JPS63145902A - Eddy current type eccentricity measuring apparatus - Google Patents

Eddy current type eccentricity measuring apparatus

Info

Publication number
JPS63145902A
JPS63145902A JP29322186A JP29322186A JPS63145902A JP S63145902 A JPS63145902 A JP S63145902A JP 29322186 A JP29322186 A JP 29322186A JP 29322186 A JP29322186 A JP 29322186A JP S63145902 A JPS63145902 A JP S63145902A
Authority
JP
Japan
Prior art keywords
phase
eddy current
generator
frequency
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29322186A
Other languages
Japanese (ja)
Inventor
Mitsuo Yoshida
吉田 三男
Kazutomi Tomita
一臣 富田
Shoji Hayashibe
林部 昭治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HARA DENSHI SOKKI KK
Nippon Steel Corp
Eddio Corp
Original Assignee
HARA DENSHI SOKKI KK
Nippon Steel Corp
Eddio Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HARA DENSHI SOKKI KK, Nippon Steel Corp, Eddio Corp filed Critical HARA DENSHI SOKKI KK
Priority to JP29322186A priority Critical patent/JPS63145902A/en
Publication of JPS63145902A publication Critical patent/JPS63145902A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable measurement of material to be inspected even at a high temperature, by electrically rotating a high frequency detection frequency using a rotary magnetic field caused by a low frequency to induce an eddy current. CONSTITUTION:A low frequency 3-phase AC from a 3-phase AC generator 2 is applied to balanced modulators 6a-6c to be modulated in balance by an output of a high frequency AC generator 5 and the results are applied into a rotary magnetic field generator 1 through respective phase amplifiers 7a-7c. An eddy current detection sensor 17 arranged on the inner wall of the generator 1 detects an eddy current generated around the radial direction of material to be inspected passed therethrough. One end of the sensor 17 is earthed while the other end thereof is connected to a phase detector 9 through an amplifier 8 to cancel the residual output thereof with a zero adjustment circuit 10. An output of a single-phase AC oscillator 3 phase shifted 11 is used as reference wave to phase defect 12 outputs produced subsequently. Thus, any material can be inspected only if it is conductive and the apparatus thus obtained is applicable to steel material with the magnetic property thereof lost at a high temperature or a nonmagnetic metal body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電磁気効果を利用した偏芯測定装置に係り、
特に長手方向移動をする熱間もしくは冷間状態の円筒管
または丸棒の偏芯量を非接触で瞬時に測定する装置に関
するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an eccentricity measuring device using electromagnetic effects,
In particular, it relates to a device that instantaneously measures the eccentricity of a hot or cold cylindrical tube or round bar that moves in the longitudinal direction without contact.

〔従来の技術〕[Conventional technology]

パイプや丸棒等の渦流探傷や超音波探傷においては、精
度の良い探傷を行うために、長手方向に移動するそれら
被検材の移動中に、検出センサ一部と被検材について芯
合せすることが重要である。
In eddy current flaw detection and ultrasonic flaw detection of pipes, round bars, etc., in order to perform accurate flaw detection, part of the detection sensor and the test material are aligned while the test material is moving in the longitudinal direction. This is very important.

例えば、小径管貫通渦流探傷装置の場合、エアーギャッ
プ(検出コイル半径と小径管半径との差)を通常2〜7
鶴に設定するが、探傷の信頼性を上げるため、例えば底
位置上下左右の感度差を3dB以内となるようにするた
めには、エアーギャップの変動量をエアーギャップ設定
値の約1/10、即ち0.2〜0.7鶴に芯合せする事
が必要である。
For example, in the case of a small diameter pipe penetrating eddy current flaw detection device, the air gap (difference between the detection coil radius and the small diameter pipe radius) is usually 2 to 7.
However, in order to increase the reliability of flaw detection, for example to keep the sensitivity difference between the top, bottom, left and right sides of the bottom position within 3 dB, the amount of air gap variation should be approximately 1/10 of the air gap setting value. That is, it is necessary to align the center to 0.2 to 0.7 points.

