JPS63144750A - Motor - Google Patents

Motor

Info

Publication number
JPS63144750A
JPS63144750A JP29301986A JP29301986A JPS63144750A JP S63144750 A JPS63144750 A JP S63144750A JP 29301986 A JP29301986 A JP 29301986A JP 29301986 A JP29301986 A JP 29301986A JP S63144750 A JPS63144750 A JP S63144750A
Authority
JP
Japan
Prior art keywords
armature
pole
rotor
stator
poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29301986A
Other languages
Japanese (ja)
Inventor
Isamu Takehara
勇 竹原
Tsutomu Osawa
勉 大沢
Shigeru Oki
茂 大木
Akihiro Yamamoto
山本 昭洋
Atsushi Osawa
大沢 敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON FUEROO FURUIDEIKUSU KK
Original Assignee
NIPPON FUEROO FURUIDEIKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON FUEROO FURUIDEIKUSU KK filed Critical NIPPON FUEROO FURUIDEIKUSU KK
Priority to JP29301986A priority Critical patent/JPS63144750A/en
Publication of JPS63144750A publication Critical patent/JPS63144750A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the output effectively by producing dislocation between poles and armature, and to generate the flux efficiently by eliminating the winding that straddle the slots. CONSTITUTION:A rotor 5 is to have 8 poles with a geometrical angle per pole pi/4. A stator 1 is arranged in combination of a wide armature covering the same central angle as the pole with a narrow armature covering a narrower central angle pi/6. To each armature of a stator 1 the current of three phases A, B and C is conducted for each 2pi/3. On this occasion, all the poles produce rightward rotating force where the pole N2 of a rotor 5 is repulsed by the armature pole NA and attracted to the armature pole SB. The pole S1 of the rotor 5 and the armature pole SA as well as the pole N1 of the rotor 5 and the armature pole NA are respectively situated at the neutral position, but the force will be produced rightwards if the rotor rotates rightwards even in a small degree.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はモータに関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a motor.

(用語について) 本明細書において、磁極とは永久磁石・電磁石等のよう
に一定の極性の磁界を生じさせる機械要素を言い、電機
子とは回転子、固定子を問わす有鉄芯・無鉄芯またはこ
れに代わるものにコイルを巻回して磁界を生じさせる機
械要素をいう。また磁界を生じさせるコイルであれば、
必要に応じ空芯のコイルを含むものとする。
(About terminology) In this specification, a magnetic pole refers to a mechanical element that generates a magnetic field of a certain polarity, such as a permanent magnet or an electromagnet, and an armature refers to a rotor or a stator, whether it is a ferrous core or a non-ferrous core. A mechanical element that generates a magnetic field by winding a coil around an iron core or something that replaces it. Also, if it is a coil that generates a magnetic field,
An air-core coil may be included if necessary.

また数個のコアをまとめて、これに1つのコイルを巻回
した電機子、および隣接する各コアにコイルを同一方向
に巻回した電機子のように、I磁極として機能するもの
は、それぞれ1個の電機子と看做す。
In addition, armatures that have several cores wrapped around one coil, and armatures that have coils wound around each adjacent core in the same direction, each function as an I magnetic pole. It is regarded as one armature.

磁極および電機子の占める中心角とは、各隣接する各機
械要素との境界から境界までの中心角を言い、各隣接す
る機械要素との間に空隙があるときは、その空隙の中心
から空隙の中心までの中心角をいう。但し電気的位相を
表す場合の表示は電気角であることはいうまでもない。
The central angle occupied by the magnetic pole and armature refers to the central angle from the boundary to each adjacent machine element, and when there is a gap between each adjacent machine element, from the center of the gap to the gap. The central angle to the center of However, it goes without saying that when expressing electrical phase, the expression is electrical angle.

また全節ピンチの電機子とは上記電機子の中心角が各磁
極の占める中心角とほぼ電機子を言う。
Furthermore, a full-section pinch armature means that the central angle of the armature is approximately the same as the central angle occupied by each magnetic pole.

(産業上の利用分野) 本発明はモータに関する。(Industrial application field) The present invention relates to a motor.

