JPS5821554B2 - distillation equipment - Google Patents

distillation equipment

Info

Publication number
JPS5821554B2
JPS5821554B2 JP54142278A JP14227879A JPS5821554B2 JP S5821554 B2 JPS5821554 B2 JP S5821554B2 JP 54142278 A JP54142278 A JP 54142278A JP 14227879 A JP14227879 A JP 14227879A JP S5821554 B2 JPS5821554 B2 JP S5821554B2
Authority
JP
Japan
Prior art keywords
water
conduit
evaporator
heat
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54142278A
Other languages
Japanese (ja)
Other versions
JPS5684680A (en
Inventor
佐藤根弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP54142278A priority Critical patent/JPS5821554B2/en
Publication of JPS5684680A publication Critical patent/JPS5684680A/en
Publication of JPS5821554B2 publication Critical patent/JPS5821554B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】 本発明は主として海水あるいはかん水よりの淡水を得る
太陽熱利用の蒸溜装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention mainly relates to a distillation apparatus using solar heat to obtain fresh water from seawater or brine.

従来、太陽熱利用による蒸溜装置として種々のものが知
られている。
Conventionally, various types of distillation apparatuses that utilize solar heat have been known.

特に海水またはかん水よりの蒸溜装置としては、太陽熱
エネルギーを吸収するための集熱器(コレクター)から
出た熱水を多段フラッシュ法または多重効用法に導入し
て海水を加熱蒸溜する方法が一般的であった。
In particular, for seawater or brine distillation equipment, the most common method is to introduce hot water from a collector to absorb solar energy into a multi-stage flash method or multiple effect method to heat and distill seawater. Met.

しかしこの方法によると、多段フラッシュ法または多重
効用法などの蒸溜水1kgあたりの加熱量が大きく、集
熱器面積を太き(する必要があり、必ずしも経済的に蒸
溜水を得ることができなかった。
However, according to this method, the amount of heating per 1 kg of distilled water is large, such as the multi-stage flash method or the multiple effect method, and the area of the collector needs to be large, so it is not necessarily possible to obtain distilled water economically. Ta.

本発明はこれらの欠点を取除き、熱効率良(コンパクト
な装置により蒸溜水を得る蒸溜装置を提供するものであ
る。
The present invention eliminates these drawbacks and provides a distillation apparatus that obtains distilled water using a compact apparatus with high thermal efficiency.

以下、本発明の一実施例を図面に基づいて説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

1は蒸発器で、上部水室2と下部ブライン溜3、ならび
に両者を連通ずる堅管式蒸発伝熱管4とを有し、この蒸
発伝熱管4の上部に分布ノズル5を設けると共に加熱室
6の下側部に生産水溜7を設け、さらに下部ブライン溜
3の上側部に、デミスタ−8を有する蒸発器気液分離器
9を設けている。
Reference numeral 1 denotes an evaporator, which has an upper water chamber 2, a lower brine reservoir 3, and a hard tube type evaporative heat transfer tube 4 that communicates the two.A distribution nozzle 5 is provided above the evaporative heat transfer tube 4, and a heating chamber 6. A production water reservoir 7 is provided on the lower side of the lower brine reservoir 3, and an evaporator gas-liquid separator 9 having a demister 8 is further provided on the upper side of the lower brine reservoir 3.

10は吸込口11、ディフューザー12、インペラー1
3などにより形成される回転式の蒸気圧縮機で、その蒸
気入口である吸込口11は導管14を介して前記気液分
離器9に連通し、また蒸気出口であるディフューザー1
2は導管15を介して前記加熱室6に連通ずる。
10 is suction port 11, diffuser 12, impeller 1
3, etc., a suction port 11 serving as a vapor inlet communicates with the gas-liquid separator 9 via a conduit 14, and a diffuser 1 serving as a vapor outlet.
2 communicates with the heating chamber 6 via a conduit 15.

