JP2521932B2 - Method of manufacturing magnetic recording medium - Google Patents

Method of manufacturing magnetic recording medium

Info

Publication number
JP2521932B2
JP2521932B2 JP61290704A JP29070486A JP2521932B2 JP 2521932 B2 JP2521932 B2 JP 2521932B2 JP 61290704 A JP61290704 A JP 61290704A JP 29070486 A JP29070486 A JP 29070486A JP 2521932 B2 JP2521932 B2 JP 2521932B2
Authority
JP
Japan
Prior art keywords
magnetic
particles
magnetic layer
recording medium
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61290704A
Other languages
Japanese (ja)
Other versions
JPS63144419A (en
Inventor
毅 宮林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP61290704A priority Critical patent/JP2521932B2/en
Publication of JPS63144419A publication Critical patent/JPS63144419A/en
Application granted granted Critical
Publication of JP2521932B2 publication Critical patent/JP2521932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/743Patterned record carriers, wherein the magnetic recording layer is patterned into magnetic isolated data islands, e.g. discrete tracks
    • G11B5/746Bit Patterned record carriers, wherein each magnetic isolated data island corresponds to a bit
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フロッピーディスク、ハードディスク、カ
セットテープ等としての磁気記録媒体と、その製造方法
に関するものである。
TECHNICAL FIELD The present invention relates to a magnetic recording medium such as a floppy disk, a hard disk, a cassette tape, etc., and a method for manufacturing the same.

[従来技術] この種の磁気記録媒体においては、記録密度の向上が
今日最も重要な技術課題の1つとなっている。ところで
この記録密度の主要パラメータは、保磁力Hc、残留磁束
Br、及び磁気記録層の厚さδであるが、これらパラメー
タと電磁気特性とは次の関係にある。すなわち、磁気ヘ
ッドの再生出力をE、再生波形の波形幅をWとすると、 E∝Br・(Hc/Br)β・δ1−α W∝(Br/Hc)β・δα ここで、α=0.85〜0.50 β=0.15〜0.50 そこで磁気記録媒体としての記録密度を向上させるに
は再生出力Eの低下をできるだけ抑え、波形幅Wを極力
小さくすればよいことになる。そのためには上記関係よ
り保磁力Hcを大きくすればよいことは明らかである。
[Prior Art] In this type of magnetic recording medium, improvement of recording density is one of the most important technical problems today. By the way, the main parameters of this recording density are coercive force Hc and residual magnetic flux.
Regarding Br and the thickness δ of the magnetic recording layer, these parameters and electromagnetic characteristics have the following relationship. That is, if the reproduction output of the magnetic head is E and the waveform width of the reproduction waveform is W, then E∝Br · (Hc / Br) β · δ 1-α W∝ (Br / Hc) β · δ α where α = 0.85 to 0.50 β = 0.15 to 0.50 Therefore, in order to improve the recording density of the magnetic recording medium, it is necessary to suppress the decrease of the reproduction output E as much as possible and reduce the waveform width W as much as possible. For that purpose, it is clear that the coercive force Hc should be increased from the above relation.

[発明が解決しようとする問題点] しかしながら、保磁力Hcと磁気記録層の厚さδとは、
従来、第4図に実線の曲線で示したように大概反比例の
関係にある。したがって保磁力Hcを大きくしようとする
と、磁気記録層の厚さδを薄くしなければならない。し
かし近年、磁気記録の高密度化の要請から既に超薄膜化
へ移行してきており、これ以上磁気記録媒体の厚さδを
薄くすることは品質管理上限界がある。また、磁気記録
層の厚さδを薄くすることは再生出力Eを低下させるこ
とになり、さらにその分残留磁束Brを大きくしてカバー
しようとすれば、今度は波形幅Wが大きくなって、却っ
て記録密度を低下させることになるという問題がある。
[Problems to be Solved by the Invention] However, the coercive force Hc and the thickness δ of the magnetic recording layer are
Conventionally, the relationship is generally inversely proportional as shown by the solid curve in FIG. Therefore, in order to increase the coercive force Hc, the thickness δ of the magnetic recording layer must be reduced. However, in recent years, there has been a shift to ultra-thin film due to the demand for higher density of magnetic recording, and there is a limit in quality control to further reduce the thickness δ of the magnetic recording medium. Further, reducing the thickness δ of the magnetic recording layer lowers the reproduction output E, and if the residual magnetic flux Br is increased correspondingly to cover it, the waveform width W is increased, On the contrary, there is a problem that the recording density is lowered.