(従来技術) 従来のモータのうちの、固定子として電機子を用い、こ
れに交番電流を通電して各電機子の外側に見掛は上回転
状に変化する磁界を生じさせ、これによって磁極から成
る回転子を回転させるものにあっては、回転磁界を生じ
させるために、複数の電機子ポールを跨いで重ね巻きし
たコイルのそれぞれにそれぞれの相の電流を通電するに
うに構成するのが通常であった。
(Prior art) In a conventional motor, an armature is used as a stator, and an alternating current is passed through it to generate a magnetic field that changes in an apparent upward rotation shape on the outside of each armature. In a device that rotates a rotor consisting of a It was normal.

(発明が解決しようとする問題点) 上記のような従来のモータにあっては、上記のようにコ
イルの重ね巻き及び電機子ポールを跨いでコイルを巻回
しているため、ある瞬間についてみると1つの電機子ポ
ールの周囲を取り巻くコイルに互いに逆方向に同時に電
流が流れていることもあることと、各々のコイルは複数
の電機子ポールを跨いで巻回されるため、スロット跨線
部分のコイルが生じ、この部分は磁束発生に直接貢献し
ないで無駄に電流が流れていることになる、等の理由に
より、使用電力が充分回転力発生に貢献しているとは言
えなかった。
(Problems to be Solved by the Invention) In the conventional motor as described above, since the coils are wound overlappingly and the coils are wound across the armature pole as described above, when looking at a certain moment, Current may flow simultaneously in opposite directions to the coils surrounding one armature pole, and each coil is wound across multiple armature poles, so the slot-straddling portion For reasons such as a coil being generated and a current flowing in this part in vain without directly contributing to the generation of magnetic flux, it could not be said that the power used was sufficiently contributing to the generation of rotational force.

また、この問題を解決するため、1ポールlコイル巻き
に構成した電機子を用いたモータも見られるが、従来の
1ポール1コイル巻きの電機子を用いたモータは、短節
巻きのものだけであった。
In addition, to solve this problem, motors using armatures configured with one pole and one coil winding can be seen, but conventional motors using armatures with one pole and one coil winding are only short-pitch winding. Met.

これではコイルが短節巻きであるため、モータの重量に
比して充分な出力が得られず、またこれに通電範囲が1
40°等のものであって、各相の電流のうち、180°
に近い位相の電流または180°を僅かに超えた位相の
ときに通電すると、この電力はモータの回転を妨げ、ま
たは逆回転さこせる力となってしまう、等の欠点があっ
た。
In this case, the coil has short windings, so it is not possible to obtain sufficient output compared to the weight of the motor, and the energizing range is limited to 1.
40°, etc., and 180° of the current of each phase
If current is applied at a phase close to 180 degrees or a phase slightly exceeding 180 degrees, this electric power has the disadvantage that it becomes a force that prevents the motor from rotating or causes it to rotate in the opposite direction.

(問題点を解決するための手段及び作用)本発明は前記
のような欠点を除去し、1つのコイルには1つの相の電
流だけしか流さず、また1ポール1コイル巻きにしてス
ロットを跨いでコイルが巻回されることがないように構
成し、それでいながら、電機子は回転子を回転させる方
向の磁束を発生させ、且つ180°通電を可能にしたモ
ータを提供することを目的とするものであって、固定子
および回転子のうち、一方は全周360°を整数で等分
した中心角を占める磁極で構成し、他方については、前
記磁極の幅とほぼ同一の中心角を占める全部ピッチの広
幅電機子とこれよりも狭幅の短節ピッチの電機子とによ
って構成し、且つ180°通電で回転するように各電機
子のコイルを結線構成したものである。
(Means and effects for solving the problems) The present invention eliminates the above-mentioned drawbacks, allows only one phase current to flow through one coil, and winds one coil per pole to straddle the slot. The purpose of this invention is to provide a motor that is configured so that the coil is not wound around the armature, while the armature generates magnetic flux in the direction of rotating the rotor, and that enables 180° energization. Of the stator and rotor, one is composed of magnetic poles occupying a central angle obtained by equally dividing the entire circumference of 360° by an integer, and the other is composed of magnetic poles occupying a central angle that is approximately the same as the width of the magnetic poles. It is composed of a wide armature with a full pitch and an armature with a narrower short pitch, and the coils of each armature are connected so as to rotate by 180° energization.