前記インペラー13と共通の回転軸16にガスタービン
17が設けられ、また回転軸16は軸受18に支持され
ている。
A gas turbine 17 is provided on a rotating shaft 16 common to the impeller 13, and the rotating shaft 16 is supported by a bearing 18.

19はシェルアンドチューブ式あるいは一プレート式ま
たは多段フラッシュ式の三液式熱交換器で、原水(海水
など)20が原水供給ポンプ21により導管22を介し
て供給、され、また導管22には、スケール抑制のため
の薬液注入ポンプ23からの導管24が接続する。
Reference numeral 19 denotes a shell-and-tube type, one-plate type, or multi-stage flash type three-component heat exchanger, into which raw water (seawater, etc.) 20 is supplied via a conduit 22 by a raw water supply pump 21, and the conduit 22 has: A conduit 24 from a chemical injection pump 23 for scale suppression is connected.

三液式熱交換器19からの原水20は導管27を介して
ベントコンデンサー(原水中に含まれている非凝縮性ガ
スを分離する)28に至り、このベントコンデンサー2
8からの導管29は、途中に供給原水の加熱装置の一例
である給水加熱器30を有する導管31を介して上部水
室2に連通ずる。
The raw water 20 from the three-component heat exchanger 19 passes through a conduit 27 to a vent condenser 28 (separating non-condensable gases contained in the raw water);
A conduit 29 from 8 communicates with the upper water chamber 2 via a conduit 31 having a feed water heater 30, which is an example of a heating device for feed raw water, in the middle.

前記下部ブライン溜3は導管32を介してブライン排出
兼循環ポンプ33に連通し、さらに゛導管34を介して
前記導管31に連通ずる。
The lower brine reservoir 3 communicates via a conduit 32 with a brine discharge and circulation pump 33 and further communicates with the conduit 31 via a conduit 34.

前記導管34中の上手には下部ブライン溜3のブライン
(凝縮水)35量の検出により制御される液面調整弁3
6が設けられ、さらに下手には流量調整弁31が設けら
れる。
At the upper end of the conduit 34 is a liquid level adjustment valve 3 which is controlled by detecting the amount of brine (condensed water) 35 in the lower brine reservoir 3.
6 is provided, and further downstream a flow rate regulating valve 31 is provided.

両弁36.37間から導管38が分岐され、前記三液式
熱交換器19を通ってブライン35が排出されるべ(構
成しである。
A conduit 38 is branched from between the two valves 36 and 37, and the brine 35 is discharged through the three-component heat exchanger 19.

前記生産水溜7は導管40を介して蒸溜水ポンプ41に
連通し、さらに導管42を介して三液式熱交換器19に
送込まれ、ここを通って生産水43が取得されるように
構成しである。
The product water reservoir 7 is configured to communicate with a distilled water pump 41 via a conduit 40, and further to be sent to a three-component heat exchanger 19 via a conduit 42, through which product water 43 is obtained. It is.

前記加熱室6には開口部44が設けられ、この開口部4
4は導管45を介して前記ベントコンデンサー28に連
通ずる。
The heating chamber 6 is provided with an opening 44, and this opening 4
4 communicates with the vent condenser 28 via a conduit 45.

46はベント管を示す。46 indicates a vent pipe.

前記ガスタービン17は蒸気圧縮、機10の原動機とな
るもので、閉回路47を流れるフロンガスなどの冷媒ガ
スにより駆動される。
The gas turbine 17 is a vapor compressor and serves as the prime mover of the machine 10, and is driven by refrigerant gas such as fluorocarbon gas flowing through a closed circuit 47.

そして閉回路47には、ガスタービン17の出口側から
順に、冷却水48が通される冷媒ガス凝縮用コンデンサ
ー49と、冷媒液コンデンヒートポンプ50とが設けら
れ、そして熱交換器51を通る。
The closed circuit 47 is provided with, in order from the exit side of the gas turbine 17, a refrigerant gas condensing condenser 49 through which the cooling water 48 is passed, a refrigerant liquid condensation heat pump 50, and a heat exchanger 51.