又、回転プローブ渦流探傷装置では、エアーギャップの
設定値は0.2〜0.5■lであるが、上下左右の感度
差を小さくするために、理想的には、エアーギャップの
1/20、即ち10〜25μmに芯合せする事が好まし
い。
In addition, in a rotating probe eddy current flaw detection device, the air gap setting value is 0.2 to 0.5 l, but ideally it is 1/20 of the air gap in order to reduce the difference in sensitivity between the top, bottom, left and right sides. , that is, it is preferable to align the centers to 10 to 25 μm.

これら探傷装置の芯合せ精度の確認は、貫通渦流探傷装
置では、探傷感度の再現性調査による帰納的判定、回転
プローブ渦流探傷装置ではギャップセンサーによる測定
が行われている。
To check the alignment accuracy of these flaw detection devices, in the case of penetrating eddy current flaw detection devices, inductive judgment is performed by investigating the reproducibility of flaw detection sensitivity, and in the case of rotary probe eddy current flaw detection devices, measurement is performed using a gap sensor.

又、特開昭61−181908にて提案されているよう
に、超音波センサーにより偏芯量を測定することが知ら
れている。
It is also known to measure eccentricity using an ultrasonic sensor, as proposed in Japanese Patent Laid-Open No. 61-181908.

更に、鉄鋼棒線分野では、圧延途中で冷却制御を行ない
、種々の有用な特性を有する材質を造り込む“インライ
ン高性能制御圧延”技術の確立が重要性を増している。
Furthermore, in the field of steel bars and wire rods, the establishment of "in-line high-performance controlled rolling" technology that controls cooling during rolling to create materials with various useful properties is becoming increasingly important.

制御圧延は、圧延機間に設置されたクーリングトラフに
より行なわれる。クーリングトラフでの冷却は、材料を
トラフのセンターに通し、材料の周方向から均等に水を
かける事により行われる。材料がトラフ内で偏芯すると
冷却水のかかり方が不均一となり、周、方向で材料の表
面温度がバラツク、いわゆる冷却ムラが発生する。この
ため、材料をトラフのセンターに精度良く合わせる事が
重要である。従来この芯合わせは、材料の公称寸法から
割り出した数値により行なわれ、芯合わせ精度が低いた
めに、時には前記冷却ムラが50〜80℃にも達する事
があった。
Controlled rolling is performed by cooling troughs installed between rolling mills. Cooling in the cooling trough is performed by passing the material through the center of the trough and spraying water evenly from the circumferential direction of the material. If the material is eccentric in the trough, the cooling water will be applied unevenly, and the surface temperature of the material will vary around the circumference and in the direction, resulting in so-called cooling unevenness. For this reason, it is important to accurately align the material to the center of the trough. Conventionally, this centering has been carried out using numerical values determined from the nominal dimensions of the materials, and due to the low centering accuracy, the cooling unevenness has sometimes reached 50 to 80°C.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

芯合せ精度の確認は、前述の様に、貫通渦流探傷装置で
は有効な測定手段がなく、又、回転プローブ渦流探傷装
置のギャップセンサーでは、(11被検材の移動が高速
である場合は、誤差が大きい。
As mentioned above, there is no effective measuring method for checking the alignment accuracy with a penetrating eddy current flaw detector, and the gap sensor of a rotating probe eddy current flaw detector cannot confirm alignment accuracy (11. The error is large.

(2)被検材とセンサーのギャップが大きくなると、測
定できない。
(2) If the gap between the material to be tested and the sensor becomes large, measurements cannot be made.

(3)偏芯量のオンライン監視や測定データの自動処理
には複雑な装置が必要である。
(3) Online monitoring of eccentricity and automatic processing of measurement data require complicated equipment.

等の欠点がある。There are drawbacks such as.

又、超音波センサーによる方法は、被検材が高温の時に
は測定出来ない問題がある。更にクーリングトラフ設備
の芯合せ精度の有効な測定手段がなく、数n程度の偏芯
はさけられなかった。
Furthermore, the method using an ultrasonic sensor has the problem that measurement cannot be performed when the material to be tested is at a high temperature. Furthermore, there is no effective means for measuring the alignment accuracy of cooling trough equipment, and eccentricity of several nanometers cannot be avoided.