(実施例) 以下本発明を図面に示す実施例に基づいて詳細に説明す
為。
(Example) The present invention will be described below in detail based on an example shown in the drawings.

第1図は本発明のモータの一実施例である3相8極モー
タの概念正面図である。但し、固定電機子のコイル4は
、現実は1ポール1コイル巻きに多数巻回しているが、
図面の繁雑をさけるため、コイルの巻数を各2回巻きで
示した。
FIG. 1 is a conceptual front view of a three-phase eight-pole motor which is an embodiment of the motor of the present invention. However, in reality, the coil 4 of the fixed armature is wound a large number of times in one coil per pole.
To avoid complication of the drawing, the number of turns of each coil is shown as two turns.

同図において、図示を省略したフレーム内に固定子1・
・・・・・と回転子5を配置し、固定子1・・・・・・
の外周を回転子5が回転するようにする。
In the figure, a stator 1 is placed in a frame (not shown).
...and rotor 5, and stator 1...
The rotor 5 is made to rotate around the outer periphery of the rotor 5.

回転子5の磁極の極数を幾個にするかは設計上選択する
ところであるが、ここでは8極を選択し、そのために当
該回転子5の内周面(幾何学角2π)に設ける磁極N、
Sを整数、例えば8極に等分してその1極当たりの占め
る角を、 2π÷8=π/4にして、これを交互に回転子5の内周
面に配置した構成にする。ここで回転子5は永久磁石ま
たは直流を流すためのコイルを巻回した電機子で構成す
る。
The number of magnetic poles of the rotor 5 is selected based on the design, but in this case, eight poles are selected, and for this purpose, the number of magnetic poles provided on the inner circumferential surface of the rotor 5 (geometric angle 2π) is selected. N,
S is equally divided into an integer, for example, eight poles, and the angle occupied by each pole is set to 2π÷8=π/4, and these are arranged alternately on the inner peripheral surface of the rotor 5. Here, the rotor 5 is composed of a permanent magnet or an armature wound with a coil for flowing direct current.

一方、これに対し固定子1は、前記磁極と同じ中心角を
占める、即ち全部ピッチの広幅電機子2と、該広幅電機
子の占める中心角よりも狭い中心角を占める狭幅電機子
2′とを組み合わせて構成するのであって、図面に示す
実施例では図面上から広幅電機子2、広幅電機子2、狭
幅電機子2′という配列を採り、この範囲に在る電機子
にA相の電流を通電し、次の 120°の範囲にも同様
に広幅電機子2と狭幅電機子2′とを配列してこの範囲
の電機子にはB相の電流を通電し、次の120°の範囲
に在る電機子も同様に配列して、この範囲に在る電機子
にはC相の電流を通電するように結線構成する。コイル
は図示のようにスロット3の部分を用いて1ポール1コ
イル巻きとし、スロット3をまたぐ導線は結線部だけで
あってコイル部はスロット3を跨がないようにする。
On the other hand, the stator 1 has a wide armature 2 which occupies the same central angle as the magnetic poles, that is, has a full pitch, and a narrow armature 2' which occupies a central angle narrower than the central angle occupied by the wide armature. In the embodiment shown in the drawing, the arrangement of wide armature 2, wide armature 2, and narrow armature 2' is adopted, and the A phase is connected to the armatures in this range. The wide armature 2 and the narrow armature 2' are similarly arranged in the next 120° range, and the B-phase current is passed through the armatures in this range. The armatures located within the range of 100° are arranged in the same manner, and the armatures located within this range are wired so that the C-phase current is passed through them. As shown in the figure, the coil is wound in one pole and one coil using the slot 3 portion, and the conductor that straddles the slot 3 is only the connection portion, and the coil portion does not straddle the slot 3.

