JPS6118490A - Method and device for distillation of salt water basing on coolant vapor compression system - Google Patents

Method and device for distillation of salt water basing on coolant vapor compression system

Info

Publication number
JPS6118490A
JPS6118490A JP14022584A JP14022584A JPS6118490A JP S6118490 A JPS6118490 A JP S6118490A JP 14022584 A JP14022584 A JP 14022584A JP 14022584 A JP14022584 A JP 14022584A JP S6118490 A JPS6118490 A JP S6118490A
Authority
JP
Japan
Prior art keywords
refrigerant
salt water
vapor compression
coolant
tube bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14022584A
Other languages
Japanese (ja)
Inventor
Kazuharu Takada
和治 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP14022584A priority Critical patent/JPS6118490A/en
Publication of JPS6118490A publication Critical patent/JPS6118490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To improve heat efficiency of salt water evaporating process by using salt water distillation process basing on a coolant vapor compression system including thin film evaporation stage for the evaporation of salt water, and providing also a coolant evaporator, coolant compressore, and a coolant condenser. CONSTITUTION:Dusts and suspended matters, etc. are removed by passing sea water through a strainer 24, and the sea water is passed through a preheater 22, and then sprayed from a spraying device 11 on the uppermost stage tube bundle 10 of a coolant condenser 4 in a vessel 9 under reduced pressure. The sea water is then evaporated by exchanging heat with coolant gas at high temp. in the tubes, and generated steam enters a coolant evaporator 7 after passing through a passage 25, where it is condensed by exchanging heat with cold coolant in the pipes. The condensed water accumulates in a tray 20 and discharged to the outside with a pump 26 through a pipe 27. Concentrated sea water passes through a brine pump 28 and a preheater 22, exchanges heat with feed sea water, then discharged from a pipe 29. The coolant is circulated through a heat pump circuit.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、塩水を淡水化する方法のうち、塩水から蒸発
した水蒸気を手締して温度上昇させ、これを塩水の蒸発
熱に使用して、該昇温蒸気を凝縮させる蒸発圧縮法にお
いて、冷媒によるヒートポンプを利用した蒸気圧縮式塩
水蒸溜方法および装置に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a method for desalinating salt water, in which water vapor evaporated from salt water is manually compressed to raise its temperature, and this is used as heat of evaporation of salt water. The present invention relates to a vapor compression salt water distillation method and apparatus using a heat pump using a refrigerant in the evaporative compression method for condensing heated steam.

(従来技術) 塩水の淡水化においては、伝熱管にスケールが付着しな
いようにするため、出来るだけ低温で蒸発させることが
好ましい。よって革気圧縮法の場合でも大気圧式の高温
のものから真空式の低温のものが採用されているが、し
かしながら水蒸気の比体積は100℃で1.67rrf
/kgであるのに比べ、40℃では19.5n?/kg
となるように低温になればなる程、水蒸気の比体積が大
きくなるので、使用する圧縮機が大型になり、実用的で
ない欠点がある。
(Prior Art) In the desalination of salt water, it is preferable to evaporate it at as low a temperature as possible in order to prevent scale from adhering to heat transfer tubes. Therefore, even in the case of pneumatic compression, atmospheric pressure type high temperature type and vacuum type low temperature type are used.However, the specific volume of water vapor is 1.67rrf at 100℃.
/kg, compared to 19.5n at 40℃? /kg
As the temperature decreases, the specific volume of water vapor increases, so the compressor used becomes larger, which is impractical.

一方、水蒸気と冷媒蒸気を熱交換し、冷媒を圧縮するよ
うにすると小さな圧縮機で間に合うが、水の蒸発潜熱は
約550 Kcal/ kg、冷媒の潜熱はR−113
では約35KCal/kgであって、水蒸気の場合に比
べて10倍以上の冷媒を圧縮機で循環させねばならない
が、体積は1.3rriにすぎず、前記19.5n?に
比べ1/15に減ることになる。
On the other hand, if we exchange heat between water vapor and refrigerant vapor and compress the refrigerant, a small compressor will be sufficient, but the latent heat of vaporization of water is approximately 550 Kcal/kg, and the latent heat of refrigerant is R-113.
In this case, the amount of refrigerant is about 35 KCal/kg, which is more than 10 times as much refrigerant as in the case of steam, but the volume is only 1.3 rri, and the 19.5 n? This will be reduced to 1/15 compared to .

