat conductive rubber sheet, 2a, 2b, 2c...
Heating element, 3... Cooling part, 11... Variable heat dissipation material composition, 12... Heating element, 13... Cooling part. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特蚱請求の範囲】  融点が30〜130℃でか぀垞枩で固圢である分
子量1000〜4000のポリヒドロキシブタゞ゚ン重合
䜓の氎玠添加物ず、む゜シアネヌト化合物からな
り末端氎酞基を有するプレポリマヌず、䞋蚘匏
 で瀺される―トル゚ンゞむ゜シアネヌトダ
むマヌからなる熱硬化性暹脂100重量郚、および
熱䌝導性フむラヌ50〜1500重量郚からなるこずを
特城ずする可倉圢熱攟散材組成物。  熱䌝導性フむラヌが金属酞化物である特蚱請
求の範囲第項蚘茉の可倉圢熱攟散材組成物。  熱䌝導性フむラヌずしお、平均粒埄50ミクロ
ン以䞋の酞化アルミナたたは酞化マグネシりム粉
末ず硬質マむカ埮粉末ずの混合物を甚いる特蚱請
求の範囲第項蚘茉の可倉圢熱攟散材組成物。
[Scope of Claims] 1. A hydrogenated product of a polyhydroxybutadiene polymer having a melting point of 30 to 130°C and a molecular weight of 1000 to 4000 that is solid at room temperature, a prepolymer made of an isocyanate compound and having a terminal hydroxyl group, and the following formula: () 1. A variable heat dissipating material composition comprising 100 parts by weight of a thermosetting resin comprising a 2,4-toluene diisocyanate dimer represented by: and 50 to 1500 parts by weight of a thermally conductive filler. 2. The variable heat dissipating material composition according to claim 1, wherein the thermally conductive filler is a metal oxide. 3. The variable heat dissipating material composition according to claim 1, wherein a mixture of alumina or magnesium oxide powder with an average particle size of 50 microns or less and hard mica fine powder is used as the thermally conductive filler.
JP57004614A 1982-01-14 1982-01-14 Deformable heat-radiating material composition Granted JPS58122913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57004614A JPS58122913A (en) 1982-01-14 1982-01-14 Deformable heat-radiating material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57004614A JPS58122913A (en) 1982-01-14 1982-01-14 Deformable heat-radiating material composition

Publications (2)

Publication Number Publication Date
JPS58122913A JPS58122913A (en) 1983-07-21
JPS6314725B2 true JPS6314725B2 (en) 1988-04-01

Family

ID=11588928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57004614A Granted JPS58122913A (en) 1982-01-14 1982-01-14 Deformable heat-radiating material composition

Country Status (1)

Country Link
JP (1) JPS58122913A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077371A (en) * 1989-11-01 1991-12-31 Uniroyal Chemical Company, Inc. Low free toluene diisocyanate polyurethanes
JP3243023B2 (en) * 1992-12-04 2002-01-07 株匏䌚瀟むノアックコヌポレヌション One-component polyurethane adhesive and method of using the same
KR100514629B1 (en) * 2003-07-15 2005-09-14 죌식회사 헵슀쌐 Urethane Polyol Prepolymer, Porous Polyurethane sheet and method for preparing the same

Also Published As

Publication number Publication date
JPS58122913A (en) 1983-07-21

Similar Documents

Publication Publication Date Title
KR101525487B1 (en) Curable heat-dissipating composition
KR20210121150A (en) Thermal interface material based on two-part polyurethane
US4624801A (en) Anisotropically electroconductive adhesive
EP3052568B1 (en) Fluid resistant, high performance reactive hot melt sealant and/or adhesive compositions
US11621101B2 (en) Conductive composites
KR100570249B1 (en) Silicone Rubber Sheet for Heat-Resistant, Thermal-Conductive Thermocompression
US20040110004A1 (en) Hardener particle, manufacturing method for hardener particle and adhesive
JPS6314725B2 (en)
JP4474607B2 (en) Composition for thermally conductive resin molded body and molded body obtained therefrom
JPS6314726B2 (en)
JPS6228971B2 (en)
JP5713619B2 (en) Anisotropic conductive material and method for producing the same
JPS6314728B2 (en)
JP4224868B2 (en) Conductive adhesive for vibrator
JPS6314727B2 (en)
JP2010248350A (en) Polyurethane resin composition
JP3079605B2 (en) Composition for forming conductive elastomer
JP2003133490A (en) Heat conductive composition and heat conductive forming body
JP2000053936A (en) Adhesive composition
JP3477854B2 (en) Method for bonding pre-coated adhesive composition
KR101779665B1 (en) Conductive polymer composition and preparing method thereof
KR102535889B1 (en) cureable composition
JP3902992B2 (en) Conductive polyurea resin composition, conductive polyurea resin curing agent, composition set for forming conductive polyurea resin, and method for producing conductive polyurea resin composition
WO2022215486A1 (en) Electroconductive composition
JPS60223869A (en) Electrically conductive paint