この場合、同一相の隣接する電機子には互いに逆方向に
コイルを巻回する。従って、これよりも狭い多数の鉄心
を配置して前記各電機子と同じ中心角を占める部分の電
機子に同一方向にコイルを巻回してもよい。
In this case, adjacent armatures of the same phase are wound with coils in opposite directions. Therefore, a large number of iron cores narrower than this may be arranged and the coils may be wound in the same direction around the armature in a portion occupying the same central angle as each of the armatures.

また上記第1図に示す実施例においては、成る相の電流
を流す角度の範囲内で広幅の電機子二つを配した次に狭
幅の電機子を配した場合について説明したが、両電機子
の配置はこれに限らず、上記範囲内で広幅の電機子二つ
の間に狭幅の電機子を配置して設計しても同一の作用・
効果が得られ、設計上の問題として自由に選択できると
ころである。
Furthermore, in the embodiment shown in Fig. 1 above, a case was explained in which two wide armatures were arranged and then a narrow armature was arranged within the range of angles at which the currents of the two phases flow. The arrangement of the armatures is not limited to this, and even if you design a narrow armature between two wide armatures within the above range, the same effect and effect will be obtained.
This is where the effect can be obtained and can be freely selected as a matter of design.

尚、各電機子の占める角度というのは、固定子の外周上
における隣接する各電機手間空隙の中心から中心までの
角度をいう。
Incidentally, the angle occupied by each armature refers to the angle from the center to the center of each adjacent electric machine gap on the outer periphery of the stator.

そして、これらの式は前記3相8極に限らず、多相交流
モータにも応用できることはいうまでもない。
It goes without saying that these equations can be applied not only to the 3-phase 8-pole motor but also to polyphase AC motors.

次に、このように構成したモータの、その動作について
説明する。
Next, the operation of the motor configured as described above will be explained.

第2図は上記第1図に示した3相8極モータの動作原理
を示す図である。
FIG. 2 is a diagram showing the operating principle of the three-phase eight-pole motor shown in FIG. 1.

同図において、上部の回転子5と下部の固定子1の各電
機子とは、その磁極を展開図で表す。
In the figure, the magnetic poles of each armature of the upper rotor 5 and lower stator 1 are shown in a developed view.

そのうち回転子5は、その磁極N、Sが機械角でπ/4
ごとに8等分されている。 −これに対し、固定子1の
各電機子2.2′には2π/3毎にA、B、Cの3相の
電流を通電する。
Of these, the rotor 5 has magnetic poles N and S of π/4 in mechanical angle.
Each area is divided into 8 equal parts. - On the other hand, three-phase currents A, B, and C are applied to each armature 2.2' of the stator 1 every 2π/3.

そして該1相内にはπ/4の広幅を占める電機子2が2
個とπ/6の狭幅を占める電機子2′が1個とを配置し
たことを示す。
And within this one phase, there are 2 armatures 2 occupying a wide width of π/4.
This shows that one armature 2' occupying a narrow width of π/6 is arranged.

そして下方には、3和文番電流を流すことによって前記
固定子2・・・・・・に発生した成る瞬間における交番
磁界を示す。同1相内で磁界が逆向きになっているのは
、各電機子の巻き方向が逆であるためである。
The lower part shows the alternating magnetic field generated in the stator 2 at the moment when the three-way current is applied. The reason why the magnetic fields are in opposite directions within the same phase is because the winding directions of each armature are opposite.

このような関係において、今、回転子5の磁極は図中左
からNI 、St 、Nz 、S2−’=の順に並んで
いるものとし、そのうちN1が左端側にあるときを仮に
、その−回転分の全周2πにおけるOoとする。ここへ
、前記固定子1の電機子2゜2′・・・・・・に巻回し
たコイル4・・・・・・に3和文番電流を流すことによ
って成る瞬間に発生する磁界はA。
In this relationship, it is assumed that the magnetic poles of the rotor 5 are arranged in the order of NI, St, Nz, S2-' from the left in the figure, and when N1 is on the left end side, its -rotation is Let it be Oo at the full circumference of 2π. The instantaneous magnetic field generated by passing a 3-sum current through the coils 4 wound around the armatures 2゜2' of the stator 1 is A.