ヒートポンプ回路を利用し、冷媒蒸気を圧縮する塩水淡
水化蒸発装置の先行技術は、特公昭56−6348号公
報、実公昭57−8955号公報に示されているが、前
者では冷媒凝縮器に冷媒用コイルを使用し、所望の高さ
に塩水レベルを維持するように構成されているので、こ
の液深が沸点上昇として現れ、塩水は蒸発しにくい。故
に冷媒温度は高くせねばならず、即ち冷媒圧縮機の圧縮
率を大きくする必要があるため、例えばピストン式高圧
圧縮機を使用しなければならない。この圧縮機は圧縮量
を多くすることがむずかしく、しかも効率が悪いという
問題がある。
The prior art of a salt water desalination evaporator that compresses refrigerant vapor using a heat pump circuit is shown in Japanese Patent Publication No. 56-6348 and Japanese Utility Model Publication No. 57-8955. Since the saline coil is configured to maintain the brine level at a desired height, this liquid depth manifests itself as an increase in the boiling point and the brine is less likely to evaporate. Therefore, the refrigerant temperature must be increased, that is, the compression ratio of the refrigerant compressor must be increased, and therefore, for example, a piston-type high-pressure compressor must be used. This compressor has the problem that it is difficult to increase the amount of compression, and it is also inefficient.

後者の実公昭57−8955号内報の先行技術では、ス
ケール析出防止手段として高圧高温の液化冷媒によって
海水を直接加熱せず、一旦水などを加熱し、次いでこの
加熱された水と海水とを熱交換し、即ち2段階の熱交換
を行ってするので、これも当然、冷媒の蒸発と凝縮の温
度差は大きくなり、圧縮率の大きな圧縮機が必要である
。蒸発と凝縮の温度差が大きいと圧縮機の成績係数が悪
くなり、蒸留装置としての熱効率が低下する問題がある
In the latter prior art disclosed in Utility Model Publication No. 57-8955, as a means to prevent scale precipitation, seawater is not directly heated with a high-pressure, high-temperature liquefied refrigerant, but water, etc. is first heated, and then this heated water and seawater are combined. Since heat exchange is performed, that is, a two-stage heat exchange is performed, the temperature difference between the evaporation and condensation of the refrigerant is naturally large, and a compressor with a high compression ratio is required. If the temperature difference between evaporation and condensation is large, the coefficient of performance of the compressor will deteriorate, leading to a problem of lowering the thermal efficiency of the distillation apparatus.

(発明が解決しようとする問題点) そこで本発明はR−113のごとき蒸気圧が低く、しか
も比重が大きい冷媒をヒートポンプ回路に循環させて、
スケール付着防止を図るとともに圧縮機をより小型化し
、また夛気圧が低いと液が深くなるほど蒸発しにくくな
□るので、冷媒の液深を浅く保って蒸発させ、更に温度
差を小ざくするために、塩水の蒸発は薄膜蒸発として塩
水の深さによる蒸発のしにくさく低温はど水蒸気圧が小
さいのでこの影響が大きい)をなくし、圧縮機の成績係
数を高めて熱効率の向上を図ることにより、前記従来の
不具合を解消することを目的とする。
(Problems to be Solved by the Invention) Therefore, the present invention circulates a refrigerant such as R-113, which has a low vapor pressure and a high specific gravity, through the heat pump circuit.
In addition to preventing scale build-up, the compressor has been made smaller, and if the pressure is low, the deeper the liquid is, the more difficult it is to evaporate, so the refrigerant is kept at a shallow depth for evaporation, and the temperature difference is further reduced. In addition, the evaporation of salt water is done by thin film evaporation, which is difficult to evaporate due to the depth of salt water (at low temperatures, water vapor pressure is small, so this effect is large), and by increasing the coefficient of performance of the compressor and improving thermal efficiency. , aims to eliminate the above-mentioned conventional problems.