本発明の目的は、長手方向移動をする熱間もしくは冷間
状態の円筒管又は丸棒等の被検材の移動状態における偏
芯量を測定する装置であって、非磁性体でも測定できる
ものであり、前記問題点を解決し、常時測定、監視が可
能であり、測定値の記録及び偏芯モニターも可能な簡易
な偏芯測定装置を提供する事にある。
An object of the present invention is to provide a device for measuring the amount of eccentricity in a moving state of a test material such as a hot or cold cylindrical tube or round bar moving in the longitudinal direction, which can also measure non-magnetic materials. The object of the present invention is to solve the above-mentioned problems and provide a simple eccentricity measuring device that is capable of constant measurement and monitoring, recording of measured values, and monitoring of eccentricity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、高周波交流で各相独立に平衡変調された低周
波多相交流を出力する電源回路と、該低周波多相交流で
励磁され、被検材を通される中空円筒状回転磁界発生器
と、該回転磁界発生器の円筒内壁に沿って円周方向にリ
ング状に配設された渦流検出センサーと、該渦流検出セ
ンサーの出力電圧を高周波交流で位相検波する検波器と
、該位相検波出力電圧から、検出器のアンバランス出力
電圧を打消すゼロ調回路と、該ゼロ調回路の出力電圧を
低周波交流で位相検波する検波器とから構成される事を
特徴とするものである。
The present invention relates to a power supply circuit that outputs low-frequency multiphase alternating current that is balanced and modulated independently for each phase using high-frequency alternating current, and a hollow cylindrical rotating magnetic field that is excited by the low-frequency multiphase alternating current and passes through a test material. an eddy current detection sensor disposed in a ring shape in the circumferential direction along the cylindrical inner wall of the rotating magnetic field generator; a detector that detects the phase of the output voltage of the eddy current detection sensor using high-frequency alternating current; It is characterized by comprising a zero adjustment circuit that cancels the unbalanced output voltage of the detector from the detected output voltage, and a detector that performs phase detection of the output voltage of the zero adjustment circuit using low frequency alternating current. .

以下、本発明の内容を図面に基づいて詳細に説明する。Hereinafter, the content of the present invention will be explained in detail based on the drawings.

第1図に本発明の実施例を示す。この図で1は回転磁界
発生器で、これは第2図に示すように巻線13.鉄心1
4.円筒状外側支持体15.内側絶縁内筒16を有し、
内側絶縁内筒16内にリング状の渦流検出センサー17
が収容される。巻線13は、この例では2π/3ずつ離
して置いた3組のコイルからなり、低周波の3相交流で
励磁されて回転磁界を発生するように形成されている。
FIG. 1 shows an embodiment of the present invention. In this figure, 1 is a rotating magnetic field generator, which has a winding 13. as shown in FIG. Iron core 1
4. Cylindrical outer support 15. has an inner insulating inner cylinder 16;
A ring-shaped eddy current detection sensor 17 is installed inside the inner insulating inner cylinder 16.
is accommodated. In this example, the winding 13 is composed of three sets of coils spaced apart by 2π/3, and is formed so as to be excited by low frequency three-phase alternating current to generate a rotating magnetic field.

3相交流発生器2は単相の低周波交流発振器3゜240
°位相シフト回路4a、および120”位相シフト回路
4bからなり、これらで互いに120°・ずつずれた3
相交流を発生する。使用周波数は10〜1.0OOHz
である。これらは平衡変調器6a、6b、5cに加えら
れ、高周波交流発生器、5が出力する前記3相交流より
はるかに高い周波数である10〜1.000K Hzで
平衡変調される。これらの3相平衡変調波が各和項幅器
7a、7b、7Cを介して回転磁界発生器1に加えられ
る。このようにして高周波交流発生器5による高周波磁
束の密度分布が低周波である3相交流の周波数で決まる
速度で回転することになる。
The three-phase AC generator 2 is a single-phase low-frequency AC oscillator 3°240
It consists of a 120" phase shift circuit 4a and a 120" phase shift circuit 4b.
Generates phase current. The frequency used is 10-1.0OOHz
It is. These are applied to balanced modulators 6a, 6b, 5c and balanced modulated at a frequency of 10 to 1.000 KHz, which is much higher than the three-phase AC outputted by high frequency AC generator 5. These three-phase balanced modulated waves are applied to the rotating magnetic field generator 1 via the sum term width filters 7a, 7b, and 7C. In this way, the density distribution of the high frequency magnetic flux generated by the high frequency AC generator 5 rotates at a speed determined by the frequency of the low frequency three-phase AC.