52は太陽熱コレクター(集熱器)で、その太陽熱吸収
系の閉回路53中には、循環水が太陽熱の輻射量の変化
により膨張収縮する変化量を吸収するための蓄熱器兼用
の膨張タンク54と温水循環ポンプ55とが設けられ、
そして前記熱交換器51を通る。
52 is a solar heat collector (heat collector), and in the closed circuit 53 of the solar heat absorption system, there is an expansion tank 54 which also serves as a heat storage for absorbing the amount of expansion and contraction of circulating water due to changes in the amount of solar heat radiation. and a hot water circulation pump 55,
Then, it passes through the heat exchanger 51.

56は閉回路53におげろ熱交換器51の上手と前記給
水加熱器30とを連通ずる供給導管、57は給水加熱器
30と熱交換器51の下手とを連通ずる排出導管である
Reference numeral 56 designates a supply conduit that communicates the upper end of the heat exchanger 51 and the feed water heater 30 to the closed circuit 53, and 57 represents a discharge conduit that communicates the lower end of the feed water heater 30 and the heat exchanger 51.

以下、本装置の機能を説明する。The functions of this device will be explained below.

吸上げられた原水20は原水供給ポンプ21により導管
22に供給され、この導管22の途中でスケール抑制剤
注入ポンプ23からスケール抑制薬液を注入された後、
三液式熱交換器19に入り、蒸発器1よりのブライン3
5および生産水43と熱交換して加熱される。
The raw water 20 that has been sucked up is supplied to a conduit 22 by a raw water supply pump 21, and a scale inhibitor solution is injected from a scale inhibitor injection pump 23 in the middle of this conduit 22, and then
The brine 3 from the evaporator 1 enters the three-component heat exchanger 19.
5 and produced water 43 to be heated.

そして原水20は、非凝縮性ガスを分離するベントコン
デンサー28を通り、さらに導管29.31を介しての
流動中に、給水加熱器30において太陽熱により加熱さ
れたのち、蒸発器1の上部水室2に入る。
The raw water 20 then passes through a vent condenser 28 separating non-condensable gases and, during its flow through conduits 29.31, is heated by solar heat in a feed water heater 30 before being heated in the upper water chamber of the evaporator 1. Enter 2.

蒸発器1の内側には複数個の堅管式蒸発伝熱管4が装備
され、各蒸発伝熱管4の上部には原水20を均一に分布
する分布ノズル5が設置されており、原水20は堅管式
蒸発伝熱管内壁を薄膜状に流下し、下部ブライン溜3に
落下する。
The inside of the evaporator 1 is equipped with a plurality of hard tube type evaporative heat transfer tubes 4, and a distribution nozzle 5 is installed above each evaporative heat transfer tube 4 to uniformly distribute the raw water 20. It flows down the inner wall of the tubular evaporation heat transfer tube in the form of a thin film and falls into the lower brine reservoir 3.

蒸発器1の起動時には、太陽熱コレクター52により加
熱させた熱水を供給導管56ならびに排出導管57を介
して給水加熱器30に通して原水20を加熱し、分布ノ
ズル5によりフラッシュ蒸発させる。
When the evaporator 1 is started, the hot water heated by the solar collector 52 is passed through the feed water heater 30 through the supply conduit 56 and the discharge conduit 57 to heat the raw water 20, and is flash-evaporated by the distribution nozzle 5.

フラッシュして発生した蒸気は下部ブライン溜3より気
液分離器9内に設置されたデミスタ−8を通って該デミ
スタ−8にて気液分離され、蒸気および非凝縮性ガスの
み導管14を経て蒸気圧縮機10の吸込口11へ吸引さ
れる。
The steam generated by flashing passes from the lower brine reservoir 3 through a demister 8 installed in a gas-liquid separator 9, and is separated into gas and liquid by the demister 8, and only the steam and non-condensable gas are passed through the conduit 14. It is sucked into the suction port 11 of the vapor compressor 10.