B、Cの各相ごとに同図下部に示すような波形を描(。Draw waveforms as shown at the bottom of the figure for each phase of B and C (.

そして、該固定子1のA、B、C各相内の電機子2.2
′・・・・・・の磁極を、同図内に記した磁極の記号N
A、SA・・・・・・のように励磁する。
The armature 2.2 in each phase of A, B, and C of the stator 1
The magnetic poles of '... are indicated by the magnetic pole symbol N in the same figure
Excite as shown in A, SA...

このときN2はNAに反発され、且つSBに吸引される
。S2はSBに反発され且つNBに吸引されるというよ
うに、以下S4まで、いずれの磁極も図面右方向へと回
転する出力を生じる。但しNI とNA、S、とSAと
はニュートラル・ゾーンとなるが、回転子が少しでも右
方向に回転すると、N、はNAに反発され且つSAに吸
引され、SlはSAに反発され且つNAに吸引されると
いうように、全極にわたって、回転子5が右方向に回転
する出力を生じる。
At this time, N2 is repelled by NA and attracted to SB. S2 is repelled by SB and attracted to NB, and so on until S4, all magnetic poles produce an output that rotates to the right in the drawing. However, NI and NA, S, and SA form a neutral zone, but if the rotor rotates even slightly to the right, N is repelled by NA and attracted to SA, and Sl is repelled by SA and NA An output that causes the rotor 5 to rotate clockwise is generated across all poles, such that the rotor 5 is attracted to the magnet.

そして前記回転子5の磁極N+ 、St 、Nz・・・
・・・が右方に機械角でπ/12移動すると当該回転子
5と固定子1との磁極の関係は第3図に示すようになる
。即ち、この時点では前記A、B、Cの   −各相に
流れる電流の位相は電気角でπ/3進み、第3図に示す
ように、C相の磁界の方向が変わり、そのためC相の固
定子1の極性が第4図とは逆になる。そのときにも、や
はり、NIはNAと反発してSAに吸引され、SlもS
Aに反発されてNAに吸引されるというように、回転子
5は右方向に回転する出力を生じる。但し、同図83と
5C2N4とNGとはニュートラル・ゾーンとなるが、
回転子が少しでも右方向へ回転すれば、S3はSCと反
発してNCに吸引され、N4はNCと反発してSCに吸
引され、やはり全極にわたって右方向に回転する出力を
生じる。第4図から第7図までは、いずれも各前回より
も、回転子5が機械角でπ/12右に進み、固定子1に
流れる電流の位相が電気角でπ/3ずつ進んだ時点にお
ける、回転子5と固定子1との極性を示している。即ち
第4図ではB相に発生する磁界の方向が第3図と逆にな
り、さらに第5図では人相に発生する磁界の方向が第4
図と逆になるというように、固定子1の磁極が変わって
行くが、どの時点においても、回転子5と固定子1との
関係が第1図、第2図で述べたと同様の関係になり、全
ての位置で、(但しニュートラル・ゾーンにおいては、
第1図、第2図の各説明と同じ)回転子5を右に回転さ
せる出力を生じることが理解されよう。
And the magnetic poles N+, St, Nz... of the rotor 5
... moves to the right by π/12 in mechanical angle, the relationship between the magnetic poles of the rotor 5 and stator 1 becomes as shown in FIG. That is, at this point, the phase of the current flowing through each phase of A, B, and C advances by π/3 in electrical angle, and as shown in FIG. 3, the direction of the magnetic field in phase C changes, so that The polarity of the stator 1 is reversed from that in FIG. At that time, as expected, NI repels NA and is attracted to SA, and Sl and S
The rotor 5 produces an output that rotates in the right direction, such as being repelled by A and attracted by NA. However, 83, 5C2N4 and NG in the same figure are neutral zones,
If the rotor rotates even slightly to the right, S3 will repel the SC and be attracted to the NC, and N4 will repel the NC and be attracted to the SC, producing an output that rotates clockwise across all poles. Figures 4 to 7 show the points at which the rotor 5 has moved to the right by π/12 in mechanical angle and the phase of the current flowing through stator 1 has advanced by π/3 in electrical angle compared to the previous time. The polarity of the rotor 5 and stator 1 is shown in FIG. That is, in FIG. 4, the direction of the magnetic field generated in the B phase is opposite to that in FIG. 3, and furthermore, in FIG.
The magnetic poles of the stator 1 change as shown in the figure, but at any point the relationship between the rotor 5 and stator 1 is the same as that described in Figures 1 and 2. at all positions (but in the neutral zone,
It will be understood that an output is produced that rotates the rotor 5 to the right (same as in the descriptions of FIGS. 1 and 2).

