JPS63144749A - Motor - Google Patents

Motor

Info

Publication number
JPS63144749A
JPS63144749A JP61290201A JP29020186A JPS63144749A JP S63144749 A JPS63144749 A JP S63144749A JP 61290201 A JP61290201 A JP 61290201A JP 29020186 A JP29020186 A JP 29020186A JP S63144749 A JPS63144749 A JP S63144749A
Authority
JP
Japan
Prior art keywords
angle
rotor
pole
armature
armatures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61290201A
Other languages
Japanese (ja)
Inventor
Isamu Takehara
勇 竹原
Tsutomu Osawa
勉 大沢
Shigeru Oki
茂 大木
Akihiro Yamamoto
山本 昭洋
Atsushi Osawa
大沢 敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON FUEROO FURUIDEIKUSU KK
Original Assignee
NIPPON FUEROO FURUIDEIKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON FUEROO FURUIDEIKUSU KK filed Critical NIPPON FUEROO FURUIDEIKUSU KK
Priority to JP61290201A priority Critical patent/JPS63144749A/en
Publication of JPS63144749A publication Critical patent/JPS63144749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PURPOSE:To obtain the output effectively by producing dislocation between poles and armatures, and to generate the flux efficiently by eliminating the winding that straddles the slots. CONSTITUTION:A rotor 5 is to have eight poles with a geometrical angle per pole pi/4. In a stator 1 within a range of 2pi/3 to which the whole circumference 2 is divided in equal parts with 3, the multiple of the number of phases. Two wide armatures covering a mechanical angle almost the same as the angle which covers in the central angle of a pole, i.e., in an electrical angle covering the central angle of pi is provided. Then, subsequent to the wide armatures narrow armatures are arranged which cover the central angle of pi/6, narrower than the former one. Through the angle 2pi/3 the current of each phase is conducted to the stator. The pole N2 of a rotor 5 is repulsed to the armature pole NA and attracted to the armature magnetic field SB, each pole producing the force to rotate rightwards. The poles S1 of the rotor 5 and the armature pole SA as well as N1 and NA are in a neutral zone, where the force will be produced rightwards if the rotor rotates rightwards even in a small degree.

Description

【発明の詳細な説明】 (用語について) 本明細書において、磁極とは永久磁石・電磁石等のよう
に一定の極性の磁界を生じさせる機械要素を言い、電機
子とは回転子、固定子を問わす有鉄芯・無鉄芯またはこ
れに代わるものにコイルを巻回して磁界を生じさせる機
械要素をいう。また磁界を生じさせるコイルであれば、
必要に応じ空芯のコイルを含むものとする。全部ピッチ
の電機子とは各磁極の占める幾何学中心角と同じ角、即
ち電気角でπの角度を占める電機子をいう。
Detailed Description of the Invention (About Terminology) In this specification, a magnetic pole refers to a mechanical element that generates a magnetic field of a certain polarity, such as a permanent magnet or an electromagnet, and an armature refers to a rotor or a stator. A mechanical element that generates a magnetic field by winding a coil around a ferrous core, non-ferrous core, or an alternative. Also, if it is a coil that generates a magnetic field,
An air-core coil may be included if necessary. A full-pitch armature is an armature that occupies the same angle as the geometric center angle occupied by each magnetic pole, that is, an electrical angle of π.

(従来技術) 従来のモータのうちの、固定子として電機子を用い、こ
れに交番電流を通電して各電機子の外側に見掛は上回転
状に変化する磁界を生じさせ、これによって磁極から成
る回転子を回転させるものにあっては、回転磁界を生じ
させるために、複数の電機子ポールを跨いで重ね巻きし
たコイルのそれぞれに、それぞれの相の電流を通電する
にうに構成するのが通常であった。
(Prior art) In a conventional motor, an armature is used as a stator, and an alternating current is passed through it to generate a magnetic field that changes in an apparent upward rotation shape on the outside of each armature. In a device that rotates a rotor consisting of a was the norm.