[発明の目的] 本発明はかかる従来の問題点に鑑みて為されたもの
で、その目的とするところは、磁気記録層の厚さを薄く
しなくとも高い保磁力が得られる磁気記録媒体と、その
製造方法を提供するにある。これにより磁気記録媒体と
しての記録密度の向上を図らんとするものである。
[Object of the Invention] The present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a magnetic recording medium capable of obtaining a high coercive force without reducing the thickness of the magnetic recording layer. , To provide a manufacturing method thereof. This is intended to improve the recording density of the magnetic recording medium.

[問題点を解決するための手段] かかる目的を達成するため、本発明にかかる磁気記録
媒体の第1の製造方法は、基材表面に形成される磁性粒
子の集合体としての磁性層の表面に、該磁性粒子に対し
て貴の平衡電位をもつ粒子を略均一な分散状態で付着さ
せ、次にこの材料を電解質液に浸漬して前記貴の平衡電
位をもつ粒子と磁性層との局部電池作用により該磁性層
の表面に電食孔を形成させ、しかる後、この電食孔中に
前記磁性粒子よりも磁性が弱いか、非磁性、又は反磁性
の材料を埋め込むことを要旨としている。
[Means for Solving the Problems] In order to achieve such an object, the first method for producing a magnetic recording medium according to the present invention is the surface of a magnetic layer as an aggregate of magnetic particles formed on the surface of a base material. , Particles having a noble equilibrium potential are adhered to the magnetic particles in a substantially uniform dispersion state, and this material is then immersed in an electrolyte solution to localize the particles having the noble equilibrium potential and the magnetic layer. The gist is that an electrolytic pit is formed on the surface of the magnetic layer by a cell action, and thereafter, a material having weaker magnetism than the magnetic particles or a non-magnetic or diamagnetic material is embedded in the electrolytic pit. .

また、磁気記録媒体の第2の製造方法は、基材表面に
磁性粒子の集合体としての磁性層が形成される材料を、
該磁性粒子に対して貴の平衡電位をもつ原子イオンを含
む無電解メッキ液に浸漬して該原子イオンを前記磁性層
の表面に析出させると共に、該析出粒子と前記磁性層と
の局部電池作用により該磁性層の表面に電食孔を形成さ
せ、次にこの電食孔中に前記磁性粒子よりも磁性が弱い
か非磁性、又は反磁性の材料を埋め込むことを要旨とし
ている。
A second method of manufacturing a magnetic recording medium is to use a material for forming a magnetic layer as an aggregate of magnetic particles on the surface of a base material.
The magnetic particles are immersed in an electroless plating solution containing atomic ions having a noble equilibrium potential to deposit the atomic ions on the surface of the magnetic layer, and a local cell action of the deposited particles and the magnetic layer. Thus, an electrolytic pit is formed on the surface of the magnetic layer, and then a material having a weaker magnetism than the magnetic particles, a nonmagnetic material, or a diamagnetic material is embedded in the electrolytic pit.

