JPS63144419A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPS63144419A
JPS63144419A JP29070486A JP29070486A JPS63144419A JP S63144419 A JPS63144419 A JP S63144419A JP 29070486 A JP29070486 A JP 29070486A JP 29070486 A JP29070486 A JP 29070486A JP S63144419 A JPS63144419 A JP S63144419A
Authority
JP
Japan
Prior art keywords
magnetic
particles
layer
magnetic layer
magnetic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29070486A
Other languages
Japanese (ja)
Other versions
JP2521932B2 (en
Inventor
Takeshi Miyabayashi
毅 宮林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP61290704A priority Critical patent/JP2521932B2/en
Publication of JPS63144419A publication Critical patent/JPS63144419A/en
Application granted granted Critical
Publication of JP2521932B2 publication Critical patent/JP2521932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/743Patterned record carriers, wherein the magnetic recording layer is patterned into magnetic isolated data islands, e.g. discrete tracks
    • G11B5/746Bit Patterned record carriers, wherein each magnetic isolated data island corresponds to a bit
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To reduce the thickness of a magnetic recording layer and to obtain high coercive force by forming numerous inter-magnetic particle spacings on the surface of a magnetic layer as an assemblage of the magnetic particles formed on a substrate surface and interposing a material which has the magnetism weaker than the magnetism of the magnetic particles or is nonmagnetic or diamagnetic between the inter-magnetic particle spacings. CONSTITUTION:The numerous inter-magnetic particle spacings are formed on the surface of the magnetic layer 2 as the assemblage of the magnetic particles formed on the surface of the substrate 1 and the material 4 which has the magnetism weaker than the magnetism of the magnetic particles or is nonmagnetic or diamagnetic is interposed into the inter-magnetic particle spacings. More specifically, the particles having the negative equil. potential with respect to the magnetic particles are stuck in a nearly uniformly dispersed state onto the surface of the magnetic layer 2 as the assemblage of the magnetic particles formed on the surface of the substrate 1. This material is then immersed in an electrolyte liquid so that electrolytic corrosion pits 3 are formed on the surface of the magnetic layer by the local galvanic effect of the particles having the negative equil. potential and the magnetic layer. The material 4 which has the magnetism weaker than the magnetism of the magnetic particles or is nonmagnetic or diamagnetic is thereafter embedded into such pits 3. The high coercive force is thereby obtd. even if the thickness of the magnetic recording layer is not so much reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フロッピーディスク、ハードディスク、カセ
ットテープ等としての磁気記録媒体と、その製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magnetic recording medium such as a floppy disk, hard disk, cassette tape, etc., and a method for manufacturing the same.

[従来技術] この種の磁気記録媒体においては、記録密度の向上が今
日最も重要な技術課題の1つとなっている。ところでこ
の記録密度の主要パラメータは、保磁力Hc、残留磁束
3r、及び磁気記録層の厚ざδであるが、これらパラメ
ータと電磁気特性とは次の関係にある。すなわち、磁気
ヘッドの再生出力をE、再生波形の波形幅をWとすると
、E  cc  Br−(Hc/Br)  ・δW ”
  (Sr/l−1c)’ −δ“ここで、α=0.8
5〜0.50 β=0.15〜0.50 そこで磁気記録媒体としての記録密度を向上させるには
再生出力Eの低下をできるだけ抑え、波形幅Wを極力小
ざくすればよいことになる。そのためには上記関係より
保磁力)−(Cを大きくすればよいことは明らかでおる
[Prior Art] In this type of magnetic recording medium, improving the recording density is one of the most important technical issues today. By the way, the main parameters of this recording density are the coercive force Hc, the residual magnetic flux 3r, and the thickness difference δ of the magnetic recording layer, and these parameters and the electromagnetic characteristics have the following relationship. That is, if the reproduction output of the magnetic head is E and the waveform width of the reproduction waveform is W, then E cc Br-(Hc/Br) ・δW ”
(Sr/l-1c)'-δ"Here, α=0.8
5 to 0.50 β=0.15 to 0.50 Therefore, in order to improve the recording density of a magnetic recording medium, it is necessary to suppress the decrease in the reproduction output E and to make the waveform width W as small as possible. For this purpose, it is clear from the above relationship that coercive force)-(C should be increased.