渦流検出センサー17は、被検材の半径方向を中心とし
て生ずる渦電流を検出できるものであればよく、例えば
第3図に示すように絶縁円筒16の内壁に沿って円周方
向にリング状に巻かれたコイルから形成されているが、
それは被検材の長手方向に2個分割されたコイルからな
り、その巻線方向が一方が逆方向であるように接続され
る。Aは被検材を示す。
The eddy current detection sensor 17 may be any sensor as long as it can detect eddy currents generated centering in the radial direction of the material to be tested. For example, as shown in FIG. It is formed from a wound coil,
It consists of two coils divided in the longitudinal direction of the material to be tested, and connected so that one winding direction is opposite to the other. A indicates the material to be tested.

第1図に示すように渦流検出センサー17の一端は接地
され、他端は増幅器8に接続される。この増幅器の出力
は、位相検波器9に入力され、高周波交流発生器5の出
力を基準波として位相検波される。検出コイルの出力電
圧は、被検体がない場合理想的には零になるが、実際に
は検出センサーの不揃のため残留出力があり、これがノ
イズとなるため、この残留出力信号を回転磁界と同一周
期で振幅および位相が可変の正弦波を発生するゼロ調回
路10で打消す。このゼロ調回路の出力は位相検eL器
12に入力され、低周波交流発振器3の出力を位相シフ
ト回路11で位相シフトしたものを基準波として位相検
波される。位相シフト回路11は、渦流検出センサー1
7内における被検材の移動方向と位相検波器12後の出
力(v=β、2 + 、、2 )が二次元平面で同一方
向となるように調整する機能を持つ。
As shown in FIG. 1, one end of the eddy current detection sensor 17 is grounded, and the other end is connected to the amplifier 8. The output of this amplifier is input to a phase detector 9, and phase-detected using the output of the high-frequency AC generator 5 as a reference wave. Ideally, the output voltage of the detection coil would be zero when there is no object to be detected, but in reality, due to the unevenness of the detection sensors, there is a residual output, which becomes noise, so this residual output signal is combined with the rotating magnetic field. This is canceled out by a zero adjustment circuit 10 that generates a sine wave with the same period and variable amplitude and phase. The output of this zero adjustment circuit is input to the phase detector eL device 12, and phase-detected using the output of the low-frequency AC oscillator 3 phase-shifted by the phase shift circuit 11 as a reference wave. The phase shift circuit 11 is connected to the eddy current detection sensor 1
It has a function of adjusting so that the moving direction of the material to be inspected in 7 and the output (v=β, 2 + , , 2 ) after the phase detector 12 are in the same direction on a two-dimensional plane.

第4図は、本発明装置による偏芯計測例を示す。FIG. 4 shows an example of eccentricity measurement by the apparatus of the present invention.

この場合、第4図(a)に示す様に、あらかじめ既知の
被検材を入れ、その半径をr、偏芯量をΔr。
In this case, as shown in FIG. 4(a), a known test material is placed in advance, its radius is r, and the eccentricity is Δr.

偏芯の向きをφとして、第1図で示す位相シフl−回路
11で偏芯の向きφと位相検波器12の出力電圧v (
v= f)]777匹−1よ= v cosφ、■y=
 v sinφ)の向きを同じ方向に調整しておくとよ
い。
Assuming that the direction of eccentricity is φ, the phase shift l-circuit 11 shown in FIG.
v = f)] 777 animals - 1 = v cosφ, ■y =
v sinφ) may be adjusted in the same direction.