(発明が解決しようとする問題点) 上記のような従来のモータにあっては、上記のようにコ
イルの重ね巻き及び電機子ポールを跨いでコイルを巻回
しているため、ある瞬間についてみると1つの電機子ポ
ールの周囲を取り巻くコイルに互いに逆方向に同時に電
流が流れていることもあることと、各々のコイルは複数
の電機子ポールを跨いで巻回されるため、スロット跨線
部分のコイルが生じ、この部分は磁束発生に直接貢献し
ないで無駄に電流がながれていることになる、等の理由
により、使用電力が充分回転力発生に貢献しているとは
言えなかった。
(Problems to be Solved by the Invention) In the conventional motor as described above, since the coils are wound overlappingly and the coils are wound across the armature pole as described above, when looking at a certain moment, Current may flow simultaneously in opposite directions to the coils surrounding one armature pole, and each coil is wound across multiple armature poles, so the slot-straddling portion A coil is formed, and current is wasted in this part without directly contributing to the generation of magnetic flux.For reasons such as this, it cannot be said that the electric power used is contributing sufficiently to the generation of rotational force.

(問題を解決するための手段および作用)本発明は上記
不合理な点を除去し、効率の良いモータを提供すること
を目的とするものであって、固定子および回転子のうち
、一方は幾何学角2πの中心角を整数で等分したほぼ均
等幅の磁極で構成し、他方については、同2πの中心角
相を相の数の倍数で等分した範囲内に、前記磁極とほぼ
同一の幅を有する全節ピッチの電機子が1個以上と、こ
れと異なる幅の電機子とを配置し、全部の電機子の数と
磁極の数との差が1になるように構成したモータであっ
て、このことにより磁極と電機子とのズレを生じさせて
有効に出力を得ると共に、前記電機子に巻回するコイル
は全部巻で、その中間部にスロットを跨いで巻線するこ
とがないので当該電機子に磁束を効率良く発生させるこ
とができる。そして、該磁束を効率的に利用して高出力
を得ると同時に、全部巻でありなからモータ自体の薄型
化および小型で高出力を得るモータを作り得る。
(Means and effects for solving the problem) The present invention aims to eliminate the above-mentioned unreasonable points and provide a highly efficient motor, in which one of the stator and rotor is It is composed of magnetic poles of approximately equal width obtained by equally dividing the central angle of the geometric angle 2π by an integer, and the other magnetic pole is approximately equal to the magnetic pole within the range obtained by equally dividing the central angle phase of the same 2π by a multiple of the number of phases. One or more armatures with the same width and all pitches and armatures with different widths are arranged so that the difference between the number of all armatures and the number of magnetic poles is 1. A motor, in which the magnetic poles and the armature are misaligned to effectively obtain output, and the coils wound around the armature are all wound, and the wires are wound across a slot in the middle. Therefore, magnetic flux can be efficiently generated in the armature. Then, the magnetic flux can be used efficiently to obtain high output, and since the motor itself is made of all windings, the motor itself can be made thinner and smaller, and at the same time, a motor that can obtain high output can be manufactured.

(実施例) 以下本発明を図面に示す実施例に基づいて詳細に説明す
る。
(Example) The present invention will be described in detail below based on an example shown in the drawings.

第1図は本発明のモータの実施例である3相8極モータ
の概念正面図である。但し固定電機子のコイル4ば、現
実には1ポール1コイル巻きに多数回巻回しているが、
図面の煩雑さをさけるためにコイルの巻き数を各2回巻
きでしめした。
FIG. 1 is a conceptual front view of a three-phase eight-pole motor which is an embodiment of the motor of the present invention. However, the coil 4 of the fixed armature is actually wound many times per pole per coil.
To avoid complication of the drawing, the number of turns of each coil is shown as two turns.

同図において、図示を省略したフレーム内に固定子1と
回転子5を配置し、固定子1の外周を回転子5が回転す
るようにする。
In the figure, a stator 1 and a rotor 5 are arranged in a frame (not shown), and the rotor 5 rotates around the outer periphery of the stator 1.

回転子5の磁極の極数を幾個にするかは設計上選択する
ところであるが、ここでは8極を選択し、そのために当
該回転子5の内周面(幾何学角2π)に設ける磁極N、
  Sを整数、例えば8で等分してそのl極光たりの占
める角を、幾何学角π/4として、回転子5の内周面に
配置した構成にする。ここで回転子5は永久磁石または
直流を流すためのコイルを巻回した電機子で構成する。
The number of magnetic poles of the rotor 5 is selected based on the design, but in this case, eight poles are selected, and for this purpose, the number of magnetic poles provided on the inner circumferential surface of the rotor 5 (geometric angle 2π) is selected. N,
S is divided into equal parts by an integer, for example 8, and the angle occupied by the l-pole light is defined as a geometric angle π/4, and the structure is arranged on the inner circumferential surface of the rotor 5. Here, the rotor 5 is composed of a permanent magnet or an armature wound with a coil for flowing direct current.