[発明が解決しようとする問題点] しがしながら、保磁力HCと磁気記録層の厚ざδとは、
従来、第4図に実線の曲線で示したように大概反比例の
関係にある。したがって保磁力HCを大きくしようとす
ると、磁気記録層の厚ざδを薄クシなければならない。
[Problems to be solved by the invention] However, the coercive force HC and the thickness difference δ of the magnetic recording layer are
Conventionally, as shown by the solid curve in FIG. 4, there has been an almost inversely proportional relationship. Therefore, in order to increase the coercive force HC, the thickness difference δ of the magnetic recording layer must be reduced.

しかし近年、磁気記録の高密度化の要請から既に超薄膜
化へ移行してきており、これ以上磁気記録媒体の厚さδ
を簿くすることは品質管理上限界がおる。また、磁気記
録層の厚ざδを薄くすることは再生出力Eを低下させる
ことになり、ざらにその分残留磁束13rを大きくして
カバーしようとすれば、今度は波形幅Wが大きくなって
、却って記録密度を低下させることになるという問題が
ある。
However, in recent years, the demand for higher density magnetic recording has already led to a shift to ultra-thin films, and the thickness δ of magnetic recording media has become even thinner.
There is a limit to quality control in keeping records. In addition, reducing the thickness difference δ of the magnetic recording layer will reduce the reproduction output E, and if you try to compensate for this by increasing the residual magnetic flux 13r, the waveform width W will increase this time. However, there is a problem in that the recording density is actually reduced.

[発明の目的コ 本発明はかかる従来の問題点に鑑みて為されたもので、
その目的とするところは、磁気記録層の厚さを薄クシな
くとも高い保磁力が得られる磁気記録媒体と、その製造
方法を提供するにある。これにより磁気記録媒体として
の記録密度の向上を図らんとするものである。
[Object of the Invention] The present invention has been made in view of such conventional problems,
The object is to provide a magnetic recording medium that can obtain a high coercive force without reducing the thickness of the magnetic recording layer, and a method for manufacturing the same. This is intended to improve the recording density of the magnetic recording medium.

[問題点を解決するための手段] かかる目的を達成するため本発明に係る磁気記録媒体は
基材表面に形成される磁性粒子の集合体としての磁性層
の表面に無数の磁性粒子間隙が形成され、該磁性粒子間
隙に該磁性粒子よりも磁性が弱いか、非磁性、又は反磁
性の材料が介在されることを要旨としている。
[Means for Solving the Problems] In order to achieve the above object, the magnetic recording medium according to the present invention has a magnetic recording medium in which numerous gaps between magnetic particles are formed on the surface of the magnetic layer, which is an aggregate of magnetic particles formed on the surface of the base material. The gist is that a material that is weaker in magnetism than the magnetic particles, or is non-magnetic or diamagnetic is interposed between the magnetic particles.

また、本発明に係る磁気記録媒体の1つの製造方法は、
基材表面に形成される磁性粒子の集合体としての磁性層
の表面に、該磁性粒子に対して真の平衡電位をもつ粒子
を略均一な分散状態で付着させ、次にこの材料を電解質
液に浸漬して前記貴の平衡電位をもつ粒子と磁性層との
局部電池作用により該磁性層の表面に電食孔を形成させ
、しかる後、この電食孔中に前記磁性粒子よりも磁性が
弱いか、非磁性、又は反磁性の材料を埋め込むことを要
旨としている。
Further, one method for manufacturing a magnetic recording medium according to the present invention is as follows:
Particles having a true equilibrium potential with respect to the magnetic particles are adhered to the surface of the magnetic layer, which is an aggregate of magnetic particles formed on the surface of the base material, in a substantially uniformly dispersed state, and then this material is placed in an electrolyte solution. The electrolytic holes are formed on the surface of the magnetic layer by the local battery action of the particles with the noble equilibrium potential and the magnetic layer, and then the electrolytic holes have more magnetic properties than the magnetic particles. The idea is to embed weak, non-magnetic, or diamagnetic materials.

