JPS6314674B2 - - Google Patents

Info

Publication number
JPS6314674B2
JPS6314674B2 JP2433684A JP2433684A JPS6314674B2 JP S6314674 B2 JPS6314674 B2 JP S6314674B2 JP 2433684 A JP2433684 A JP 2433684A JP 2433684 A JP2433684 A JP 2433684A JP S6314674 B2 JPS6314674 B2 JP S6314674B2
Authority
JP
Japan
Prior art keywords
steam
compressor
brine
transfer tube
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2433684A
Other languages
Japanese (ja)
Other versions
JPS60168582A (en
Inventor
Takeshi Suzuki
Hirokazu Fukano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2433684A priority Critical patent/JPS60168582A/en
Publication of JPS60168582A publication Critical patent/JPS60168582A/en
Publication of JPS6314674B2 publication Critical patent/JPS6314674B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明は蒸気圧縮式造水装置、すなわち装置
本体で発生させた蒸気を、圧縮機により機械的に
圧縮、加熱して造水作用を得るようにした蒸気圧
縮式造水装置に関するものである。 〔従来技術〕 従来例によるこの種の蒸気圧縮式造水装置の概
要を第1図にブロツク構成により示す。すなわ
ち、この第1図において、符号1は造水装置の装
置本体であつて、デミスター3および伝熱管4を
配した蒸気発生室2と、隔壁で区画されて前記伝
熱管4を開口したチヤンバー5とを有し、発生し
た蒸気は一旦、本体外に取り出されたのち、駆動
機7で駆動される圧縮機6により圧縮されて前記
伝熱管4に送り込まれるようになつている。また
8は抽気装置9をもつコンデンサー、10および
11は熱交換器、12は例えばデイーゼル機関な
ど高温廃熱を利用した加熱器である。そしてこれ
らの各機器間を接続する管路として、aは原水
(海水)管路、bは造水された蒸留水管路、cは
非凝縮性ガス管路、dはブライン管路、eは蒸気
管路である。 この構成にあつて、まず原水は図示しない原水
ポンプにより所定の圧力でコンデンサー8に送り
込まれ、非凝縮性ガスの抽気とこれに同伴する蒸
気の凝縮をなし、ついで熱交換器10により蒸留
水との間で、また熱交換器11によりブライン
(ブローダウン用ブライン)との間でそれぞれに
熱交換作用がなされ、これらの蒸留水およびブラ
インを冷却し、かつ同時に自身が予熱されたの
ち、加熱器12により充分に加熱昇温された上で
装置本体1内に導かれ、同装置本体1内の伝熱管
4によりさらに一層昇温され、その後、同装置本
体1内底部で真空蒸発される。そしてこのように
して得た蒸気は、圧縮機6により吸引、圧縮さ
れ、かつ温度上昇された上で、伝熱管4からチヤ
ンバー5と経て前記コンデンサー8に至り、この
コンデンサー8内で送り込まれる原水により冷
却、液化されて蒸留水となり、チヤンバー5内で
液化された蒸留水と共に前記した熱交換器10を
経て外部に取り出され、目的とする造水作用が達
成されるのである。 こゝで、以上のように構成される従来例での蒸
気圧縮式造水装置にあつては、前記した作用説明
からも判るように、一種のヒートポンプ作用を利
用している。そしてこのヒートポンプは、一般に
凝縮圧力(温度)と蒸発圧力(温度)との差、す
なわちΔP(ΔT)が大きければ大きいほど成績係
数(熱効率)が悪いことが知られており、従つて
このようにヒートポンプ作用を利用した従来例装
置の場合には、デイーゼル機関など高温廃熱、そ
の他の熱源により加熱された原水を用いて、圧縮
機を経た排出蒸気を冷却するようにしているため
に、当然のことながら凝縮圧力が高くなつて、ヒ
ートポンプとしての成績係数が良好でなく、造水
装置の熱効率、すなわち通常は造水比と呼ばれる
ところの造水原単位、造水量/投入エネルギが悪
くて、経済的に、またエネルギ消費面から問題を
生ずるものであつた。 〔発明の概要〕 この発明は従来装置のこのような欠点に鑑み、
加圧された原水を予熱して装置本体内に減圧フラ
ツシユ蒸発させ、かつこのフラツシユ後の蒸気
と、ブラインの加熱、蒸発による蒸気とを併せて
圧縮機に吸引、圧縮させ、またこの圧縮後の蒸気
によりブラインを加熱、蒸発させるようにしたも
のである。 〔実施例〕 以下、この発明の一実施例につき、第2図を参
照して詳細に説明する。 第2図実施例において前記第1図従来例と同一
符号は同一または相当部分を示しており、この実
施例では、前記コンデンサー8からの原水管路a
をチヤンバー5内に導びいて予熱するための伝熱
管13とし、また装置本体1の蒸気発生室2内に
あつて、デミスター3を上部に、伝熱管4を底部
ブレイン内にそれぞれ配すると共に、導かれる原
水を蒸発させるための蒸発用トレー14を、前記
デミスター3の下方で、かつ底部ブライン蒸発面
の上方に配したものである。 従つてこの実施例の場合、コンデンサー8を経
た原水は、伝熱管13により予熱された上で、熱
交換器10および11を経て熱交換され、かつ加
熱器12により加熱されて装置本体1の蒸気発生
室2内に配した蒸発用トレー14に導かれる。そ
してこの原水、つまり原水ポンプによる所定の圧
力下で充分に昇温された原水は、圧縮機6による
吸引でこの蒸気発生室2内圧力(真空)まで減圧
され、蒸発用トレー14上でフラツシユ蒸発され
て蒸気となり、これが底部に貯溜されるブライン
の加熱、蒸発による蒸気と共に、前記圧縮機6に
吸引、圧縮され、かつ温度上昇して伝熱管4に至
り、こゝでは一方で前記したように、その蒸気温
度でブラインを加熱、蒸発させ、かつこの熱交換
により蒸気自体が冷却、液化され、蒸留水となつ
て外部に取り出されるのである。 こゝで、前記チヤンバー5内に伝熱管13を設
けるのは、原水を予熱させる他に、前記圧縮機6
の圧縮比によつては、この圧縮機6から吐出され
る蒸気の蒸気潜熱と凝縮潜熱に差がある、つまり
凝縮潜熱の方が大きい場合があり得て、蒸気発生
室2のブライン内を通る伝熱管4内での全量液化
が果されずに、チヤンバー5内でのそれが気液混
合状態となつていることがあつて、これを伝熱管
13に流れる原水との熱交換により全量液化させ
るためである。 ちなみに前記した従来例装置とこの実施例装置
とにつき、同一条件下で造水操作をなしたとき
の、蒸気発生室内への原水入口温度、圧縮機の入
口における蒸気の蒸発温度(圧縮機の吸入圧力)、
および圧縮機の出口における蒸気の凝縮温度のそ
れぞれを次に示す。