一方、これに対し固定子1は、その外周部に電機子2・
・・・・・を設け、該電機子と電機子との間の空間であ
るスロット3を用いてコイル5を巻回して成るものであ
るが、各電機子の中心角に占める角度は同一ではなく、
図示のように図面上から全周2πを相の数の1倍である
3で等分した2π/3の範囲内に、前記用語について説
明したとおり、前記磁極の中心角に占める角とほぼ同一
の機械角、すなわち電気角でπの中心角を占める全節ピ
ッチの電機子を1個以上、この場合は2個を配置し、そ
の次にこれよりも狭い中心角であるπ/6の中心角を占
める狭幅の電機子2′を前記広幅の電機子2の次に等分
に配置する。そして該固定子1に2π/3の角度を介し
てA、B、Cの各相毎に各相の電流を通電する。
On the other hand, the stator 1 has an armature 2 on its outer periphery.
... is provided, and the coil 5 is wound using the slot 3 which is the space between the armatures, but the angle occupied by the center angle of each armature is not the same. Without,
As shown in the figure, within the range of 2π/3, which is obtained by dividing the entire circumference 2π by 3, which is 1 times the number of phases, from the top of the drawing, it is approximately the same as the angle occupied by the central angle of the magnetic pole, as explained above. Arrange one or more, in this case two, armatures with a full pitch that occupies a central angle of π in mechanical angle, that is, electrical angle, and then a central angle of π/6, which is a narrower central angle. A narrow armature 2' occupying a corner is equally spaced next to the wide armature 2. Then, current is applied to the stator 1 for each phase of A, B, and C through an angle of 2π/3.

もちろん上記広幅の電機子2の1個の占める角度および
狭幅電機子2′の1個の占める角度内において、コアを
さらに細かく分け、それぞれの占める角度の範囲内にあ
る電機子の磁極が同一になるようにコイルを巻回しても
よく、この場合、同一磁極を構成する範囲の電機子の幅
が1つの電機子の幅と看做される。
Of course, within the angle occupied by one of the wide armatures 2 and the angle occupied by one of the narrow armatures 2', the core is further divided into smaller pieces, and the magnetic poles of the armatures within each angle range are the same. The coil may be wound so that the width of the armature in the range forming the same magnetic pole is regarded as the width of one armature.

また上記第1図に示す実施例においては、成る相の電流
を流す角度の範囲内で広幅の電機子二つを配した次に狭
幅の電機子を配したが、狭幅の電機子は広幅の電機子の
間に入れても良く、設計上の問題として自由に選択でき
るところである。
In addition, in the embodiment shown in Fig. 1 above, two wide armatures were placed within the range of angles at which the currents of the two phases flow, and then a narrow armature was placed next. It can also be placed between wide armatures, which can be freely selected as a matter of design.

尚、各電機子の占める角度というのは、固定子の外周上
における隣接する各電機手間空隙の中心から中心までの
角度をいう。
Incidentally, the angle occupied by each armature refers to the angle from the center to the center of each adjacent electric machine gap on the outer periphery of the stator.

次に、このように構成したモータの、その動作について
説明する。
Next, the operation of the motor configured as described above will be explained.

第2図は上記第1図に示した3相8極モータの動作原理
を示す図である。
FIG. 2 is a diagram showing the operating principle of the three-phase eight-pole motor shown in FIG. 1.

同図において、上部の回転子5と下部の固定子1とは、
その磁極を展開図で表す。
In the figure, the upper rotor 5 and the lower stator 1 are:
The magnetic poles are shown in a developed diagram.

そのうち回転子5は、その磁極N、Sが機械角でπ/4
ごとに8等分されている。
Of these, the rotor 5 has magnetic poles N and S of π/4 in mechanical angle.
Each area is divided into 8 equal parts.

これに対し、各固定子1・・・・・・には幾何学角2π
/3の範囲内にA相の電流を、次の2πの範囲内にB相
の電流を、次の範囲にC相の電流を通電する。
On the other hand, each stator 1... has a geometric angle of 2π
A phase current is applied within a range of /3, a B phase current is applied within the next 2π range, and a C phase current is applied within the next range.