さらに、本発明に係る磁気記録媒体の別の製造方法は、
基材表面に磁性粒子の集合体としての磁性層が形成され
る材料を、該磁性粒子に対して責の平衡電位をもつ原子
イオンを含む無電解メッキ液に浸漬して該原子イオンを
前記磁性層の表面に析出させると共に、該析出粒子と前
記磁性層との局部電池作用により該磁性層の表面に電食
孔を形成させ、次にこの電食孔中に前記磁性粒子よりも
磁性が弱いか非磁性、又は反磁性の材料を埋め込むこと
を要旨としている。
Furthermore, another method for manufacturing a magnetic recording medium according to the present invention includes:
A material on which a magnetic layer as an aggregate of magnetic particles is formed on the surface of the base material is immersed in an electroless plating solution containing atomic ions having a balanced potential with respect to the magnetic particles. At the same time as being deposited on the surface of the layer, electrolytic holes are formed on the surface of the magnetic layer by the local battery action of the precipitated particles and the magnetic layer, and then the electrolytic holes have weaker magnetism than the magnetic particles. The idea is to embed a non-magnetic or diamagnetic material.

[作用] このように構成された本発明に係る磁気記録媒体によれ
ば、磁性層の表面の各磁性粒子が、その周囲を弱磁性か
、非磁性、又は反磁性の材料により取り囲まれて孤立化
されている。そのために磁気特性としての磁壁移動抵抗
が大きくなり、磁性層の厚さが同程度であれば、より高
い保磁力が得られる。
[Function] According to the magnetic recording medium according to the present invention configured as described above, each magnetic particle on the surface of the magnetic layer is surrounded by a weakly magnetic, nonmagnetic, or diamagnetic material and becomes isolated. has been made into Therefore, the domain wall movement resistance as a magnetic property increases, and if the thickness of the magnetic layer is about the same, a higher coercive force can be obtained.

[実施例] 第1図は、本発明の一実施例に係る磁気記録媒体を示し
たものである。この図においては、例えば、アルミニウ
ム基板上に非磁性のN1−P系結品粒子の集合体である
非磁性層が形成された基材1の表面に、強磁性のCo−
P未結晶粒子の集合体である磁性層2が形成されている
。この磁性層2の厚さは、約500〜700A程度であ
るが、その表面には径、深さともに約100〜2oo入
程度の微小孔3,3・・・が各磁性粒子間の間隙に位置
して無数に介在され、該各機小孔3中に前記co−p系
磁性粒子よりも磁性の弱い、又は、非磁性か反磁性の材
料4が介在されている。ちなみにこの実施例では非磁性
材料で必る銀(Ag)粒子が介在されている。
[Example] FIG. 1 shows a magnetic recording medium according to an example of the present invention. In this figure, for example, a ferromagnetic Co-
A magnetic layer 2, which is an aggregate of P uncrystallized particles, is formed. The thickness of this magnetic layer 2 is approximately 500 to 700 A, and the surface thereof has micropores 3, 3, . In each of the small holes 3, a material 4 that is weaker in magnetism than the co-p magnetic particles, or is non-magnetic or diamagnetic is interposed. Incidentally, in this example, silver (Ag) particles, which are a necessary non-magnetic material, are interposed.

次にこの磁気記録媒体の製造方法について述べる。その
1つの方法は、第2図にも示したように、初めに基材1
表面のCo−P系磁性層2の表面に、このCo−P磁性
粒子に対して責の平衡電位をもつAg粒子4を略均一な
分散状態で付着させる。
Next, a method for manufacturing this magnetic recording medium will be described. One method is to first prepare the base material 1, as shown in Figure 2.
Ag particles 4 having an equilibrium potential equal to that of the Co-P magnetic particles are adhered to the surface of the Co--P magnetic layer 2 in a substantially uniformly dispersed state.

この手段としては、既に慣用技術となっているスパッタ
リング法、蒸着法、或いはイオンブレーティング法等が
適用される。次にこのようにして得られた材料を次表に
示す液組成の電解質液中に浸漬(液温的80℃、浸漬時
間30秒〜1分間)する。
As this means, a sputtering method, a vapor deposition method, an ion blating method, etc., which are already commonly used techniques, are applied. Next, the material thus obtained is immersed in an electrolyte solution having a liquid composition shown in the following table (liquid temperature: 80 DEG C., immersion time: 30 seconds to 1 minute).