[Technical Field of the Invention] This invention relates to a steam compression water generation device, that is, a steam compression water generation device that mechanically compresses and heats the steam generated in the device body using a compressor to obtain a water generation effect. It is related to the device. [Prior Art] Fig. 1 shows an outline of this type of conventional steam compression type fresh water generating apparatus using a block configuration. That is, in FIG. 1, reference numeral 1 denotes the main body of the fresh water generator, which includes a steam generation chamber 2 in which a demister 3 and a heat exchanger tube 4 are arranged, and a chamber 5 that is partitioned by a partition wall and has the heat exchanger tube 4 open. After the generated steam is once taken out of the main body, it is compressed by a compressor 6 driven by a driver 7 and sent into the heat exchanger tubes 4. Further, 8 is a condenser with an air extraction device 9, 10 and 11 are heat exchangers, and 12 is a heater that utilizes high-temperature waste heat from, for example, a diesel engine. As for the pipes connecting these devices, a is a raw water (seawater) pipe, b is a distilled water pipe, c is a non-condensable gas pipe, d is a brine pipe, and e is a steam pipe. It is a conduit. In this configuration, raw water is first sent to the condenser 8 at a predetermined pressure by a raw water pump (not shown), where non-condensable gas is extracted and accompanying steam is condensed, and then the heat exchanger 10 converts it into distilled water. The heat exchanger 11 performs heat exchange between the water and the brine (brine for blowdown), cools the distilled water and the brine, and preheats itself at the same time. 12 and then introduced into the apparatus main body 1, the temperature is further increased by the heat transfer tube 4 in the apparatus main body 1, and then vacuum evaporated at the inner bottom of the apparatus main body 1. The steam thus obtained is sucked, compressed, and raised in temperature by the compressor 6, and then reaches the condenser 8 via the heat transfer tube 4 and the chamber 5. It is cooled and liquefied to become distilled water, which is taken out to the outside through the aforementioned heat exchanger 10 together with the liquefied distilled water in the chamber 5, thereby achieving the desired water production effect. As can be seen from the above description of the operation, the conventional vapor compression water generator configured as described above utilizes a type of heat pump operation. It is generally known that the larger the difference between condensing pressure (temperature) and evaporation pressure (temperature), ΔP (ΔT), the worse the coefficient of performance (thermal efficiency) of this heat pump is. In the case of conventional devices that utilize heat pump action, the exhaust steam that has passed through the compressor is cooled using raw water heated by high-temperature waste heat from diesel engines or other heat sources, which naturally causes problems. However, as the condensing pressure increases, the coefficient of performance as a heat pump is not good, and the thermal efficiency of the water generator, which is usually called the water production ratio, the water production unit, the water production amount/input energy, is poor, and it is not economical. Moreover, it also caused problems in terms of energy consumption. [Summary of the Invention] In view of these drawbacks of the conventional device, the present invention