実施例として、渦流検出センサーの内径6011φで、
外径1511φの被検材非磁性のステンレス丸鋼(SU
S304)に適用した場合について示す。その偏芯量を
計測した計測値(v V)を第4図(b)に、同様に検
出センサーの内径60φで、偏芯量を2.5111一定
にし、渦流被検材の外径を15鶴φ、20mmφ、25
龍φと変化させた時の計測値(vV)を第4図(C)に
示す。これらの結果から計測値(vV)と偏芯量(Δr
)、被検材(r)にはVOCΔr−rの関係がある。
As an example, the inner diameter of the eddy current detection sensor is 6011φ,
Test material non-magnetic stainless steel round steel (SU
A case in which the method is applied to step S304) will be described. The measured value (v V) of the amount of eccentricity is shown in Fig. 4(b). Similarly, the inner diameter of the detection sensor is 60φ, the amount of eccentricity is constant at 2.5111, and the outer diameter of the eddy current test material is 15. Crane φ, 20mmφ, 25
FIG. 4(C) shows the measured value (vV) when the voltage is changed to φ. From these results, the measured value (vV) and eccentricity (Δr
), the material to be tested (r) has a relationship of VOCΔr−r.

つまり、  vx=にΔr −r cosφ■y=にΔ
r −r sinφ と表現出来ることがわかる。従って、被検材の半径rは
既知であり、本発明装置でvx、V、を計測する事によ
り、偏芯量 (Δr)と偏芯の向き(φ)を知る事が出
来る。なお、この場合の回転磁界発生用の周波数は60
Hzであり高周波交流は32KHzを使用した。第5図
は、本発明装置を利用して偏芯モニターを構成した出力
例であり、簡易且つ連続的に偏芯量と向きを出力する事
ができる。尚、このデータは内径60鶴φの検出センサ
ー内に、外径15鶴φの被検材を511偏芯させて挿入
し、偏芯量5鶴を保ちつつ、偏芯の向き(φ)を0°か
ら10°間隔で360°まで変化させ、各(φ)におけ
る出力電圧vX、vyをX。
In other words, Δr −r cosφ■ y= Δr −r
It can be seen that it can be expressed as r −r sinφ. Therefore, the radius r of the material to be inspected is known, and by measuring vx and V with the device of the present invention, the amount of eccentricity (Δr) and the direction of eccentricity (φ) can be known. In addition, the frequency for generating the rotating magnetic field in this case is 60
Hz, and the high frequency alternating current used was 32 KHz. FIG. 5 is an output example of an eccentricity monitor configured using the device of the present invention, which allows the amount and direction of eccentricity to be output simply and continuously. In addition, this data is obtained by inserting a test material with an outer diameter of 15 φ into a detection sensor with an inner diameter of 60 φ, with an eccentricity of 511 mm, and changing the direction of eccentricity (φ) while maintaining an eccentricity of 5 φ. The output voltages vX and vy at each (φ) are changed from 0° to 360° at 10° intervals.

Yレコーダーで直接記録したものである。Bはその表示
点を示す。なお、本発明における上記説明において回転
磁界発生のため3相交流を使用することについて述べた
が、これに限定されるものではな(、回転磁界を形成す
る多相交流であればよい。
This was recorded directly with a Y recorder. B indicates the display point. In the above description of the present invention, it has been described that three-phase alternating current is used to generate a rotating magnetic field, but the present invention is not limited to this (it may be any polyphase alternating current that forms a rotating magnetic field).

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかな様に本発明の偏芯測定装置では
電磁気効果を利用し、励磁磁界は電気的に回転する方式
であり高速回転可能であるため、非接触で被検材が高温
であっても計測可能で、更に被検材が長手方向に高速移
動しても精度の良い二次元偏芯モニターを簡易に構成す
ることができる。
As is clear from the above explanation, the eccentricity measuring device of the present invention utilizes electromagnetic effects, and the excitation magnetic field is electrically rotated and can be rotated at high speed. Furthermore, it is possible to easily construct a two-dimensional eccentricity monitor that can be measured even when the specimen is moved at high speed in the longitudinal direction and has good accuracy.