(問題点を解決するための手段) このため本発明は、冷媒が循環するヒートポンプ回路の
冷媒凝縮熱および冷媒蒸発熱を、それぞれ塩水の蒸発お
よび発生蒸気の凝縮に利用し、冷媒の蒸発は液深を浅く
保って行い、塩水の蒸発は薄膜蒸発としたことを特徴と
する冷媒蒸気圧縮式塩水蒸溜方法と、水平伝熱管束を有
する冷媒蒸発器、冷媒圧縮機、冷媒凝縮器および膨張弁
が管路で連絡して冷媒が循環するヒートポンプ回路を形
成し、冷媒蒸発器は冷媒の液深を浅く保つ手段を有し、
冷媒凝縮器は塩水の薄膜蒸発手段を備え、冷媒蒸発器の
凝縮側と前記冷媒凝縮器蒸発側とは水蒸気通路で連絡し
た冷媒蒸気圧縮式塩水蒸溜装置の構成とし、冷媒の液深
を浅く保つ手段は、冷媒蒸発器の水平伝熱管束を分割し
て上下に配置し、該分割した管束の入口側と出口側に堰
を設けて冷媒液面を所要レベルに保持し、また塩水の薄
膜蒸発手段は、冷媒凝縮器の複数水平伝熱管束を冷媒蒸
気が直列に流れる配列として、該水平伝熱管束上方に塩
水散布装置を臨ませ、冷媒凝縮器の最終管束から不凝縮
性ガスを冷媒蒸発器管束に導く空気抜管を設け、なお冷
媒はR−113低圧冷媒を用い、冷媒圧縮機は遠心ブロ
ア式圧縮機を使用することを特徴とする冷媒蒸気圧縮式
塩水蒸溜装置を提供するものである。
(Means for Solving the Problems) Therefore, the present invention utilizes the heat of refrigerant condensation and the heat of refrigerant evaporation of a heat pump circuit in which refrigerant circulates to evaporate salt water and condense generated steam, respectively, and evaporate the refrigerant into liquid. A refrigerant vapor compression brine distillation method characterized by keeping the depth shallow and evaporating brine using thin film evaporation, and a refrigerant evaporator having a horizontal heat transfer tube bundle, a refrigerant compressor, a refrigerant condenser, and an expansion valve. A heat pump circuit is formed in which the refrigerant circulates by connecting through a pipe, and the refrigerant evaporator has means for keeping the liquid depth of the refrigerant shallow;
The refrigerant condenser is equipped with a salt water thin film evaporation means, and the condensation side of the refrigerant evaporator and the evaporation side of the refrigerant condenser are connected through a steam passage to form a refrigerant vapor compression type salt water distillation device, and the liquid depth of the refrigerant is kept shallow. The means is to divide the horizontal heat transfer tube bundle of the refrigerant evaporator and place it above and below, provide weirs on the inlet and outlet sides of the divided tube bundle to maintain the refrigerant liquid level at the required level, and thin film evaporation of salt water. The means is arranged such that refrigerant vapor flows in series through a plurality of horizontal heat transfer tube bundles of a refrigerant condenser, and a salt water dispersion device is placed above the horizontal heat transfer tube bundles to evaporate non-condensable gas from the final tube bundle of the refrigerant condenser. This invention provides a refrigerant vapor compression type salt water distillation apparatus characterized in that an air vent pipe leading to a vessel tube bundle is provided, R-113 low-pressure refrigerant is used as the refrigerant, and a centrifugal blower type compressor is used as the refrigerant compressor. .

(作用) すなわち本発明は、前記のように構成したことにより、
ヒートポンプ回路では冷媒が循環し、遠心ブロア式圧縮
機で圧縮され温度上昇した冷媒は冷媒凝縮器の管内凝縮
側に導かれ、管外面蒸発側に散布される塩水と熱交換し
て凝縮し、次に膨張弁を経て減圧されて低温となり、冷
媒蒸発器の管内藤発側に導かれ、前記冷媒凝縮器で薄膜
蒸発し冷媒蒸発器の管外面凝縮側に導入された水蒸気と
熱交換して水蒸気を凝縮させる一方、該冷媒は蒸発し、
該発生冷媒蒸気は遠心ブロア式圧縮機に再び吸入される
(Function) That is, the present invention is configured as described above, and thus,
Refrigerant circulates in the heat pump circuit, and the refrigerant, whose temperature has risen after being compressed by a centrifugal blower compressor, is led to the condensation side inside the pipe of the refrigerant condenser, where it condenses by exchanging heat with the salt water sprayed on the evaporation side of the outside of the pipe, and then The pressure is reduced through an expansion valve, the temperature is reduced, and the temperature is reduced to a low temperature, which is then led to the refrigerant evaporator's pipe Naito output side, where it evaporates into a thin film in the refrigerant condenser, and heat exchanges with the water vapor introduced into the condensation side of the refrigerant evaporator's pipe outer surface, resulting in water vapor. while the refrigerant evaporates,
The generated refrigerant vapor is sucked back into the centrifugal blower compressor.

このヒートポンプ回路において、冷媒凝縮器では水平の
伝熱管外面に、上方の散布装置より塩水が散布されて薄
膜蒸発が起り、発生水蒸気は冷媒蒸発器の管外面凝縮側
で凝縮し、受皿に溜り取出される。
In this heat pump circuit, in the refrigerant condenser, salt water is sprayed on the outer surface of the horizontal heat transfer tube from an upper spraying device, causing thin film evaporation, and the generated water vapor condenses on the condensation side of the tube outer surface of the refrigerant evaporator, collects in a saucer, and is taken out. be done.

冷媒凝縮器の管束は冷媒蒸気が直列に多折流するように
し、本実施例では第1折流の管内で凝縮生成した冷媒液
を冷媒ガス流速によって吹き飛ばず作用を行わせ、液膜
を薄くして伝熱性能の向上を図っている。なお薄膜蒸発
のみを考えれば垂直伝熱管束を採用することもできる。
The tube bundle of the refrigerant condenser is configured so that the refrigerant vapor flows in series in multiple directions, and in this embodiment, the refrigerant liquid condensed in the tubes of the first bent flow is acted upon without being blown away by the refrigerant gas flow rate, thereby thinning the liquid film. The aim is to improve heat transfer performance. Note that if only thin film evaporation is considered, a vertical heat exchanger tube bundle can also be used.