このような関係において、今、各相の電流を通電するこ
とによって、回転子5の磁極の電機子2゜2′・・・・
・・の磁極を、同図内に記した磁極の記号NA、SA・
・・・・・のように励磁する。
In this relationship, by supplying current to each phase, the armatures 2゜2' of the magnetic poles of the rotor 5...
The magnetic poles of ... are indicated by the magnetic pole symbols NA, SA, and
Excite like...

このときN2はNAに反発され、且つSBに吸引される
。S2はSBに反発され且つNBに吸引されるというよ
うに、以下S4まで、いずれの磁極も図面右方向へと回
転する出力を生じる。但しN1とNA、31 とSAと
はニュートラル・ゾーンとなるが、回転子が少しでも右
方向に回転すると、N、はNAに反発され且つSAに吸
引され、S、はSAに反発され且つNAに吸引されると
いうように、全極にわたって、回転子5が右方向に回転
する出力を生じる。
At this time, N2 is repelled by NA and attracted to SB. S2 is repelled by SB and attracted to NB, and so on until S4, all magnetic poles produce an output that rotates to the right in the drawing. However, N1 and NA, 31 and SA form a neutral zone, but if the rotor rotates even slightly to the right, N is repelled by NA and attracted to SA, and S is repelled by SA and NA An output that causes the rotor 5 to rotate clockwise is generated across all poles, such that the rotor 5 is attracted to the magnet.

そして前記回転子5の磁極N+ 、St 、Nz・・・
・・・が右方に機械角でπ/12移動すると当該回転子
5と固定子1との磁極の関係は第3図に示すようになる
。即ち、この時点では前記A、B、Cの各相に流れる電
流の位相は電気角でπ/3進み、第3図に示すように、
C相の磁界の方向が変わり、そのためC相の固定子1の
極性が第2図とは逆になる。このようにモータの回転と
電流の位相とが同期するためには、実施例のように、モ
ータ外部から3和文番電流を通電する場合にあっては、
モータが所定の回転数に達すればよいし、整流子とブラ
シまたは位置センサとスイッチング素子を用いて転流を
生じさせるモータにあっては、モータが幾何学角でπ/
12回転する毎に転流が生じるようにセントしておけば
よい。
And the magnetic poles N+, St, Nz... of the rotor 5
... moves to the right by π/12 in mechanical angle, the relationship between the magnetic poles of the rotor 5 and stator 1 becomes as shown in FIG. That is, at this point, the phase of the current flowing in each phase of A, B, and C advances by π/3 in electrical angle, and as shown in FIG.
The direction of the C-phase magnetic field changes, so that the polarity of the C-phase stator 1 becomes opposite to that in FIG. In order to synchronize the rotation of the motor and the phase of the current in this way, when the 3-Japanese current is applied from the outside of the motor as in the embodiment, it is necessary to
It is sufficient for the motor to reach a predetermined rotational speed, and if the motor uses a commutator and brushes or a position sensor and a switching element to generate commutation, the motor has a geometric angle of π/
It is sufficient to set the cent so that commutation occurs every 12 rotations.

さて上記回転および転流がおこなわれたあとでも、やは
り、N1はNAと反発してSAに吸引され、SlもSA
に反発されてNAに吸引されるというように、回転子5
は右方向に回転する出力を生じる。但し、同図S3とS
C,N、とNCとはニュートラル・ゾーンとなるが、回
転子が少しでも右方向へ回転すれば、S3はSCと反発
してNCに吸引され、N4はNCと反発してSCに吸引
され、やはり全極にわたって右方向に回転する出力を生
じる。第4図から第7図までは、いずれも各前回よりも
、回転子5が機械角でπ/12右に進み、固定子lに流
れる電流の位相が電気角でπ/3ずつ進んだ時点におけ
る、回転子5と固定子lとの極性を示している。即ち第
4図ではB相に発生する磁界の方向が第3図と逆になり
、さらに第5図ではA相に発生する磁界の方向が第4図
と逆になるというように、固定子1の磁極が変わって行
くが、どの時点においても、回転子5と固定子1との関
係が第2図、第3図で述べたと同様の関係になり、全て
の位置で、(但しニュートラル・ゾーンにおいては、第
2図、第3図の各説明と同じ)回転子5を右に回転させ
る出力を住じることが理解されよう。
Now, even after the above rotation and commutation, N1 is still repelled by NA and is attracted to SA, and Sl is also attracted to SA.
The rotor 5 is repelled by the NA and attracted by the NA.
produces an output that rotates to the right. However, S3 and S in the same figure
C, N, and NC form a neutral zone, but if the rotor rotates even slightly to the right, S3 will repel SC and be attracted to NC, and N4 will repel NC and be attracted to SC. , which also produces an output that rotates to the right across all poles. Figures 4 to 7 show the points at which the rotor 5 has moved to the right by π/12 in mechanical angle and the phase of the current flowing through stator l has advanced by π/3 in electrical angle compared to the previous time. The polarity of the rotor 5 and stator l is shown in FIG. That is, in FIG. 4, the direction of the magnetic field generated in the B phase is opposite to that in FIG. 3, and in FIG. 5, the direction of the magnetic field generated in the A phase is opposite to that in FIG. Although the magnetic poles of 2, it will be understood that the output for rotating the rotor 5 to the right (same as in the explanations in FIGS. 2 and 3) is used.