CO3O415g/j! NaH2PO220g/ノ (NH4) 2 S04        80g/ノ酒
石酸カリウムナトリウム 200g/ノAに]I   
        20mg/ノNaCN       
   10mg/i!Na0f−1(pH調整用)  
  pH10そうするとAc7粒子4が一極、磁性層2
が子種としての局部電池が形成され、その酸化還元反応
作用により磁性層2表面に無数の電食孔3,3・・・が
形成される。このようにして得られた材料はその電w!
−質液から取り出した後、その表面をポリッシング研磨
し、磁性層2表面のA(J粒子を電食孔3中に埋め込ま
せるものでおる。この場合、Ac7粒子4の平衡電位が
Co−P磁性粒子に対して員でおると同時に、非磁性材
料でもあるためにかかる方法を取り得るものである。そ
して、磁性M2表面にイオンブレーティング法等により
付着される材料と、電食孔3中に埋め込まれる材料とが
同一のものであることによって製造工程が楽に進められ
るものでおる。なお、磁性層2の表面に付着される材料
は必ずしもAgである必要はなく、要するに、電解質液
中における局部電池の形成において一極となる材料を選
択すればよい。ちなみにAg以外の材料としてAu、C
u等も適用できる。
CO3O415g/j! NaH2PO220g/(NH4)2S04 80g/potassium sodium tartrate 200g/noA]I
20mg/NaCN
10mg/i! Na0f-1 (for pH adjustment)
pH 10 Then Ac7 particle 4 is one pole, magnetic layer 2
A local battery is formed as a seed, and numerous electrolytic corrosion holes 3, 3, . . . are formed on the surface of the magnetic layer 2 due to the redox reaction. The material obtained in this way is so electric!
- After taking it out from the liquid, the surface is polished to embed the A (J particles on the surface of the magnetic layer 2 into the electrolytic corrosion holes 3. In this case, the equilibrium potential of the Ac7 particles 4 is Co-P This method can be used because it is a non-magnetic material as well as a member of the magnetic particles.Then, the material attached to the surface of the magnetic M2 by an ion blating method etc. and the material inside the electrolytic corrosion hole 3 The manufacturing process is facilitated by the fact that the material embedded in the magnetic layer 2 is the same as the material embedded in the magnetic layer 2.The material attached to the surface of the magnetic layer 2 does not necessarily have to be Ag; All you have to do is select a material that will serve as one pole in the formation of the local battery.Incidentally, materials other than Ag include Au and C.
u etc. can also be applied.

第3図は更に本発明の別の製造方法を示している。この
方法では、前述の基材1表面にCo−P磁性粒子の磁性
層2が形成された材料を、このco−PFli性粒子に
対して貴の平衡電位をもつ原子(Ag)イオンを含む無
電解メッキ液に浸漬する。
FIG. 3 further shows another manufacturing method of the present invention. In this method, a material in which a magnetic layer 2 of Co-P magnetic particles is formed on the surface of the base material 1 described above is used as a material containing atoms (Ag) ions having a noble equilibrium potential with respect to the co-PFli particles. Immerse in electrolytic plating solution.

この無電解メッキ液は、この実施例では既述の表に示し
た液組成と同一のものを用いている。かくしてこの場合
には磁性層2表面にA(J粒子4が析出すると共に、こ
の析出したAg粒子4が一極、磁性層2が子種としての
局部電池が形成され、その酸化還元電解作用により磁性
層2表面に無数の電食孔3,3・・・が形成される。こ
の材料を無電解メッキ液から取り出してその表面をポリ
ッシング研磨し、Ac2粒子4を電食孔3中に埋め込ま
せることは、先の方法の場合と同様である。この後の製
造方法によれば、1つの工程で磁性層2表面へのAg粒
子4の析出と、局部電池作用による磁性層2表面の電食
孔3の形成とが行なわれるので、1工程省略される。
In this embodiment, the electroless plating solution used has the same composition as shown in the table above. Thus, in this case, A (J particles 4) are deposited on the surface of the magnetic layer 2, and a local battery is formed in which the deposited Ag particles 4 serve as one pole and the magnetic layer 2 serves as a child seed, and due to the redox electrolytic action of the Numerous electrolytic holes 3, 3... are formed on the surface of the magnetic layer 2. This material is taken out of the electroless plating solution and its surface is polished, and Ac2 particles 4 are embedded in the electrolytic holes 3. This is the same as in the case of the previous method. According to the subsequent manufacturing method, the precipitation of Ag particles 4 on the surface of the magnetic layer 2 and the electrolytic corrosion of the surface of the magnetic layer 2 due to the local battery action are performed in one step. Since the formation of the hole 3 is performed, one step is omitted.