またヒートポンプ回路に低圧冷媒を使用すれば大気圧以
下で作動するため、配管継手その他などから空気が洩れ
込む虞れがあるが、冷媒蒸気圧が低いと空気が混−合し
た場合に、その空気分圧が大きく伝熱性能を悪くする影
響が大となる。よって該冷媒凝縮器は管内流速が大にな
るような構造とし凝縮面での空気の滞留、を減じその影
響を小さくしている。
Furthermore, if a low-pressure refrigerant is used in the heat pump circuit, it will operate at below atmospheric pressure, so there is a risk of air leaking from pipe joints and other places. The partial pressure is large and has a significant effect on deteriorating heat transfer performance. Therefore, the refrigerant condenser has a structure that increases the flow velocity in the pipe to reduce air stagnation on the condensing surface and reduce its influence.

冷媒凝縮管束の最終折流では空気など不凝縮性ガスが蓄
積されるので空気抜管を設けて空気などを冷媒蒸発器の
管内に放出し、凝縮伝熱係数が高(なる状態として冷媒
の凝縮を一層促進させる。
At the final turn of the refrigerant condensing tube bundle, non-condensable gas such as air accumulates, so an air vent tube is provided to release air etc. into the tubes of the refrigerant evaporator. Promote further.

このようにしてヒートポンプ回路内の空気含有量が多く
なったときは、別途真空ポンプで吸引し、冷媒の入替え
を行う。
When the air content in the heat pump circuit increases in this way, it is sucked in with a separate vacuum pump and the refrigerant is replaced.

冷媒蒸発器には冷媒の液深を浅くする手段を設けて冷媒
の蒸発を活発化する。すなわち、入口側と出口側のヘッ
ダー間に水平伝熱管束を設けた通常の熱交換器の構造で
は、液深が大となって蒸発は起りにくくなる。本発明で
は管束は上下に分割して複数段に形成し、伝熱管内面で
冷媒を蒸発させるには満液式にしなければならないので
各管束の出入口に堰を設けて、各分割した容管に冷媒液
が充満している状態にしているが、多数の管束に分割し
ているので液深が大となる虞れがない。
The refrigerant evaporator is provided with means for reducing the depth of the refrigerant to activate the evaporation of the refrigerant. That is, in a conventional heat exchanger structure in which a horizontal heat exchanger tube bundle is provided between headers on the inlet side and the outlet side, the liquid depth becomes large and evaporation becomes difficult to occur. In the present invention, the tube bundle is divided into upper and lower sections to form multiple stages, and in order to evaporate the refrigerant on the inner surface of the heat transfer tube, it must be filled with liquid, so a weir is provided at the entrance and exit of each tube bundle, and a weir is provided at the entrance and exit of each tube bundle. Although the tube is filled with refrigerant liquid, there is no risk of the liquid becoming too deep since it is divided into a large number of tube bundles.

例えば低圧冷媒R7,113は液深が大と、ケれば蒸発
は起きず、30℃の飽和圧力の容器内で液深が270鶴
あれば35℃以上の温度差がないとそとなり、液深27
0+nの影響仲はぼ40%にもなる。
For example, if the low-pressure refrigerant R7,113 has a large liquid depth, evaporation will not occur if the liquid evaporates.If the liquid depth is 270°C in a container with a saturated pressure of 30°C, the liquid will evaporate unless there is a temperature difference of 35°C or more. depth 27
The influence of 0+n is about 40%.

(実施例) 以下本発明の一実施例を添付の図面を参照して説明する
(Example) An example of the present invention will be described below with reference to the accompanying drawings.

ヒートポンプ回路1はR−113のごとき低圧冷媒が循
環し、圧縮機2、管路3、冷媒凝縮器4、管路5、膨張
弁6、冷媒蒸発器7、管路8より構成されていて、この
冷媒凝縮器4と冷媒蒸発器7は同一容器9内に収容され
ている。
The heat pump circuit 1 circulates a low-pressure refrigerant such as R-113, and is composed of a compressor 2, a pipe 3, a refrigerant condenser 4, a pipe 5, an expansion valve 6, a refrigerant evaporator 7, and a pipe 8. The refrigerant condenser 4 and refrigerant evaporator 7 are housed in the same container 9.

冷媒凝縮器4は原料塩水の薄膜蒸発手段として水平伝熱
管束を例えば2折流に形成し、最上段管束10上方に海
水散布装置11が配置され、最下段管束12の出口側ヘ
ッダー13には前記管路5のほか、空気抜管14が開口
している。
The refrigerant condenser 4 uses a horizontal heat transfer tube bundle as a thin film evaporation means for raw salt water, for example, to form a two-fold flow. A seawater spraying device 11 is arranged above the uppermost tube bundle 10, and a header 13 on the outlet side of the lowermost tube bundle 12 is provided with a seawater spraying device 11. In addition to the pipe line 5, an air vent pipe 14 is open.