本発明による場合は、低周波による回転磁界によって高
周波の検出周波が電気的に回転するように形成され、そ
れによって誘起される過電流による方式であるため、被
検材は導電性のある物体であればよく、高温の状態で磁
性が失なわれた鋼材や非磁性の金属体に通用できる。
In the case of the present invention, the high-frequency detection frequency is electrically rotated by a rotating magnetic field caused by a low frequency, and the overcurrent induced by this is used, so the material to be tested is a conductive object. It can be used for steel materials and non-magnetic metal materials that have lost their magnetism at high temperatures.

このようにして、検出された偏芯量は、各種探傷装置の
芯ずれ補正に通用でき、オンラインで行なう探傷精度を
高めることに有用である。また、圧延ラインでのオンラ
イン冷却を行なうクーリングトラフでの芯ずれ補正にも
活用できるものである。
The amount of eccentricity detected in this manner can be used for correcting misalignment of various flaw detection devices, and is useful for improving the precision of flaw detection performed online. It can also be used to correct misalignment in a cooling trough that performs online cooling in a rolling line.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の構成例を示す回路図、第2図は、回
転磁界発生器の説明で(8)は端面図、山)は側面図、
第3図は本発明にかかる検出センサーの説明図で(al
は正面図、申)は側面断面図、第4図(a)は検出セン
サーと被検材の偏芯関係の説明図、(b)。 (C)は実施例における検出センサーの出力を示す図表
、第5図は二次元偏芯モニターの出力例を示す図表であ
る。 1:回転磁界発生器、 2:3相交流発生器、3:低周
波交流発生器、 4a、4b:位相シフト回路、 5:
高周波交流発生器、 6a、6b。 6C:平衡変調器、 ?a、7b、1c:各相増幅器、
 8:増幅器、 9:位相検波器、10:ゼロ凋回路、
  11:位相シフト回路、12:位相検波器、 13
:巻線、 工4:鉄心、15:円筒状外側支持体、  
16;内側絶縁内筒、17:渦流検出センサー
Fig. 1 is a circuit diagram showing a configuration example of the present invention, Fig. 2 is an explanation of a rotating magnetic field generator, (8) is an end view, and (8) is a side view.
FIG. 3 is an explanatory diagram of the detection sensor according to the present invention (al
4(a) is a front view, FIG. 4(b) is a side sectional view, FIG. (C) is a chart showing the output of the detection sensor in the example, and FIG. 5 is a chart showing an example of the output of the two-dimensional eccentric monitor. 1: Rotating magnetic field generator, 2: 3-phase AC generator, 3: Low frequency AC generator, 4a, 4b: Phase shift circuit, 5:
High frequency alternating current generator, 6a, 6b. 6C: Balanced modulator, ? a, 7b, 1c: each phase amplifier,
8: Amplifier, 9: Phase detector, 10: Zero decay circuit,
11: Phase shift circuit, 12: Phase detector, 13
: Winding, Work 4: Iron core, 15: Cylindrical outer support,
16; Inner insulation inner cylinder, 17: Eddy current detection sensor

Claims (1)