[作用] このように構成された第1の発明においては、磁性粒
子の集合体としての磁性層の表面に、磁性粒子対して貴
の平衡電位をもつ粒子を略均一な分散状態で付着し、こ
れを電解質液に浸漬すると、前記付着粒子と磁性層との
間が局部電池となり、磁性層の表面に電食孔が無数に形
成される。このため、付着粒子が付された部分の磁性層
のみを残すこのができる。この後、前記電食孔中に前記
磁性粒子よりも磁性が弱いか、非磁性、又は反磁性の材
料を埋め込むことにより、前記磁性粒子を孤立化させる
ことができるのである。このため、磁気記録層の厚さを
薄くしなくとも高い保磁力が得られ、記録密度が高い磁
気記録媒体を得ることができる。
[Operation] In the first aspect of the invention thus configured, particles having a noble equilibrium potential with respect to the magnetic particles are attached to the surface of the magnetic layer as an aggregate of the magnetic particles in a substantially uniform dispersion state, When this is immersed in an electrolyte solution, a local battery is formed between the adhered particles and the magnetic layer, and countless electrolytic corrosion holes are formed on the surface of the magnetic layer. Therefore, it is possible to leave only the magnetic layer in the portion to which the adhered particles are attached. After that, the magnetic particles can be isolated by embedding a material having weaker magnetism than the magnetic particles or a non-magnetic or diamagnetic material into the electrolytic corrosion holes. For this reason, a high coercive force can be obtained without reducing the thickness of the magnetic recording layer, and a magnetic recording medium with a high recording density can be obtained.

また、第2の発明においては、磁性粒子の集合体とし
ての磁性層を、磁性粒子に対して貴の平衡電位をもつ原
子イオンを含む無電解メッキ液に浸漬すると、磁性層の
表面に前記原子イオンが析出され、この析出した原子イ
オンと前記磁性層との間が局部電池となることにより、
磁性層の表面に電食孔が無数に形成される。このため、
原子イオンが析出した部分の磁性層のみを残すことがで
きる。この後に、前記電食孔中に前記磁性粒子よりも磁
性が弱いか、非磁性、又は反磁性の材料を埋め込むこと
により、前記磁性粒子を孤立化させることができるので
ある。このため、第1の発明と同様に、磁気記録層の厚
さを薄くしなくとも高い保磁力が得られ、記録密度が高
い磁気記録媒体を得ることができる。
Further, in the second invention, when the magnetic layer as an aggregate of magnetic particles is immersed in an electroless plating solution containing atomic ions having a noble equilibrium potential with respect to the magnetic particles, the above-mentioned atoms are formed on the surface of the magnetic layer. Ions are deposited, and by forming a local battery between the deposited atomic ions and the magnetic layer,
Countless electrolytic holes are formed on the surface of the magnetic layer. For this reason,
Only the magnetic layer where the atomic ions are deposited can be left. After that, the magnetic particles can be isolated by embedding a material having weaker magnetism than the magnetic particles or a non-magnetic or diamagnetic material into the electrolytic corrosion holes. Therefore, similar to the first invention, a high coercive force can be obtained without reducing the thickness of the magnetic recording layer, and a magnetic recording medium having a high recording density can be obtained.

[実施例] 第1図は、本発明の一実施例に係る磁気記録媒体を示
したものである。この図においては、例えば、アルミニ
ウム基板上に非磁性のNi−P系結晶粒子の集合体である
非磁性層が形成された基材1の表面に、強磁性のCo−P
系結晶粒子の集合体である磁性層2が形成されている。
この磁性層2の厚さは、約500〜700Å程度であるが、そ
の表面には径,深さともに約100〜200Å程度の微小孔3,
3・・・が各磁性粒子間の間隙に位置し無数に介在さ
れ、該各微小孔3中に前記Co−P系磁性粒子よりも磁性
の弱い、又は、非磁性か反磁性の材料4が介在されてい
る。ちなみにこの実施例では非磁性材料である銀(Ag)
粒子が介在されている。
[Embodiment] FIG. 1 shows a magnetic recording medium according to an embodiment of the present invention. In this figure, for example, a ferromagnetic Co-P film is formed on the surface of a base material 1 on which a non-magnetic layer, which is an aggregate of non-magnetic Ni-P-based crystal particles, is formed on an aluminum substrate.
A magnetic layer 2, which is an aggregate of system crystal grains, is formed.
The magnetic layer 2 has a thickness of about 500 to 700Å, and the surface thereof has micropores 3 with a diameter and depth of about 100 to 200Å.
3 are located in the gaps between the magnetic particles and are innumerably interposed, and in each of the micropores 3, there is a material 4 which is weaker in magnetism than the Co-P magnetic particles, or nonmagnetic or diamagnetic. Intervened. Incidentally, in this embodiment, silver (Ag), which is a non-magnetic material
Particles are interposed.