しかしてこのように構成された磁気記録媒体の保磁力H
Cと磁性層2の厚さδとの関係を、第4図中に破線で示
して従来品と比較した。その結果、従来品は既に述べた
ように、磁性層2の厚さが増すようにつれて保磁力が略
反比例的に急低下していくのに対し、本発明品はこの図
からも明らかなように、磁性層2の厚さが増しても保磁
力がほとんど低下せず、高い値が保持されている。この
ような結果が得られたのは、磁性層2の表面の各磁性粒
子が、その周囲をAc1粒子4により取り囲まれて孤立
化し、それにより、磁気特性としての磁壁移動抵抗が大
きくなったためと考えられる。
However, the coercive force H of the magnetic recording medium constructed in this way
The relationship between C and the thickness δ of the magnetic layer 2 is shown by the broken line in FIG. 4 and compared with the conventional product. As a result, as mentioned above, in the conventional product, as the thickness of the magnetic layer 2 increases, the coercive force rapidly decreases almost inversely proportionally, whereas in the product of the present invention, as is clear from this figure, Even if the thickness of the magnetic layer 2 increases, the coercive force hardly decreases and remains at a high value. This result was obtained because each magnetic particle on the surface of the magnetic layer 2 was surrounded by Ac1 particles 4 and became isolated, which increased the domain wall movement resistance as a magnetic property. Conceivable.

なあ、第5図はこの後の製造方法において材料を無電解
メッキ液中へ浸漬してからの浸a時間(T>と保磁力(
Hc)及び飽和磁束(Ms)との関係を示したものでお
る。この図から判ることは、浸漬時間が長くなるにつれ
て保磁力が上昇するが、一方、飽和磁束は極くわずかし
か低下していないことである。この飽和磁束は磁性M2
の厚さと相関性があるから、磁性層2の厚さがそれ程薄
くなっていないのに保磁力が上昇していることを意味し
ている。
By the way, Figure 5 shows the immersion time a (T> and coercive force (
This figure shows the relationship between Hc) and saturation magnetic flux (Ms). It can be seen from this figure that as the immersion time increases, the coercive force increases, while the saturation magnetic flux decreases only slightly. This saturation magnetic flux is magnetic M2
Since there is a correlation with the thickness of , this means that the coercive force has increased even though the thickness of the magnetic layer 2 has not become much thinner.

なお、上記した実施例に用いたAQは比較的硬さの低い
材料であるため、この材料が磁性層2の表面に介在され
ることによって磁性層2表面の自己油滑性が良くなり、
磁気ヘッドの摺動性が高められる。また、磁性層2の磁
性粒子より貴の平衡電位をもつ材料を磁性層2表面に介
在させることで耐食性も良くなる。
Note that since the AQ used in the above-mentioned examples is a material with relatively low hardness, by interposing this material on the surface of the magnetic layer 2, the self-lubricating property of the surface of the magnetic layer 2 is improved.
The sliding properties of the magnetic head are improved. Further, by interposing a material having a nobler equilibrium potential than the magnetic particles of the magnetic layer 2 on the surface of the magnetic layer 2, corrosion resistance is also improved.

なお、上記各実施例では磁性層2の表面に微小孔3,3
・・・を形成させる手段として電食法を適用したが、例
えば逆に、磁性層2の表面に磁性粒子を析出させ、その
粒子を核として微小孔の層を析出形成させる電析法を用
いてもよい。
In each of the above embodiments, micro holes 3, 3 are formed on the surface of the magnetic layer 2.
Although the electrolytic corrosion method was applied as a means to form ..., for example, an electrodeposition method in which magnetic particles are deposited on the surface of the magnetic layer 2 and a layer of micropores is deposited and formed using the particles as nuclei is used. You can.