(他の実施例) 以上は3相8極モータを例に説明したが、特許請求の範
囲記載の要件を充たすかぎり、相数および極数は当業者
が自由に選択設計できる。また回転子5の方に本発明の
電機子を用い、固定子1を永久磁石等の界磁としても良
いことはいうまでもない。電機子の用語例としては、電
動子をいうときや、場磁石に対立した機械要素をいう例
もあるがこれにこだわらない。
(Other Embodiments) The above description has been made using a three-phase eight-pole motor as an example, but a person skilled in the art can freely select and design the number of phases and the number of poles as long as the requirements described in the claims are satisfied. It goes without saying that the armature of the present invention may be used for the rotor 5 and the stator 1 may be a field magnet such as a permanent magnet. Examples of the term armature include when it refers to an armature and when it refers to a mechanical element as opposed to a field magnet, but the term is not limited to these.

また、設計上特に軽量を必要とする場合等においては、
空芯のコイルを本発明の電機子として用いることも可能
である。
In addition, in cases where a particularly lightweight design is required,
It is also possible to use an air-core coil as the armature of the present invention.

尚、所定の磁束分布を得る為に、例えば広幅の電機子2
を幾分割かして、その分割した電機子が同じ極性を生じ
させるようにコイルを巻回してもよい。(これは1つの
電機子と見做される)(発明の効果) 本発明は以上のように構成し、且つ動作するものである
。しかして回転子5の内側に等分に設けたN、Sの磁極
の占める角度に対し、電機子2・・・・・・における磁
極の占める角度は3相の場合、A。
In addition, in order to obtain a predetermined magnetic flux distribution, for example, a wide armature 2
The coil may be wound so that the armature is divided into several parts and the divided armatures have the same polarity. (This is regarded as one armature) (Effects of the Invention) The present invention is constructed and operates as described above. In contrast to the angle occupied by the N and S magnetic poles provided equally on the inside of the rotor 5, the angle occupied by the magnetic poles in the armature 2 is A in the case of three phases.

B、Cの各相内において、前記回転子5の磁極の占める
幾何学角と同じ中心角を占める全節ピッチ電機子1個以
上を備え、且つ全体の電機子の数が前記磁極5の数と1
の差がある数で構成するから、当該固定子1に対し回転
子5をどの角度に位置させても必ず互いに合わない磁極
が出て来るようにさせ、また当該固定子1の電機子2.
2′・・・・・・に巻回するコイル4・・・・・・は、
1ポール1コイル巻きでありながら全部巻の方法を採る
ことができる。
In each phase B and C, one or more full pitch armatures occupying the same central angle as the geometric angle occupied by the magnetic poles of the rotor 5 are provided, and the total number of armatures is equal to the number of the magnetic poles 5. and 1
Since the numbers are different from each other, no matter what angle the rotor 5 is positioned with respect to the stator 1, there will always be magnetic poles that do not match each other.
Coil 4...... wound around 2'...... is,
Even though it is one pole and one coil winding, it is possible to adopt a method of winding all the windings.