冷媒蒸発器7は冷媒の液深を浅く保つ手段として、例え
ば16mφの管を使用し複数の管束に分割された水平管
束が出入口側ヘッダー15と折返し側ヘッダー16間に
配列され、管内の低圧冷媒が浅い液深を保って蒸発しゃ
すいように、各管束ごとに入口側および出口側にそれぞ
れ堰17.18を設けて管内に冷媒液を充満させること
によって、液深をほぼ各管束の高さとし、かくして液深
は浅く蒸発が容易となる。前述の入口側の堰は、最上段
の堰を除いて、上方の堰からの冷媒の溢流を受入れる手
段を有する。この溢流を受入れる手段は、例えば下方管
束の堰17′はど側方に拡がって設けられており、上方
から溢流した冷媒を受入れ、外管はすべて冷媒液で充満
する。なおこの溢流を受入れる手段は他の形態であって
もよい。
The refrigerant evaporator 7 uses, for example, 16 mφ pipes as a means to keep the liquid depth of the refrigerant shallow, and a horizontal pipe bundle divided into a plurality of pipe bundles is arranged between the inlet/outlet side header 15 and the folded side header 16, and the low-pressure refrigerant in the pipes is In order to maintain a shallow liquid depth and prevent evaporation, weirs 17 and 18 are provided on the inlet and outlet sides of each tube bundle to fill the tubes with refrigerant liquid, so that the liquid depth is approximately the same as the height of each tube bundle. , thus the liquid depth is shallow and evaporation is easy. The weirs on the inlet side described above, except for the weir at the top stage, have means for receiving refrigerant overflow from the weir above. Means for receiving this overflow is provided, for example, in the weir 17' of the lower tube bundle, which extends to both sides, and receives the refrigerant overflowing from above, so that all the outer tubes are filled with refrigerant liquid. Note that the means for accepting this overflow may be of other forms.

最上段管束19はスーパーヒータ一部であり、もし冷媒
ガス中にミストが混入すれば圧縮機2は破損する恐れが
あるので、ミストを完全にガス化させたあとの冷媒蒸気
のみ圧縮機2に吸引させる。
The uppermost tube bundle 19 is a part of the super heater, and if mist gets mixed into the refrigerant gas, the compressor 2 may be damaged. Therefore, only the refrigerant vapor that has completely gasified the mist is sent to the compressor 2. Make it absorb.

20は凝縮水受皿、21は冷媒蒸発器入口側ヘソグーに
連絡する空気抜管14に設けた減圧弁、22は濃縮ブラ
インによる供給海水の予熱器、23は真空装置である。
20 is a condensed water receiver, 21 is a pressure reducing valve provided in the air vent pipe 14 communicating with the refrigerant evaporator inlet side bottom, 22 is a preheater for supplied seawater using concentrated brine, and 23 is a vacuum device.

上記のように構成した冷媒蒸気圧縮式塩水蒸溜装置にお
いて、海水はストレーナ24を通過してごみ、浮遊物等
が除去され、予熱器22を経たのち減圧下の容器9にお
いて、散布装置11がら冷媒凝縮器4の最上段管束1o
に散布され、管内の高温冷媒ガスと熱交換して蒸発し、
発生水蒸気は通路25を経て冷媒蒸発器7に入り、管内
の冷たい冷媒と熱交換して凝縮し、凝縮水は受皿2oに
溜まり、ポンプ26によって管27を経て外部に取出さ
れる。濃縮海水はブラインポンプ28、予熱器22を通
り、原料海水と熱交換したのち、管29から放出される
。冷媒はヒートポンプ回路を循環する。
In the refrigerant vapor compression type salt water distillation apparatus configured as described above, the seawater passes through the strainer 24 to remove dust, suspended matter, etc. After passing through the preheater 22, the seawater is placed in the container 9 under reduced pressure, where the refrigerant is mixed with the spraying device 11. Top tube bundle 1o of condenser 4
The refrigerant gas exchanges heat with the high-temperature refrigerant gas inside the pipe and evaporates.
The generated water vapor enters the refrigerant evaporator 7 through the passage 25, condenses by exchanging heat with the cold refrigerant in the pipe, and the condensed water collects in the saucer 2o, and is taken out to the outside through the pipe 27 by the pump 26. The concentrated seawater passes through a brine pump 28 and a preheater 22, exchanges heat with raw seawater, and is then discharged from a pipe 29. Refrigerant circulates through the heat pump circuit.