[発明の効果] 以上説明したように、本発明に係る磁気記録媒体によれ
ば、磁気記録層の厚さをそれ程薄くしなくとも高い保磁
力が得られる。また、そのことは再生出力の低下を回避
できることにもなり、さらに残留磁束を必要以上に大き
くしなくて済むため再生波形幅の抑制にもなる。したが
って磁気記録密度の大幅な向上が図れ、薄膜高密度の磁
気記録化の要請に応え得るものである。
[Effects of the Invention] As explained above, according to the magnetic recording medium according to the present invention, a high coercive force can be obtained without reducing the thickness of the magnetic recording layer so much. Moreover, this also makes it possible to avoid a decrease in the reproduction output, and furthermore, it is possible to suppress the reproduction waveform width since it is not necessary to increase the residual magnetic flux more than necessary. Therefore, the magnetic recording density can be greatly improved and the demand for thin film high density magnetic recording can be met.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る磁気記録媒体の断面図
、第2図はこの磁気記録媒体の第1の製造方法について
の製造工程の説明図、第3図は、本発明の第2の製造方
法についての製造工程の説明図、第4図は本発明に係る
磁気記録媒体と従来品との磁気記録特性(I堆層の厚さ
と保磁力との関係)の比較データを示す図、第5図はこ
の第2の製造方法にお(プる材料の無電解メッキ液中へ
の浸漬時間と保磁力及び飽和磁束との関係の説明図であ
る。 1・・・基材、2・・・磁性層、3・・・微小孔(電食
孔)、4・・・非磁性材料(ACJ粒子)。
FIG. 1 is a cross-sectional view of a magnetic recording medium according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the manufacturing process of a first manufacturing method of this magnetic recording medium, and FIG. 3 is a cross-sectional view of a magnetic recording medium according to an embodiment of the present invention. 2 is an explanatory diagram of the manufacturing process for the manufacturing method of No. 2, and FIG. 4 is a diagram showing comparative data of the magnetic recording characteristics (relationship between the thickness of the I-layer and the coercive force) between the magnetic recording medium according to the present invention and a conventional product. , FIG. 5 is an explanatory diagram of the relationship between the immersion time of the material applied in the second manufacturing method in the electroless plating solution, coercive force, and saturation magnetic flux. 1... Base material, 2 . . . Magnetic layer, 3. Micropores (electrolytic holes), 4. Nonmagnetic material (ACJ particles).

Claims (1)