一般にこのようなモータは、第8図(A)に回転子5の
磁極と電機子2の磁極との関係を示すように、両者が電
気角でπ/2ずれた瞬間に最大出力を生じるものであっ
て、第8図(B)又は(C) のような関係になった瞬
間にはニュートラル・ゾーン或いはデッド・ゾーンなっ
て出力を生じない瞬間となるのであるが、(1)本発明
では電機子2の各磁極がどの時点においてもいずれかの
位置で第8図のような関係になり、回転子5の磁極と電
機子2の磁極がズレを生じるから、回転出力発生のため
に有効に働くことになり、鉄芯やコイルの重量に比して
、軽量で且つ大きな出力を発生するモータが得られる。
Generally, such a motor produces maximum output at the moment when the magnetic poles of the rotor 5 and the magnetic poles of the armature 2 are shifted by π/2 in electrical angle, as shown in Figure 8 (A). Therefore, at the moment when the relationship as shown in FIG. 8 (B) or (C) is reached, there is a neutral zone or dead zone where no output is produced. (1) In the present invention, Each magnetic pole of the armature 2 has a relationship as shown in Figure 8 at any point in time, and the magnetic poles of the rotor 5 and the magnetic poles of the armature 2 are misaligned, which is effective for generating rotational output. This results in a motor that is lightweight compared to the weight of the iron core and coil and generates a large output.

(2)各鉄芯を跨ぐコイルがないから、モータの厚みを
薄く設計できる。(3)従来の交流モータのように成る
瞬間に打ち消される磁束がないこと、および各鉄芯を跨
ぐコイルがないことによってコイルが短くて済み、その
ためコイルに生じるインダクタンスも少なくなる。等数
々の効果がある。
(2) Since there is no coil spanning each iron core, the motor can be designed to be thin. (3) Since there is no magnetic flux that is canceled out at the moment of formation like in a conventional AC motor, and there is no coil that spans each iron core, the coil can be short, and therefore the inductance generated in the coil is also reduced. There are many effects such as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である3相8極モータの正面
概念図、第2図、第3図は第1図に示した3相8極モー
タの動作原理の説明のため、回転子、電機子、磁界を対
比させた図、第4図、第5図、第6図、第7図は同前回
転子、電機子を対比した図、第8図はモータにおける固
定子と回転子との位置関係を対比させた図である。 図中1・・・・固定子、2.2′・・・・電機子、3・
・・・スロット、4・・・・コイル、5・・・・回転子
。 特許出願人   日本フェロ−フルイディクス株式会社
FIG. 1 is a conceptual front view of a three-phase eight-pole motor that is an embodiment of the present invention, and FIGS. 2 and 3 are for explaining the operating principle of the three-phase eight-pole motor shown in FIG. Figure 4, Figure 5, Figure 6, and Figure 7 are diagrams comparing the rotor and armature, Figure 8 is the stator and rotation in the motor. It is a diagram comparing the positional relationship with the child. In the diagram, 1...stator, 2.2'...armature, 3.
...Slot, 4...Coil, 5...Rotor. Patent applicant Nippon Ferrofluidics Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 固定子および回転子のうち、一方は幾何学角2πの中心
角を整数で等分したほぼ均等幅の磁極で構成し、他方に
ついては、幾何学角2πの中心角を相の数の倍数で等分
した範囲内に、前記磁極とほぼ同一の幅を有する全節ピ
ッチの電機子が1個以上と、これと異なる幅の電機子と
を配置し、全部の電機子の数と磁極の数との差が1にな
るように構成したモータ。
Of the stator and rotor, one is composed of magnetic poles of almost equal width obtained by dividing the central angle of geometric angle 2π into equal parts by an integer, and the other is composed of magnetic poles with a central angle of geometric angle 2π divided by a multiple of the number of phases. Within the equally divided range, one or more armatures with a full pitch pitch having almost the same width as the magnetic poles and an armature with a width different from this are arranged, and the total number of armatures and the number of magnetic poles are arranged. A motor configured so that the difference between
JP61290201A 1986-12-05 1986-12-05 Motor Pending JPS63144749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61290201A JPS63144749A (en) 1986-12-05 1986-12-05 Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61290201A JPS63144749A (en) 1986-12-05 1986-12-05 Motor

Publications (1)

Publication Number Publication Date
JPS63144749A true JPS63144749A (en) 1988-06-16

Family

ID=17753062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61290201A Pending JPS63144749A (en) 1986-12-05 1986-12-05 Motor

Country Status (1)