このとき閉回路47においては、コンデンサー49によ
り凝縮された冷媒液がコンデンヒートポンプ50により
循環され、熱交換器51に入って高温高圧ガスとなって
再びタービン17に入り仕事をする。
At this time, in the closed circuit 47, the refrigerant liquid condensed by the condenser 49 is circulated by the condenser heat pump 50, enters the heat exchanger 51, becomes high temperature and high pressure gas, enters the turbine 17 again, and performs work.

このように太陽熱により高温、高圧となった冷媒蒸気に
よりタービン17が働き、蒸気圧縮機10が駆動される
The turbine 17 is operated by the refrigerant vapor which has become high temperature and high pressure due to solar heat, and the vapor compressor 10 is driven.

したがって蒸発器1により発生した蒸気は蒸気圧縮機1
0により断熱圧縮され、該蒸発器1にて蒸発した蒸気よ
りも高温高圧の蒸気となり、加熱室6に導入される。
Therefore, the vapor generated by the evaporator 1 is transferred to the vapor compressor 1
The vapor is adiabatically compressed by the vaporizer 1 and becomes vapor at a higher temperature and pressure than the vapor evaporated in the evaporator 1, and is introduced into the heating chamber 6.

この高圧高温になった蒸気は蒸発器1の加熱蒸気として
加熱室6において伝熱管内壁に沿って流れる原水20お
よびそのブラインを加熱しその一部を蒸発させて蒸気と
する。
This high-pressure, high-temperature steam is used as heated steam in the evaporator 1 to heat the raw water 20 and its brine flowing along the inner wall of the heat exchanger tube in the heating chamber 6, and evaporates a portion of it to form steam.

加熱蒸気は凝縮して蒸溜水、すなわち生産水43となる
The heated steam is condensed and becomes distilled water, that is, produced water 43.

蒸気および蒸発しない残留のブラインは蒸発伝熱管4の
内部を通って下部ブライン溜3に入る。
The steam and unevaporated residual brine pass through the interior of the evaporative heat transfer tubes 4 and enter the lower brine reservoir 3.

そして蒸気は前述したように、気液分離機9などを通っ
て蒸気圧縮器10へと流入する。
Then, as described above, the steam flows into the vapor compressor 10 through the gas-liquid separator 9 and the like.

下部ブライン溜3のブライン35はブラインポンプ33
により一部を三液式熱交換器19を経て排出し、残りの
一部は流量調整弁37を通って新規の原水20と混合さ
れ、導管31を経て蒸発器1に循環される。
The brine 35 in the lower brine reservoir 3 is supplied to the brine pump 33.
A portion is discharged through the three-component heat exchanger 19, and the remaining portion is mixed with fresh raw water 20 through the flow rate regulating valve 37 and circulated through the conduit 31 to the evaporator 1.

その際に下位ブライン溜3の水位は液面調整弁36によ
り一定に保持される。
At this time, the water level in the lower brine reservoir 3 is kept constant by the liquid level adjustment valve 36.

加熱室6における凝縮により生じた生産水43は生産水
溜7に集められる。
Product water 43 generated by condensation in heating chamber 6 is collected in product water reservoir 7 .

そして導管40、蒸溜水ポンプ41により排出され、導
管42を通って三液式熱交換器19に入る。
It is then discharged through conduit 40 and distilled water pump 41 and enters three-component heat exchanger 19 through conduit 42.

このように三液式熱交換器19に入った生産水43およ
び前述したブライン35は熱交換により原水20を加熱
する。
The produced water 43 and the aforementioned brine 35 that have entered the three-component heat exchanger 19 in this way heat the raw water 20 by heat exchange.

前記加熱室6にある非凝縮性ガスは開口部44および導
管45を通ってベントコンデンサー28に入り、ベント
管46より空気中に放出される。
The non-condensable gas present in the heating chamber 6 enters the vent condenser 28 through the opening 44 and the conduit 45 and is discharged into the air via the vent pipe 46.