(発明の効果) 本発明においては、冷媒が循環するヒートポンプ回路の
冷媒凝縮器および冷媒蒸発器を塩水の蒸発および発生水
蒸気の凝縮に利用し、冷媒の蒸発は液深を浅く保って行
い、塩水の蒸発は薄膜蒸発としたから、蒸発と凝縮の温
度差が小さくなり、圧縮機の成績係数がよくなる。また
R−113のごとき低圧高密度冷媒を使用すると遠心プ
ロア式圧縮機が利用でき、高い効率が得られる。
(Effects of the invention) In the present invention, the refrigerant condenser and refrigerant evaporator of the heat pump circuit in which refrigerant circulates are used for evaporating salt water and condensing generated water vapor, and the refrigerant is evaporated by keeping the liquid depth shallow. Since the evaporation of is done by thin film evaporation, the temperature difference between evaporation and condensation is small, and the coefficient of performance of the compressor is improved. Furthermore, when a low pressure high density refrigerant such as R-113 is used, a centrifugal compressor can be used and high efficiency can be obtained.

また冷媒凝縮用伝熱管束は複数の管束を直列に連絡し、
かつ多折流としたから管内冷媒は高速流となって凝縮冷
媒は吹き飛ばされて伝熱の障害となる液膜厚さは減少し
、熱伝達は良好に維持できる。
In addition, heat transfer tube bundles for refrigerant condensation connect multiple tube bundles in series,
In addition, since the flow is multi-fold, the refrigerant in the tube becomes a high-speed flow, and the condensed refrigerant is blown away, reducing the thickness of the liquid film, which is an obstacle to heat transfer, and maintaining good heat transfer.

更に冷媒凝縮器の最終管束と冷媒蒸発器の冷媒側を連絡
する空気抜管は、冷媒が大気圧以下で蒸発、凝縮を繰返
し、フランジの継手等より空気が漏洩しても、この空気
は冷媒蒸発器側に吸引されるから、この空気は凝縮管内
に滞留せず、伝熱を阻害する要因は排除され、前記凝縮
管束の多折流の構成と相撲って伝熱は一層良好となり、
低温でも十分海水の蒸発を遂行できる。
Furthermore, the air vent pipe that connects the final tube bundle of the refrigerant condenser and the refrigerant side of the refrigerant evaporator is designed so that the refrigerant repeatedly evaporates and condenses below atmospheric pressure. Even if air leaks from a flange joint, etc., this air will not evaporate. Since this air is sucked into the condenser side, this air does not remain in the condensing tube, and factors that inhibit heat transfer are eliminated, and in cooperation with the multi-fold flow configuration of the condensing tube bundle, heat transfer becomes even better.
Seawater can evaporate sufficiently even at low temperatures.

また冷媒蒸発器は複数の管束を上下に配置し、該管束の
入口、出口に堰を設けたから、導入される冷媒液は外管
に充満して液深は堰の高さに低く抑えられ、液深による
沸点上昇は実質的に無視できる程度となり、蒸発と凝縮
の僅かな温度差でも冷媒の蒸発は旺盛に保ち得る。
In addition, the refrigerant evaporator has a plurality of tube bundles arranged above and below, and a weir is provided at the inlet and outlet of the tube bundle, so the refrigerant liquid introduced fills the outer tube and the liquid depth is kept low to the height of the weir. The increase in boiling point due to liquid depth is virtually negligible, and even a slight temperature difference between evaporation and condensation can maintain vigorous evaporation of the refrigerant.

以上のとおり蒸留による塩水淡水化に冷媒が循環するヒ
ートポンプ回路を利用した本発明においては、冷媒の特
性を活用して小型で効率の高い圧縮機が利用できるよう
になり、また蒸発、凝縮の温度差が小さくなって圧縮機
の成績係数が高(得られるようになるなど総合的に熱効
率の高い塩水蒸留方法及び装置となる効果を有する。
As described above, in the present invention, which utilizes a heat pump circuit that circulates a refrigerant for desalination of salt water by distillation, it becomes possible to use a compact and highly efficient compressor by taking advantage of the characteristics of the refrigerant, and also to reduce the temperature of evaporation and condensation. This has the effect of providing a brine distillation method and apparatus with overall high thermal efficiency, such as reducing the difference and making it possible to obtain a high coefficient of performance for the compressor.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例における断面説明図である。 1・・・ヒートポンプ回路、2・・・圧縮機、4・・・
冷媒凝縮器、    6・・・膨張弁、7・・・冷媒蒸
発器、   9・・・容器、10・・・最上段管束、 
  11・・・海水散布装置、12・・・最下段管束、
   14・・・空気抜管、17.17’ 、18・・
・堰、  20・・・凝縮水受皿、21・・・減圧弁、
     22・・・予熱器、23・・・真空装置、 
   24・・・ストレーナ。
The figure is an explanatory cross-sectional view of one embodiment of the present invention. 1... Heat pump circuit, 2... Compressor, 4...
Refrigerant condenser, 6... Expansion valve, 7... Refrigerant evaporator, 9... Container, 10... Top stage tube bundle,
11...Seawater spraying device, 12...Lowermost pipe bundle,
14...Air vent pipe, 17.17', 18...
・Weir, 20... Condensed water receiver, 21... Pressure reducing valve,
22... Preheater, 23... Vacuum device,
24... Strainer.