The pressurized raw water is preheated and evaporated in a reduced pressure flash inside the equipment body, and the steam after this flashing and the steam from the heating and evaporation of the brine are together drawn into a compressor and compressed. The brine is heated and evaporated using steam. [Embodiment] Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG. 2. In the embodiment shown in FIG. 2, the same reference numerals as in the conventional example shown in FIG. 1 indicate the same or corresponding parts.
A heat exchanger tube 13 is introduced into the chamber 5 for preheating, and the demister 3 is disposed in the upper part and the heat exchanger tube 4 is disposed in the bottom brain in the steam generation chamber 2 of the apparatus main body 1. An evaporation tray 14 for evaporating the introduced raw water is arranged below the demister 3 and above the bottom brine evaporation surface. Therefore, in the case of this embodiment, the raw water that has passed through the condenser 8 is preheated by the heat exchanger tube 13, then heat exchanged through the heat exchangers 10 and 11, and heated by the heater 12 to produce steam in the device body 1. It is guided to an evaporation tray 14 arranged inside the generation chamber 2. Then, this raw water, that is, the raw water whose temperature has been sufficiently raised under a predetermined pressure by the raw water pump, is reduced to the internal pressure (vacuum) of this steam generation chamber 2 by suction by the compressor 6, and flash evaporates on the evaporation tray 14. This is drawn into the compressor 6 and compressed together with the steam generated by heating and evaporating the brine stored at the bottom, and the temperature rises and reaches the heat transfer tube 4, where, on the one hand, as described above, The brine is heated and evaporated at the steam temperature, and through this heat exchange, the steam itself is cooled and liquefied, and is extracted outside as distilled water. Here, the reason why the heat exchanger tube 13 is provided in the chamber 5 is to preheat the raw water, and also to preheat the compressor 6.
Depending on the compression ratio of the steam discharged from the compressor 6, there is a difference between the latent heat of vapor and the latent heat of condensation of the steam discharged from the compressor 6. In other words, the latent heat of condensation may be larger, and the steam that passes through the brine of the steam generation chamber 2 may differ. In some cases, the entire amount in the heat transfer tube 4 is not liquefied and the mixture in the chamber 5 is in a gas-liquid state, and this is completely liquefied by heat exchange with the raw water flowing into the heat transfer tube 13. It's for a reason. Incidentally, when water production is performed under the same conditions for the conventional example device and this example device, the temperature at the inlet of raw water into the steam generation chamber, the evaporation temperature of steam at the inlet of the compressor (the suction temperature of the compressor) pressure),
and the condensation temperature of the vapor at the outlet of the compressor are shown below.