【特許請求の範囲】 1、基材表面に形成される磁性粒子の集合体としての磁
性層の表面に無数の磁性粒子間隙が形成され、該磁性粒
子間隙に該磁性粒子よりも磁性が弱いか、非磁性、又は
反磁性の材料が介在されてなることを特徴とする磁気記
録媒体。 2、基材表面に形成される磁性粒子の集合体としての磁
性層の表面に、該磁性粒子に対して貴の平衡電位をもつ
粒子を略均一な分散状態で付着させ、次にこの材料を電
解質液に浸漬して前記貴の平衡電位をもつ粒子と磁性層
との局部電池作用により該磁性層の表面に電食孔を形成
させ、しかる後、この電食孔中に前記磁性粒子よりも磁
性が弱いか、非磁性、又は反磁性の材料を埋め込むよう
にしたことを特徴とする磁気記録媒体の製造方法。 3、基材表面に磁性粒子の集合体としての磁性層が形成
される材料を、該磁性粒子に対して貴の平衡電位をもつ
原子イオンを含む無電解メッキ液に浸漬して該原子イオ
ンを前記磁性層の表面に析出させると共に、該析出粒子
と前記磁性層との局部電池作用により該磁性層の表面に
電食孔を形成させ、次にこの電食孔中に前記磁性粒子よ
りも磁性が弱いか非磁性、又は反磁性の材料を埋め込む
ようにしたことを特徴とする磁気記録媒体の製造方法。
[Claims] 1. Innumerable gaps between magnetic particles are formed on the surface of the magnetic layer as an aggregate of magnetic particles formed on the surface of the base material, and the gap between the magnetic particles has weaker magnetism than the magnetic particles. A magnetic recording medium characterized in that a non-magnetic or diamagnetic material is interposed therebetween. 2. On the surface of the magnetic layer, which is an aggregate of magnetic particles formed on the surface of the base material, particles having a noble equilibrium potential with respect to the magnetic particles are adhered in a substantially uniformly dispersed state, and then this material is Electrolytic holes are formed on the surface of the magnetic layer by the local cell action of the magnetic layer and the particles having the noble equilibrium potential by being immersed in the electrolytic solution, and then, in the electrolytic hole, more than the magnetic particles 1. A method for manufacturing a magnetic recording medium, characterized in that a material with weak magnetism, non-magnetic properties, or diamagnetic properties is embedded. 3. A material on which a magnetic layer as an aggregate of magnetic particles is formed on the surface of the base material is immersed in an electroless plating solution containing atomic ions having a noble equilibrium potential with respect to the magnetic particles to remove the atomic ions. At the same time as depositing on the surface of the magnetic layer, electrolytic holes are formed on the surface of the magnetic layer by the local cell action of the precipitated particles and the magnetic layer, and then in the electrolytic holes there are particles that are more magnetic than the magnetic particles. 1. A method for producing a magnetic recording medium, comprising embedding a material that is weakly magnetic, non-magnetic, or diamagnetic.
JP61290704A 1986-12-05 1986-12-05 Method of manufacturing magnetic recording medium Expired - Lifetime JP2521932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61290704A JP2521932B2 (en) 1986-12-05 1986-12-05 Method of manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61290704A JP2521932B2 (en) 1986-12-05 1986-12-05 Method of manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS63144419A true JPS63144419A (en) 1988-06-16
JP2521932B2 JP2521932B2 (en) 1996-08-07

Family

ID=17759431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61290704A Expired - Lifetime JP2521932B2 (en) 1986-12-05 1986-12-05 Method of manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2521932B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619824A (en) * 1984-06-25 1986-01-17 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS61220128A (en) * 1985-03-26 1986-09-30 Hitachi Metals Ltd Magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619824A (en) * 1984-06-25 1986-01-17 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS61220128A (en) * 1985-03-26 1986-09-30 Hitachi Metals Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JP2521932B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
US4242710A (en) Thin film head having negative magnetostriction
JPH0196385A (en) Control of electroless plating
US5372698A (en) High magnetic moment thin film head core
US4150172A (en) Method for producing a square loop magnetic media for very high density recording
JP3102505B2 (en) Method for manufacturing soft magnetic multilayer plating film, soft magnetic multilayer plating film, and magnetic head
US3393982A (en) Ferromagnetic storage devices having uniaxial anisotropy
JPS63144419A (en) Magnetic recording medium and its production
US3360397A (en) Process of chemically depositing a magnetic cobalt film from a bath containing malonate and citrate ions
JPS63149827A (en) Magnetic recording medium and its production
US3685029A (en) Magnetic memory member
US3549417A (en) Method of making isocoercive magnetic alloy coatings
JP2522246B2 (en) Method of manufacturing thin film magnetic recording medium
US20080003698A1 (en) Film having soft magnetic properties
JPH0772929B2 (en) Method for forming a magnetic pole of a magnetic device
JP2696826B2 (en) Manufacturing method of magnetic recording medium
US3549418A (en) Magnetic recording films of cobalt
JPH0515790B2 (en)
JP2963230B2 (en) Manufacturing method of magnetic recording medium
JP2944133B2 (en) Manufacturing method of magnetic disk substrate
KR940006853B1 (en) Magnetic recording medium and manufacturing method thereof
JPS63134668A (en) Magnetic plating solution
JPS63302508A (en) Magnetic plating solution
Littwin Improved flat Ni-Fe-film elements obtained by diffusion of an electroplated nonmagnetic layer
JPH06120028A (en) Cobalt-nickel-phosphorus alloy magnetic film and magnetism recording medium thereof as well as manufacturing method thereof
KR20120100108A (en) Manufacturing method of cop alloy thin film and perpendicular magnetic recording medium