次にこの磁気記録媒体の製造方法について述べる。そ
の1つの方法は、第2図にも示したように、初めに基材
1表面のCo−P系磁性層2の表面に、このCo−P磁性粒
子に対して器の平衡電位をもつAg粒子4を略均一な分散
状態で付着させる。この手段としては、既に慣用技術と
なっているスパッタリング法、蒸着法、或いはイオンプ
レーティング法等が適用される。次にこのようにして得
られた材料を次表に示す液組成の電解質液中に浸漬(液
温約80℃,浸漬時間30秒〜1分間)する。
Next, a method of manufacturing this magnetic recording medium will be described. As shown in FIG. 2, one of the methods is as follows. First, on the surface of the Co—P-based magnetic layer 2 on the surface of the base material 1, Ag having an equilibrium potential of the vessel with respect to the Co—P magnetic particles is used. The particles 4 are attached in a substantially uniform dispersed state. As this means, a sputtering method, a vapor deposition method, an ion plating method or the like, which has already been a common technique, is applied. Next, the material thus obtained is immersed in an electrolyte solution having a solution composition shown in the following table (liquid temperature of about 80 ° C., immersion time of 30 seconds to 1 minute).

CoSO4 15g/ NaH2PO2 20g/ (NH42SO4 80g/ 酒石酸カリウムナトリウム 200g/ Ag I 20mg/ NaCN 10mg/ NaOH(pH調整用) pH10 そうするとAg粒子4が−極、磁性層2が+極としての
局部電池が形成され、その酸化還元反応作用により磁性
層2表面に無数の電食孔3,3・・・が形成される。この
ようにして得られた材料はその電解質液から取り出した
後、その表面をポリッシング研磨し、磁性層2表面のAg
粒子を電食孔3中に埋め込ませるものである。この場
合、Ag粒子4の平衡電位がCo−P磁性粒子に対して貴で
あると同時に、非磁性材料でもあるためにかかる方法を
取り得るものである。そして、磁性層2表面にイオンプ
レーティング法等により付着される材料と、電食孔3中
に埋め込まれる材料とが同一のものであることによって
製造工程が楽に進められるものである。なお、磁性層2
の表面に付着される材料は必ずしもAgである必要はな
く、要するに、電解質液中における局部電池の形成にお
いて−極となる材料を選択すればよい。ちなみにAg以外
の材料としてAu,Cu等も適用できる。
CoSO 4 15g / NaH 2 PO 2 20g / (NH 4 ) 2 SO 4 80g / Potassium sodium tartrate 200g / Ag I 20mg / NaCN 10mg / NaOH (for pH adjustment) pH 10 Then Ag particles 4 -polar A local battery as a positive electrode is formed, and countless electrolytic corrosion holes 3, 3, ... Are formed on the surface of the magnetic layer 2 by the redox reaction action. The material thus obtained was taken out of the electrolyte solution, and then the surface was polished and polished to remove Ag on the surface of the magnetic layer 2.
The particles are embedded in the electrolytic corrosion hole 3. In this case, the equilibrium potential of the Ag particles 4 is noble with respect to the Co-P magnetic particles, and at the same time, it is a non-magnetic material, and therefore such a method can be adopted. The manufacturing process can be facilitated by using the same material that is attached to the surface of the magnetic layer 2 by the ion plating method or the like and the material that is embedded in the electrolytic corrosion hole 3. The magnetic layer 2
The material adhered to the surface of is not necessarily Ag, and in short, it is sufficient to select a material that is a negative electrode in the formation of the local battery in the electrolyte solution. Incidentally, Au, Cu, etc. can be applied as a material other than Ag.