Claims (11)

【特許請求の範囲】[Claims] (1)冷媒が循環するヒートポンプ回路の冷媒凝縮熱お
よび冷媒蒸発熱をそれぞれ塩水の蒸発および発生蒸気の
凝縮に利用し、冷媒の蒸発は液深を浅く保って行い、塩
水の蒸発は薄膜蒸発としたことを特徴とする冷媒蒸気圧
縮式塩水蒸溜方法。
(1) The heat of refrigerant condensation and the heat of refrigerant evaporation in the heat pump circuit in which the refrigerant circulates are used for the evaporation of salt water and the condensation of generated steam, respectively.The evaporation of the refrigerant is performed by keeping the liquid depth shallow, and the evaporation of salt water is performed using thin film evaporation. A refrigerant vapor compression brine distillation method characterized by:
(2)水平伝熱管束を有する冷媒蒸発器、冷媒圧縮機、
冷媒凝縮器および膨張弁が管路で連絡して冷媒が循環す
るヒートポンプ回路を形成し、冷媒蒸発器は冷媒の液深
を浅く保つ手段を有し、冷媒凝縮器は塩水の薄膜蒸発手
段を備え、冷媒蒸発器の凝縮側と前記冷媒凝縮器蒸発側
とは水蒸気通路で連絡したことを特徴とする冷媒蒸気圧
縮式塩水蒸溜装置。
(2) a refrigerant evaporator and a refrigerant compressor having a horizontal heat transfer tube bundle;
A refrigerant condenser and an expansion valve are connected by a pipe line to form a heat pump circuit in which refrigerant circulates, the refrigerant evaporator has means for keeping the refrigerant liquid depth shallow, and the refrigerant condenser has means for thin film evaporation of salt water. A refrigerant vapor compression salt water distillation apparatus, characterized in that the condensing side of the refrigerant evaporator and the evaporating side of the refrigerant condenser are connected through a steam passage.
(3)冷媒の液深を浅く保つ手段は、冷媒蒸発器に水平
伝熱管束を分割して上下に配置し、該分割した管束の入
口と出口側に堰を設けた手段である特許請求の範囲第2
項記載の冷媒蒸気圧縮式塩水蒸溜装置。
(3) The means for keeping the liquid depth of the refrigerant shallow is a means in which horizontal heat transfer tube bundles are divided into upper and lower parts of the refrigerant evaporator, and weirs are provided at the inlet and outlet sides of the divided tube bundles. Range 2nd
Refrigerant vapor compression type brine distillation apparatus as described in 2.
(4)冷媒凝縮器の水平伝熱管束の入口に設けた堰は、
最上段の堰を除いて上方の堰の溢流を受入れる手段を有
する特許請求の範囲第3項記載の冷媒蒸気圧縮式塩水蒸
溜装置。
(4) The weir installed at the inlet of the horizontal heat transfer tube bundle of the refrigerant condenser is
4. A refrigerant vapor compression brine distillation apparatus according to claim 3, further comprising means for receiving overflow from upper weirs except for the uppermost weir.
(5)塩水の薄膜蒸発は、冷媒凝縮器管束に塩水を散布
させて行う特許請求の範囲第1項記載の冷媒蒸気圧縮式
塩水蒸溜方法。
(5) The refrigerant vapor compression type salt water distillation method according to claim 1, wherein the thin film evaporation of the salt water is carried out by dispersing the salt water into the refrigerant condenser tube bundle.
(6)塩水の薄膜蒸発手段は冷媒凝縮器に水平伝熱管束
を用い、該水平伝熱管束上方に塩水散布装置を臨ませた
特許請求の範囲第2項記載の冷媒蒸気圧縮式塩水蒸溜装
置。
(6) The refrigerant vapor compression type salt water distillation apparatus according to claim 2, wherein the thin film evaporation means for salt water uses a horizontal heat transfer tube bundle in the refrigerant condenser, and a salt water spraying device faces above the horizontal heat transfer tube bundle. .
(7)塩水の薄膜蒸発手段は冷媒凝縮器に垂直伝熱管束
を用いて薄膜蒸発させた特許請求の範囲第2項記載の冷
媒蒸気圧縮式塩水蒸溜装置。
(7) The refrigerant vapor compression salt water distillation apparatus according to claim 2, wherein the thin film evaporation means for salt water is a refrigerant condenser that uses a vertical heat exchanger tube bundle to perform thin film evaporation.
(8)冷媒凝縮器は複数の水平伝熱管束を直列多折流配
列とした特許請求の範囲第2項第6項記載の冷媒蒸気圧
縮式塩水蒸溜装置。
(8) The refrigerant vapor compression salt water distillation apparatus according to claim 2, wherein the refrigerant condenser has a plurality of horizontal heat transfer tube bundles arranged in series with multi-fold flow.
(9)冷媒凝縮器の最終管束に通じる空気抜管を冷媒蒸
発器管束に連絡した特許請求の範囲第2項記載の冷媒蒸
気圧縮式塩水蒸溜装置。
(9) A refrigerant vapor compression brine distillation apparatus according to claim 2, wherein the air vent pipe leading to the final tube bundle of the refrigerant condenser is connected to the refrigerant evaporator tube bundle.
(10)冷媒圧縮機は遠心ブロア式圧縮機である特許請
求の範囲第2項記載の冷媒蒸気圧縮式塩水蒸溜装置。
(10) The refrigerant vapor compression type salt water distillation apparatus according to claim 2, wherein the refrigerant compressor is a centrifugal blower type compressor.
(11)冷媒はR−113低圧冷媒である特許請求の範
囲第1項、第2項記載の冷媒蒸気圧縮式塩水蒸溜方法お
よび装置。
(11) A refrigerant vapor compression salt water distillation method and apparatus according to claims 1 and 2, wherein the refrigerant is an R-113 low-pressure refrigerant.
JP14022584A 1984-07-05 1984-07-05 Method and device for distillation of salt water basing on coolant vapor compression system Pending JPS6118490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14022584A JPS6118490A (en) 1984-07-05 1984-07-05 Method and device for distillation of salt water basing on coolant vapor compression system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14022584A JPS6118490A (en) 1984-07-05 1984-07-05 Method and device for distillation of salt water basing on coolant vapor compression system