【特許請求の範囲】 高周波交流で各相独立に平衡変調された低周波多相交流
を出力する電源回路と、 該低周波多相交流で励磁され、被検材を通される中空円
筒状の回転磁界発生器と、 該回転磁界発生器の円筒内壁に沿って円周方向にリング
状に配設された渦流検出センサーと該渦流検出センサー
の出力電圧を高周波交流で位相検波する検波器と、 該位相検波出力電圧から、渦流検出センサーのアンバラ
ンス出力電圧を打消すゼロ調回路と、該ゼロ調回路の出
力電圧を低周波交流で位相検波する検波器とから構成さ
れる事を特徴とする渦流式偏芯測定装置。
[Claims] A power supply circuit that outputs low-frequency multiphase alternating current that is balanced and modulated independently for each phase using high-frequency alternating current; a rotating magnetic field generator, an eddy current detection sensor disposed in a ring shape in the circumferential direction along the cylindrical inner wall of the rotating magnetic field generator, and a detector that detects the phase of the output voltage of the eddy current detection sensor using high frequency alternating current; It is characterized by comprising a zero adjustment circuit that cancels the unbalanced output voltage of the eddy current detection sensor from the phase detection output voltage, and a detector that performs phase detection of the output voltage of the zero adjustment circuit using low frequency alternating current. Eddy current eccentricity measuring device.
JP29322186A 1986-12-09 1986-12-09 Eddy current type eccentricity measuring apparatus Pending JPS63145902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29322186A JPS63145902A (en) 1986-12-09 1986-12-09 Eddy current type eccentricity measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29322186A JPS63145902A (en) 1986-12-09 1986-12-09 Eddy current type eccentricity measuring apparatus

Publications (1)

Publication Number Publication Date
JPS63145902A true JPS63145902A (en) 1988-06-18

Family

ID=17791989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29322186A Pending JPS63145902A (en) 1986-12-09 1986-12-09 Eddy current type eccentricity measuring apparatus

Country Status (1)

Country Link
JP (1) JPS63145902A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156565A (en) * 2003-11-26 2005-06-16 General Electric Co <Ge> Method and device for using eddy current transducer inside magnetic field
JP2019520577A (en) * 2016-06-30 2019-07-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Stator element and rotor element for rotation angle sensor and rotation angle sensor
CN115615310A (en) * 2022-12-06 2023-01-17 浙江图维科技股份有限公司 Method, equipment and system for detecting cable displacement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156565A (en) * 2003-11-26 2005-06-16 General Electric Co <Ge> Method and device for using eddy current transducer inside magnetic field
JP2019520577A (en) * 2016-06-30 2019-07-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Stator element and rotor element for rotation angle sensor and rotation angle sensor
CN115615310A (en) * 2022-12-06 2023-01-17 浙江图维科技股份有限公司 Method, equipment and system for detecting cable displacement

Similar Documents

Publication Publication Date Title
US3693075A (en) Eddy current system for testing tubes for defects,eccentricity,and wall thickness
US3359495A (en) Magnetic reaction testing apparatus and method of testing utilizing semiconductor means for magnetic field sensing of an eddy-current-reaction magnetic field
US8274276B2 (en) System and method for the non-destructive testing of elongate bodies and their weldbond joints
US4477776A (en) Apparatus and process for flux leakage testing using transverse and vectored magnetization
US6854336B2 (en) Measurement of stress in a ferromagnetic material
US3890564A (en) Apparatus for inducing eddy current in a semiconductor wafer for measuring the electric conductivity or resistivity thereof
JPH0854375A (en) Electromagnetic induction-type inspecting apparatus
US3944911A (en) Apparatus for magnetically detecting faults in metal bodies utilizing a multiphase generator to generate a rotating field in the body
KR102021563B1 (en) Nondestructive testing apparatus
JPS63145902A (en) Eddy current type eccentricity measuring apparatus
JPH07198770A (en) Improved probe device and method for measuring critical superconducting current in non-contacting state
JPH06242076A (en) Electromagnetic flaw detecting equipment
JP2005031014A (en) Magnetic sensor
JPH05203629A (en) Electromagnetic flaw detection and device
CA1122656A (en) Three phase eddy current instrument
JPS6011493Y2 (en) Electromagnetic induction detection device
JPS63145901A (en) Magnetic type eccentricity measuring apparatus
SU947407A1 (en) Apparatus for investigating casing strings in well
JPH07260743A (en) Flaw detector
JPH04268449A (en) Electromagnetic flaw detection
JPH03272484A (en) Diagnosing method of magnetometric device and magnetic flaw detector
SU1315888A1 (en) Method and apparatus for measuring coefficient of conductance anisotropy of non-magnetic materials
JP2509207Y2 (en) Eddy current flaw detector
JPS6021445A (en) Eddy current detecting apparatus
JP2663767B2 (en) Transformation rate measuring method and apparatus