Country Link
JP (1) JPS63144749A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03117354A (en) * 1989-09-28 1991-05-20 Nippon Densan Corp 3-phase motor
WO2014115278A1 (en) * 2013-01-24 2014-07-31 三菱電機株式会社 Synchronous electric motor
WO2015029256A1 (en) * 2013-09-02 2015-03-05 三菱電機株式会社 Synchronous electric motor
WO2016203574A1 (en) * 2015-06-17 2016-12-22 三菱電機株式会社 Permanent magnet synchronous motor
WO2016203579A1 (en) * 2015-06-17 2016-12-22 三菱電機株式会社 Permanent magnet synchronous motor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824419B2 (en) * 1989-09-28 1996-03-06 日本電産株式会社 Three-phase motor
JPH03117354A (en) * 1989-09-28 1991-05-20 Nippon Densan Corp 3-phase motor
JP6049765B2 (en) * 2013-01-24 2016-12-21 三菱電機株式会社 Synchronous motor
WO2014115278A1 (en) * 2013-01-24 2014-07-31 三菱電機株式会社 Synchronous electric motor
US9800099B2 (en) 2013-01-24 2017-10-24 Mitsubishi Electric Corporation Synchronous motor
CN104885345A (en) * 2013-01-24 2015-09-02 三菱电机株式会社 Synchronous electric motor
EP2950431A4 (en) * 2013-01-24 2016-12-14 Mitsubishi Electric Corp Synchronous electric motor
JPWO2015029256A1 (en) * 2013-09-02 2017-03-02 三菱電機株式会社 Synchronous motor
WO2015029256A1 (en) * 2013-09-02 2015-03-05 三菱電機株式会社 Synchronous electric motor
US10277099B2 (en) 2013-09-02 2019-04-30 Mitsubishi Electric Corporation Synchronous motor
CN105474512A (en) * 2013-09-02 2016-04-06 三菱电机株式会社 Synchronous electric motor
CN105474512B (en) * 2013-09-02 2018-02-13 三菱电机株式会社 Synchronous motor
JPWO2016203574A1 (en) * 2015-06-17 2017-08-31 三菱電機株式会社 Stator core, permanent magnet synchronous motor and air conditioner
JPWO2016203579A1 (en) * 2015-06-17 2017-08-31 三菱電機株式会社 Stator core, permanent magnet synchronous motor and air conditioner
CN107534328A (en) * 2015-06-17 2018-01-02 三菱电机株式会社 Permanent-magnet synchronous electric motor
CN107534326A (en) * 2015-06-17 2018-01-02 三菱电机株式会社 Permasyn morot
WO2016203574A1 (en) * 2015-06-17 2016-12-22 三菱電機株式会社 Permanent magnet synchronous motor
WO2016203579A1 (en) * 2015-06-17 2016-12-22 三菱電機株式会社 Permanent magnet synchronous motor
US10432040B2 (en) 2015-06-17 2019-10-01 Mitsubishi Electric Corporation Permanent magnet synchronous motor
CN107534328B (en) * 2015-06-17 2019-11-29 三菱电机株式会社 Stator core, permanent-magnet synchronous electric motor and air regulator
US10897165B2 (en) 2015-06-17 2021-01-19 Mitsubishi Electric Corporation Permanent magnet synchronous motor

Similar Documents

Publication Publication Date Title
KR960003205B1 (en) Full flux reversal variable reluctance machine
KR100519925B1 (en) Rotary electric machine, especially an alternator for a motor vehicle
EP0465462A4 (en) Electronically commutated reluctance motor
US4134054A (en) Homopolar synchronous machine
JPH11289732A (en) Electric apparatus, particularly alternator for automobile for performing double excitation
JPS6331453A (en) Electric equipment
JPS6223536B2 (en)
JPS63144749A (en) Motor
JPH04322150A (en) Motor
EP0431178B1 (en) Synchronous machine
WO2002095902A1 (en) Electromotive mechanism
JP3172205U (en) High efficiency and powerful motor integrated with generator
JPH05161325A (en) Synchronous motor with a reduced cogging torque
US5952759A (en) Brushless synchronous rotary electrical machine
WO2002082622A1 (en) Permanent magnet type synchronous motor
JP3014544B2 (en) Electric motor
JPS63144750A (en) Motor
JPH09135545A (en) Electric motor
JPS62100154A (en) Motor
EP0960465A1 (en) An electric machine
JPS63129840A (en) Motor
JPS6377363A (en) High-efficiency motor
JPS63161857A (en) Motor
CN1249559A (en) Electric motor
JPS6216786Y2 (en)