Publications (1)

Publication Number Publication Date
JPS6118490A true JPS6118490A (en) 1986-01-27

Family

ID=15263814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14022584A Pending JPS6118490A (en) 1984-07-05 1984-07-05 Method and device for distillation of salt water basing on coolant vapor compression system

Country Status (1)

Country Link
JP (1) JPS6118490A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999052827A1 (en) * 1998-04-14 1999-10-21 Mikio Kinoshita Device and method for desalinating salt water and method of producing carbon dioxide exhausting means
KR100492928B1 (en) * 2004-04-09 2005-06-02 장동현 Apparatus for processing waste water using heat-pump system
JP2015515601A (en) * 2012-04-23 2015-05-28 ダイキン アプライド アメリカズ インコーポレィティッド Heat exchanger
CN109231327A (en) * 2018-10-29 2019-01-18 山东大学 A kind of loop circuit heat pipe seawater desalination system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999052827A1 (en) * 1998-04-14 1999-10-21 Mikio Kinoshita Device and method for desalinating salt water and method of producing carbon dioxide exhausting means
KR100492928B1 (en) * 2004-04-09 2005-06-02 장동현 Apparatus for processing waste water using heat-pump system
JP2015515601A (en) * 2012-04-23 2015-05-28 ダイキン アプライド アメリカズ インコーポレィティッド Heat exchanger
CN109231327A (en) * 2018-10-29 2019-01-18 山东大学 A kind of loop circuit heat pipe seawater desalination system
CN109231327B (en) * 2018-10-29 2020-02-21 山东大学 Loop heat pipe seawater desalination system

Similar Documents

Publication Publication Date Title
US3248305A (en) Fresh water recovery system
US3834133A (en) Direct contact condenser having an air removal system
US5096543A (en) Carrier gas apparatus for evaporation and condensation
CN201261726Y (en) Novel efficient heat pump sea water desalting apparatus
US3875017A (en) Multi-stage thin film evaporator having a helical vapor flow path
JP2713451B2 (en) Low pressure distillation equipment
CN211536587U (en) Rectification equipment
US3155600A (en) Multi-stage process and apparatus for distilling sea water
US4181577A (en) Refrigeration type water desalinisation units
US4226089A (en) Waste heat recovery device
CN109173309A (en) A kind of MVR thermal concentration circulating and evaporating system
US6178293B1 (en) Method and an apparatus for improving heat transfer
US2570212A (en) Milk evaporation process
JPS6118490A (en) Method and device for distillation of salt water basing on coolant vapor compression system
US3558439A (en) Water desalting process and apparatus
JP3425082B2 (en) Aqueous concentrator for aqueous solution
US4490993A (en) Condensing apparatus and method
US2025724A (en) clendenin
JPH0549802A (en) Can effective in horizontal vaporizing device by plate heat exchanger of irregular surface type
JPS6314674B2 (en)
JPH04244565A (en) Condenser
US2570210A (en) Evaporation method and apparatus
JPS5821554B2 (en) distillation equipment
GB686375A (en) Improvements in or relating to a process and apparatus for evaporating liquids
TWI834895B (en) Process for distilling a crude composition in a rectification plant including an indirect heat pump and a rectification plant