次にこのモータが180°通電が回転することを説明す
る。
Next, it will be explained that this motor rotates 180 degrees when energized.

第8図は第2図の状態から、磁極から成るロータが僅か
に図面右方向に回転した状態を示す第2図同様の展開図
である。
FIG. 8 is a developed view similar to FIG. 2, showing a state in which the rotor consisting of magnetic poles has rotated slightly to the right in the drawing from the state shown in FIG. 2.

同図から容易に判断できるとおり、このモータは電気角
180°の直後においても、この通電から生じる各電機
子の磁界の方向はロータの磁極5を同図右方向に回転さ
せる力があることが、前記同様の説明によって理解でき
よう。
As can be easily determined from the figure, even immediately after the electrical angle of 180° in this motor, the direction of the magnetic field of each armature generated by this energization has a force that rotates the magnetic pole 5 of the rotor in the right direction in the figure. , can be understood by the same explanation as above.

第9図はロータの磁極5の位置が第3図になる寸前、即
ち第3図よりも磁極が僅かに図面左方向に戻した状態を
示す第2図同様の図面である。
FIG. 9 is a drawing similar to FIG. 2, showing a state where the position of the magnetic pole 5 of the rotor is just before reaching the position shown in FIG. 3, that is, the magnetic pole is slightly returned to the left in the drawing compared to FIG. 3.

同図によって、このモータは電気各 180゜の寸前に
おいても、この通電から生じる各電機子の磁界の方向は
、ロータの磁極5を同図右方向に回転させる力を生じる
ことが、前記同様に理解できよう。
As shown in the figure, even when the motor is on the verge of 180 degrees of electricity, the direction of the magnetic field of each armature resulting from this energization produces a force that rotates the magnetic pole 5 of the rotor in the right direction in the figure, as described above. I can understand.

このように本発明のモータは、交番電流が180° の
寸前であっても、また180°の直後であっても各電機
子に生じる磁界がモータ回転に役立つ極性で生じている
ことが理解できよう。
In this way, it can be understood that in the motor of the present invention, even when the alternating current is just before 180° or just after 180°, the magnetic field generated in each armature is generated with a polarity that is useful for motor rotation. Good morning.

(他の実施例) 以上は3相8極モータを例に説明したが、特許請求の範
囲記載の要件を充たすかぎり、相数および極数は当業者
が自由に選択設計できる。また回転子5の方に本発明の
電機子を用い、固定子1を永久磁石等の界磁としても良
いことはいうまでもない。電機子の用語例としては、電
動子をいうときや、場磁石に対立した機械要素をいう例
もあるがこれにこだわらない。
(Other Embodiments) The above description has been made using a three-phase eight-pole motor as an example, but a person skilled in the art can freely select and design the number of phases and the number of poles as long as the requirements described in the claims are satisfied. It goes without saying that the armature of the present invention may be used for the rotor 5 and the stator 1 may be a field magnet such as a permanent magnet. Examples of the term armature include when it refers to an armature and when it refers to a mechanical element as opposed to a field magnet, but the term is not limited to these.

また、設計上特に軽量を必要とする場合等においては、
空芯のコイルを本発明の電機子として用いることも可能
である。
In addition, in cases where a particularly lightweight design is required,
It is also possible to use an air-core coil as the armature of the present invention.