両開回路47.53を1つにまとめて熱交換器51を省
略し、循環水の代りに冷媒液を直接循環させてもよい。
Both open circuits 47 and 53 may be combined into one, the heat exchanger 51 may be omitted, and refrigerant liquid may be directly circulated instead of circulating water.

以上に説明したように本発明による太陽熱利用の蒸溜装
置では、太陽熱エネルギーをタービンによる運動エネル
ギーに変え蒸気圧縮機を駆動し、蒸気圧縮式蒸溜装置を
作動せしめる。
As explained above, in the solar heat-utilizing distillation apparatus according to the present invention, solar thermal energy is converted into kinetic energy by a turbine to drive a vapor compressor, thereby operating a vapor compression type distillation apparatus.

このような本発明と従来の太陽熱利用の多段フラッシュ
法または多重効用法との組合せによる脱塩装置と以下に
比較すると、 (A) 従来の太陽熱利用による多段フラッシュ法ま
たは多重効用法では蒸溜水1kgに要する熱量が56K
ca1以上となる。
A comparison of the desalination equipment using the combination of the present invention and the conventional multi-stage flash method or multi-effect method using solar heat as follows: (A) In the conventional multi-stage flash method or multi-effect method using solar heat, 1 kg of distilled water The amount of heat required for is 56K
ca1 or more.

(B) 本発明の太陽熱利用の蒸気圧縮式蒸溜装置で
は、タービン効率60%として蒸溜水1kgに要する熱
量は約25 Kcalとなる。
(B) In the solar heat-utilizing steam compression distillation apparatus of the present invention, the amount of heat required for 1 kg of distilled water is approximately 25 Kcal when the turbine efficiency is 60%.

したがって本発明では半分以下のコレクター面積で良(
経済的に蒸溜水を得ることができる。
Therefore, in the present invention, the collector area can be reduced by less than half (
Distilled water can be obtained economically.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すプロセスフローシートで
ある。 1・・・・・・蒸発器、4・・・・・・蒸発伝熱管、6
・・・・・・加熱室、9・・・・・・蒸発器気液分離器
、10・・・・・・回転式蒸気圧縮機、11・・・・・
・吸込口、12・・・・・・ディフューザー、13・・
・・・・インペラー、16・・・・・・回転軸、17・
・・・・・ガスタービン、19・・・・・・三液式熱交
換器、20・・・・・・原水、23・・・・・・薬液注
入ポンプ、30・・・・・・給水加熱器、35・・・・
・・ブライン、43・・・・・・生産水、47.53・
・・・・・閉回路、49・・・・・・冷媒ガス凝縮用コ
ンデンサー、50・・・”’冷媒液コンデンヒートポン
プ、51・・・・・・熱交換器、52・・・・・・太陽
熱コレクター(集熱器)。
The drawing is a process flow sheet showing one embodiment of the present invention. 1...Evaporator, 4...Evaporation heat transfer tube, 6
... Heating chamber, 9 ... Evaporator gas-liquid separator, 10 ... Rotary vapor compressor, 11 ...
・Suction port, 12... Diffuser, 13...
... Impeller, 16 ... Rotating shaft, 17.
... Gas turbine, 19 ... Three-component heat exchanger, 20 ... Raw water, 23 ... Chemical injection pump, 30 ... Water supply Heater, 35...
...Brine, 43...Produced water, 47.53.
...Closed circuit, 49...Condenser for refrigerant gas condensation, 50...'' Refrigerant liquid condensation heat pump, 51... Heat exchanger, 52... Solar heat collector (heat collector).