〔発明の効果〕〔Effect of the invention〕

以上詳述したようにこの発明によるときは、装
置本体で発生させた蒸気を、圧縮機により機械的
に圧縮、加熱して造水作用を得るようにした蒸気
圧縮式造水装置において、加圧された原水を予
熱、および加熱した状態とし、これを圧縮機の吸
引により減圧状態にある装置本体内に導き、この
装置本体内に配した蒸発用トレーにより減圧フラ
ツシユ蒸発させ、かつこのフラツシユ後の蒸気
と、ブラインの加熱、蒸発による蒸気とを併せて
圧縮機に吸引、圧縮させ、かつ吐出される加圧蒸
気をブライン内に配した伝熱管に通して、このブ
ラインを加熱、蒸発させると共に、蒸気自体を冷
却、液化させて蒸留水を得るようにしたから、圧
縮機の駆動々力の節減、もしくは圧縮機からの吐
出蒸気の凝縮圧力の低下を図ることが可能とな
り、造水量に対する投入エネルギ量を少なくで
き、従来例装置に比較して相対的に装置構成を小
型かつ簡略化できるなどの特長を有するものであ
る。
As described in detail above, according to the present invention, in a steam compression type water generation apparatus that mechanically compresses and heats the steam generated in the apparatus main body using a compressor to obtain a water generation effect, pressurization is performed. The raw water is preheated and heated, and is guided into the device main body which is in a reduced pressure state by the suction of the compressor, and is evaporated in a reduced pressure flash using an evaporation tray placed inside the device main body. The steam and the steam generated by heating and evaporating the brine are both sucked into a compressor and compressed, and the discharged pressurized steam is passed through a heat transfer tube placed inside the brine to heat and evaporate the brine, Since distilled water is obtained by cooling and liquefying the steam itself, it is possible to reduce the driving force of the compressor or to lower the condensation pressure of the steam discharged from the compressor, which reduces the amount of energy input relative to the amount of water produced. It has the advantage that the amount can be reduced, and the device configuration can be relatively small and simplified compared to conventional devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例での蒸気圧縮式造水装置の概要
を示すブロツク構成図、第2図はこの発明の一実
施例を適用した同上蒸気圧縮式造水装置の概要を
示すブロツク構成図である。 1……造水装置本体、2……蒸気発生室、4…
…吐出蒸気を通す伝熱管、5……チヤンバー、6
……圧縮機、8……コンデンサー、10および1
1……原水と蒸留水およびブラインとの熱交換
器、12……加熱器、13……原水を通す伝熱
管、14……蒸発用トレー。
Fig. 1 is a block diagram showing an outline of a conventional steam compression type fresh water generator, and Figure 2 is a block diagram showing an outline of a vapor compression type fresh water generator to which an embodiment of the present invention is applied. be. 1... Water generator main body, 2... Steam generation chamber, 4...
...Heat transfer tube for passing discharged steam, 5...Chamber, 6
... Compressor, 8 ... Condenser, 10 and 1
1... Heat exchanger between raw water, distilled water, and brine, 12... Heater, 13... Heat exchanger tube through which raw water passes, 14... Tray for evaporation.

Claims (1)

【特許請求の範囲】 1 蒸気発生室を形成させ、この蒸気発生室内の
底部に吐出蒸気の伝熱管、および上部に蒸発用ト
レーを設けた装置本体と、前記蒸気発生室内で発
生した蒸気を吸引、圧縮して前記伝熱管に吐出さ
せる圧縮機と、加圧された原水を予熱、および加
熱して前記蒸発用トレー上に導く手段とを少なく
とも備え、加圧された原水を予熱、および加熱し
てから、圧縮機による吸引で減圧状態にある装置
本体内の蒸発用トレー上に導いて減圧フラツシユ
蒸発させ、フラツシユ後の蒸気と、ブラインの加
熱、蒸発による蒸気とを併せて圧縮機に吸引、圧
縮させ、この吐出蒸気を伝熱管に通して、前記ブ
ラインの加熱、蒸発をなすと共に、蒸気自体を冷
却、液化させるようにしたことを特徴とする蒸気
圧縮式造水装置。 2 蒸気発生室内の蒸発用トレーをブライン液面
よりも上方に配したことを特徴とする特許請求の
範囲第1項記載の蒸気圧縮式造水装置。 3 伝熱管を経た吐出蒸気を受け入れるチヤンバ
ーを設け、このチヤンバー内に原水の予熱手段を
配したことを特徴とする特許請求の範囲第1項記
載の蒸気圧縮式造水装置。
[Scope of Claims] 1. A device main body that forms a steam generation chamber, has a heat transfer tube for discharged steam at the bottom of the steam generation chamber, and an evaporation tray at the top, and sucks the steam generated in the steam generation chamber. , comprising at least a compressor for compressing and discharging it into the heat transfer tube, and means for preheating and heating pressurized raw water and guiding it onto the evaporation tray, and for preheating and heating the pressurized raw water. After that, the vapor is guided onto the evaporation tray inside the device main body which is in a reduced pressure state by suction by a compressor, and is evaporated in a reduced pressure flash. 1. A steam compression type fresh water generator, characterized in that the brine is compressed and the discharged steam is passed through a heat transfer tube to heat and evaporate the brine, and to cool and liquefy the steam itself. 2. The vapor compression type fresh water generator according to claim 1, wherein the evaporation tray in the steam generation chamber is arranged above the brine liquid level. 3. The vapor compression type water generating apparatus according to claim 1, further comprising a chamber for receiving the discharged steam that has passed through the heat transfer tube, and a means for preheating raw water disposed within the chamber.
JP2433684A 1984-02-14 1984-02-14 Steam compression type water distillation apparatus Granted JPS60168582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2433684A JPS60168582A (en) 1984-02-14 1984-02-14 Steam compression type water distillation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2433684A JPS60168582A (en) 1984-02-14 1984-02-14 Steam compression type water distillation apparatus