尚、所定の磁束分布を得る為に、例えば広幅の電機子2
を幾分割かして、その分割した電機子が同じ極性を生じ
させるようにコイルを巻回してもよい。
In addition, in order to obtain a predetermined magnetic flux distribution, for example, a wide armature 2
The coil may be wound so that the armature is divided into several parts and the divided armatures have the same polarity.

(発明の効果) 本発明は以上のように構成し、且つ動作するものである
。しかして回転子5の内側に等分に設けたN、Sの磁極
の占める角度に対し、固定子1・・・・・・における磁
極の占める角度は3相の場合、A。
(Effects of the Invention) The present invention is configured and operates as described above. In contrast to the angle occupied by the N and S magnetic poles provided equally on the inside of the rotor 5, the angle occupied by the magnetic poles in the stator 1 is A in the case of three phases.

B、Cの各相内において、全節ピッチの電機子と短節ピ
ッチの電機子とを設けておくことにより、当該固定子1
に対し回転子5をどの角度に位置させても必ず互いに合
わない磁極が出て来るようにさせ、また当該固定子1の
電機子2.2′・・・・・・に巻回するコイル4・・・
・・・は、1ボール1コイル巻きでありながら全部巻の
方法を採ることができる。
By providing an armature with a full pitch and an armature with a short pitch in each phase of B and C, the stator 1
However, no matter what angle the rotor 5 is positioned, magnetic poles that do not match each other will always appear, and the coils 4 wound around the armatures 2, 2', etc. of the stator 1. ...
... can adopt a method of winding all the windings even though each ball is wound one coil.

一般にこのようなモータは、第10図に回転子5の磁極
と電機子2の磁極との関係を示すように、同図(A)の
ように両者が電気角でπ/2ずれた瞬間に最大出力を生
じるものであって、同図(B)  (C)のような関係
になった瞬間にはデッド・ゾーンなって出力を生じない
瞬間となるのであるが、(11本発明では電機子2の各
磁極がどの時点においてもいずれかの位置で同図(A)
のような関係になり、回転子5の磁極と電機子2の磁極
がズレを生じるから、回転出力発生のために有効に働く
ことになり、鉄芯やコイルの重量に比して、軽量で且つ
大きな出力を発生するモータが得られる。(2)各鉄芯
を跨ぐコイルがないから、モータの厚みを薄く設計でき
る。(3)従来の交流モータのように成る瞬間に打ち消
される磁束がないこと、および各鉄芯を跨ぐコイルがな
いことによってコイルが短くて済み、そのためコイルに
生じるインダクタンスも少なくなる。(3) 180°
通電で回転するように構成したから、例えば120°通
電で運転する場合にも、180°通電で運転する場合に
も回転子磁極の位置検出センサを移動しなくて済む、等
数々の効果がある。
Generally, in such a motor, as shown in Fig. 10, which shows the relationship between the magnetic poles of the rotor 5 and the magnetic poles of the armature 2, the relationship between the magnetic poles of the rotor 5 and the armature 2 is shown in Fig. 10. The maximum output is produced, and the moment the relationship as shown in (B) and (C) in the same figure is reached, there is a dead zone and no output is produced. The same figure (A) where each magnetic pole of 2 is in any position at any time.
The relationship is as follows, and the magnetic poles of the rotor 5 and the magnetic poles of the armature 2 are misaligned, which works effectively to generate rotational output, and is lightweight compared to the weight of the iron core and coil. Moreover, a motor that generates a large output can be obtained. (2) Since there is no coil spanning each iron core, the motor can be designed to be thin. (3) Since there is no magnetic flux that is canceled out at the moment of formation like in a conventional AC motor, and there is no coil that spans each iron core, the coil can be short, and therefore the inductance generated in the coil is also reduced. (3) 180°
Since it is configured to rotate when energized, there are many advantages, such as the need to move the rotor magnetic pole position detection sensor when operating with 120° energization or 180° energization. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である3相8極モータの正面
概念図、第2図、第3図は第1図に示した3相8極モー
タの動作原理の説明のため、回転子、電機子、磁界を対
比させた図、第4図、第5図、第6図、第7図は同前回
転子、電機子を対比した図、第8図、第9図は本発明の
モータが180°通電で回転することを証明するための
第2図同様の図面、第9図はモータにおける固定子と回
転子との位置関係を対比させた図である。 図中1・・・・固定子、2.2′・・・・電機子、3・
・・・スロット、4・・・・コイル、5・・・・回転子
。 特許出願人   日本フェロ−フルイディクス第1図
FIG. 1 is a conceptual front view of a three-phase eight-pole motor that is an embodiment of the present invention, and FIGS. 2 and 3 are for explaining the operating principle of the three-phase eight-pole motor shown in FIG. Figures 4, 5, 6, and 7 are diagrams comparing the rotor, armature, and magnetic field; Figures 8 and 9 are diagrams comparing the same rotor and armature; Figures 8 and 9 are diagrams of the present invention. FIG. 9 is a diagram similar to FIG. 2 to prove that the motor rotates by 180° when energized, and FIG. 9 is a diagram comparing the positional relationship between the stator and rotor in the motor. In the diagram, 1...stator, 2.2'...armature, 3.
...Slot, 4...Coil, 5...Rotor. Patent applicant Nippon Ferrofluidics Figure 1