Claims (1)

【特許請求の範囲】[Claims] 1 蒸気圧縮機により蒸発器からの発生蒸気を圧縮して
高温高圧蒸気としたのち該蒸発器に加熱蒸気として供給
し、前記蒸発器において高温高圧蒸気と原水との熱交換
によりこの原水の二部を蒸発させると共に加熱蒸気は凝
縮するべく構成した蒸溜装置において、前記蒸気圧縮機
に連動するタービンを設け、このタービンを集熱器にて
吸収した太陽熱エネルギーにより駆動すべ(構成すると
共に、この太陽熱エネルギーの1部により前記蒸発器に
供給する前の原水を加熱すべく構成したことを特徴とす
る蒸溜装置。
1 The steam generated from the evaporator is compressed into high-temperature, high-pressure steam using a vapor compressor, and then supplied to the evaporator as heated steam, and in the evaporator, two parts of the raw water are converted by heat exchange between the high-temperature, high-pressure steam and the raw water. In a distillation apparatus configured to evaporate water and condense heated steam, a turbine is provided which is linked to the vapor compressor, and this turbine is driven by solar thermal energy absorbed by a collector. A distillation apparatus characterized in that the distillation apparatus is configured to heat raw water before being supplied to the evaporator by a portion of the water.
JP54142278A 1979-11-02 1979-11-02 distillation equipment Expired JPS5821554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54142278A JPS5821554B2 (en) 1979-11-02 1979-11-02 distillation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54142278A JPS5821554B2 (en) 1979-11-02 1979-11-02 distillation equipment

Publications (2)

Publication Number Publication Date
JPS5684680A JPS5684680A (en) 1981-07-10
JPS5821554B2 true JPS5821554B2 (en) 1983-04-30

Family

ID=15311636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54142278A Expired JPS5821554B2 (en) 1979-11-02 1979-11-02 distillation equipment

Country Status (1)

Country Link
JP (1) JPS5821554B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601326A (en) * 2013-08-15 2014-02-26 四川东联新能源科技有限公司 Solar energy seawater desalination system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE509928C2 (en) * 1997-09-23 1999-03-22 Hvr Water Purification Ab Apparatus for extracting pure water from raw water
KR20010106805A (en) * 2000-05-23 2001-12-07 손재익 Desalination system with Mechanica l Vapor Recompression
JP6397300B2 (en) * 2014-10-09 2018-09-26 株式会社大川原製作所 Concentration system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146741A (en) * 1974-05-20 1975-11-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146741A (en) * 1974-05-20 1975-11-25

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601326A (en) * 2013-08-15 2014-02-26 四川东联新能源科技有限公司 Solar energy seawater desalination system
CN103601326B (en) * 2013-08-15 2015-08-05 四川东联新能源科技有限公司 Solar seawater desalination system

Also Published As

Publication number Publication date
JPS5684680A (en) 1981-07-10

Similar Documents

Publication Publication Date Title
US3248305A (en) Fresh water recovery system
EP0933331B1 (en) Evaporative concentration apparatus for waste water
US2441361A (en) Vapor compression still with liquid level cutoff
JP2713451B2 (en) Low pressure distillation equipment
US3725209A (en) Centrifugal distillation system
US4282070A (en) Energy conversion method with water recovery
EA004968B1 (en) Process and plant for multi-stage desalination of water
US2777514A (en) Method and apparatus for concentrating liquids
RU2695209C1 (en) Apparatus for regenerating an aqueous solution of methanol
US5417084A (en) Vacuum concentrating plant
US4181577A (en) Refrigeration type water desalinisation units
CN106196727A (en) A kind of heat pump and operation method thereof
US3300392A (en) Vacuum distillation including predegasification of distilland
US4082616A (en) Vapor compression distiller
CN113398609A (en) Steam circulation heat supply evaporation equipment
CN109173309A (en) A kind of MVR thermal concentration circulating and evaporating system
CN109824107B (en) Power plant wastewater evaporation treatment method and wastewater evaporation treatment system thereof
JPS5821554B2 (en) distillation equipment
US3154930A (en) Refrigeration apparatus
US3252501A (en) Tubular evaporator of the external film type
US2025724A (en) clendenin
TW202322882A (en) Separating tower for treating condensed water and method thereof
RU2090512C1 (en) Installation for distilling liquids and evaporating solutions
CN105423623B (en) The sewage water heating heat pump of alternative large-scale heating boiler
CN210030094U (en) Power plant wastewater evaporation treatment system