Publications (2)

Publication Number Publication Date
JPS60168582A JPS60168582A (en) 1985-09-02
JPS6314674B2 true JPS6314674B2 (en) 1988-03-31

Family

ID=12135335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2433684A Granted JPS60168582A (en) 1984-02-14 1984-02-14 Steam compression type water distillation apparatus

Country Status (1)

Country Link
JP (1) JPS60168582A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1798202B1 (en) * 2004-09-02 2013-07-17 Aquasystems Inc. Single stage flash evaporation apparatus based on mechanical vapor compression method
JP5552284B2 (en) * 2009-09-14 2014-07-16 信越化学工業株式会社 Polycrystalline silicon manufacturing system, polycrystalline silicon manufacturing apparatus, and polycrystalline silicon manufacturing method
CN104056462B (en) * 2014-07-11 2015-08-05 成都华西堂投资有限公司 A kind of heat pump distillation energy saver
CN104056461B (en) * 2014-07-11 2015-08-05 成都华西堂投资有限公司 A kind of heat pump distillation new energy-saving process
CN104058475B (en) * 2014-07-11 2015-08-05 成都华西堂投资有限公司 A kind of heat pump distillation deamination new energy-saving process
CN105776382A (en) * 2014-12-15 2016-07-20 哈尔滨市三和佳美科技发展有限公司 Negative-pressure seawater desalination device

Also Published As

Publication number Publication date
JPS60168582A (en) 1985-09-02

Similar Documents

Publication Publication Date Title
US2548508A (en) Thermal system
JP2634918B2 (en) Thermodynamic cycle execution method and apparatus
RU99128094A (en) EXHAUST GAS HEAT REGENERATION IN AN ORGANIC ENERGY CONVERTER USING THE INTERMEDIATE LIQUID CYCLE
DK145242B (en) COMBUSTION ENGINE SYSTEM WITH A TURBOLED, WATER COOLED ENGINE
WO1996034236A1 (en) Refrigerant enhancer-absorbent concentrator and turbo-charged absorption chiller
EP0880387A1 (en) Compact vacuum distillation
JPH0729363Y2 (en) Process equipment
JPS6314674B2 (en)
JP4031220B2 (en) Alcohol distillation equipment
SU674690A3 (en) Method of obtaining heat and cold and device for effecting same
JPH02181002A (en) Double flow turbine plant
US2362714A (en) Starting combustion turbines
US3616833A (en) Evaporation of liquor
EP0798525A1 (en) Steam recompression type vacuum drying apparatus
US2025724A (en) clendenin
US4047386A (en) Process for heating condensate
JP2004301344A (en) Ammonia absorption heat pump
US2202298A (en) Power generating, transmitting, and delivering apparatus
JPH06320140A (en) Vacuum distilling plant for water
JPS6118490A (en) Method and device for distillation of salt water basing on coolant vapor compression system
SU591667A1 (en) Method of cooling working body
JPS6176707A (en) Waste heat recovery equipment
JPH067881B2 (en) Distillation liquid manufacturing equipment
JPS5821554B2 (en) distillation equipment
JPS57127484A (en) Vacuum distillation device