Claims (1)

【特許請求の範囲】[Claims] 固定子および回転子のうち、一方は全周360°を整数
で等分した中心角を占める磁極で構成し、他方について
は、前記磁極の幅とほぼ同一の中心角を占める全節ピッ
チの広幅電機子とこれよりも狭幅の短節ピッチの電機子
とによって構成し、且つ180°通電で回転するように
結線構成したモータ。
Of the stator and rotor, one is composed of magnetic poles occupying a central angle obtained by equally dividing the entire circumference of 360° by an integer, and the other is composed of magnetic poles that occupy a central angle that is almost the same as the width of the magnetic poles. A motor consisting of an armature and an armature with a shorter pitch than this, and wired so as to rotate by 180° energization.
JP29301986A 1986-12-09 1986-12-09 Motor Pending JPS63144750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29301986A JPS63144750A (en) 1986-12-09 1986-12-09 Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29301986A JPS63144750A (en) 1986-12-09 1986-12-09 Motor

Publications (1)

Publication Number Publication Date
JPS63144750A true JPS63144750A (en) 1988-06-16

Family

ID=17789428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29301986A Pending JPS63144750A (en) 1986-12-09 1986-12-09 Motor

Country Status (1)

Country Link
JP (1) JPS63144750A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101917073A (en) * 2010-06-21 2010-12-15 无锡哈电电机有限公司 Stator and rotor sheets of octopole motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101917073A (en) * 2010-06-21 2010-12-15 无锡哈电电机有限公司 Stator and rotor sheets of octopole motor

Similar Documents

Publication Publication Date Title
JP5542849B2 (en) Switched reluctance motor
JP2013215021A (en) Electromagnetic induction device
JP2016538817A (en) Transverse flux type electric machine
US20140084714A1 (en) Homopolar motor-generator
WO2004091076A1 (en) An outer magnetic circuit bias magnetic bias reluctance machine with permanent magnets
JP2005020885A (en) Rotary linear dc motor
US20090051253A1 (en) Printing Machine or Electrical Machine for a Printing Machine
EP0431178B1 (en) Synchronous machine
JPS63144749A (en) Motor
JP2018108007A (en) Generator decreasing magnetic force resistance
JPH04322150A (en) Motor
JP3798677B2 (en) Brushless motor
JPS63144750A (en) Motor
JPH11510995A (en) Magnetic circuit of rotating device for generating power and electric power
CN113131634B (en) Electric vehicle and switched reluctance motor thereof
JPS62100154A (en) Motor
KR100365257B1 (en) Rotary linear motor
JPS63129840A (en) Motor
JPS63161857A (en) Motor
JP2681940B2 (en) Brushless motor
JPH0284042A (en) Motor
JP3012245B2 (en) AC rotating machine
JPH0284043A (en) Motor
JPS62239840A (en) Motor
CN1249559A (en) Electric motor