第3図は更に本発明の別の製造方法を示している。こ
の方法では、前述の基材1表面にCo−P磁性粒子の磁性
層2が形成された材料を、このCo−P磁性粒子に対して
貴の平衡電位をもつ原子(Ag)イオンを含む無電解メッ
キ液に浸漬する。この無電解メッキ液は、この実施例で
は既述の表に示した液組成と同一のものを用いている。
かくしてこの場合には磁性層2表面にAg粒子4が析出す
ると共に、この析出したAg粒子4が−極、磁性層2が+
極として局部電池が形成され、その酸化還元電解作用に
より磁性層2表面に無数の電食孔3,3・・・が形成され
る。この材料を無電解メッキ液から取り出してその表面
をポリッシング研磨し、Ag粒子4を電食孔3中に埋め込
ませることは、先の方法の場合と同様である。この後の
製造方法によれば、1つの工程で磁性層2表面へのAg粒
子4の析出と、局部電池作用による磁性層2表面の電食
孔3の形成とが行なわれるので、1工程省略される。
FIG. 3 further shows another manufacturing method of the present invention. In this method, the above-mentioned material in which the magnetic layer 2 of Co—P magnetic particles is formed on the surface of the base material 1 is used as a material containing atomic (Ag) ions having a noble equilibrium potential with respect to the Co—P magnetic particles. Immerse in electrolytic plating solution. In this embodiment, this electroless plating solution has the same composition as that shown in the above table.
Thus, in this case, the Ag particles 4 are deposited on the surface of the magnetic layer 2, the deposited Ag particles 4 are the-pole, and the magnetic layer 2 is +.
A local battery is formed as a pole, and countless electrolytic corrosion holes 3, 3, ... Are formed on the surface of the magnetic layer 2 by its redox electrolysis action. Taking out this material from the electroless plating solution and polishing the surface thereof to embed the Ag particles 4 in the electrolytic corrosion holes 3 is the same as in the case of the previous method. According to the manufacturing method thereafter, the precipitation of Ag particles 4 on the surface of the magnetic layer 2 and the formation of the electrolytic corrosion holes 3 on the surface of the magnetic layer 2 due to the local cell action are performed in one step, so that one step is omitted. To be done.

しかしてこのように構成された磁気記録媒体の保磁力
Hcと磁性層2の厚さδとの関係を、第4図中に破線で示
して従来品と比較した。その結果、従来品は既に述べた
ように、磁性層2の厚さが増すようにつれて保磁力が略
反比例的に急低下していくのに対し、本発明品はこの図
からも明らかなように、磁性層2の厚さが増しても保磁
力がほとんど低下せず、高い値が保持されている。この
ような結果が得られたのは、磁性層2の表面の各磁性粒
子が、その周囲をAg粒子4により取り囲まれて孤立化
し、それにより、磁気特性としての磁壁移動抵抗が大き
くなったためと考えられる。
However, the coercive force of the magnetic recording medium thus constructed is
The relationship between Hc and the thickness δ of the magnetic layer 2 is shown by a broken line in FIG. 4 and compared with the conventional product. As a result, as described above, in the conventional product, the coercive force drastically decreases in inverse proportion to the increase in the thickness of the magnetic layer 2, whereas in the product of the present invention, it is clear from this figure. Even when the thickness of the magnetic layer 2 is increased, the coercive force is hardly reduced and a high value is maintained. Such a result was obtained because each magnetic particle on the surface of the magnetic layer 2 was surrounded by the Ag particles 4 and was isolated, thereby increasing the domain wall motion resistance as a magnetic characteristic. Conceivable.

なお、第5図はこの後の製造方法において材料を無電
解メッキ液中へ浸漬してからの浸漬時間(T)と保磁力
(Hc)及び飽和磁束(Ms)との関係を示したものであ
る。この図から判ることは、浸漬時間が長くなるにつれ
て保磁力が上昇するが、一方、飽和磁束は極くわずかし
か低下していないことである。この飽和磁束は磁性層2
の厚さと相関性があるから、磁性層2の厚さがそれ程薄
くなっていないのに保磁力が上昇していることを意味し
ている。
FIG. 5 shows the relationship between the immersion time (T) after immersion of the material in the electroless plating solution, the coercive force (Hc) and the saturation magnetic flux (Ms) in the subsequent manufacturing method. is there. It can be seen from this figure that the coercive force increases as the immersion time increases, while the saturation magnetic flux decreases only slightly. This saturation magnetic flux is generated by the magnetic layer 2
It means that the coercive force is increased even though the thickness of the magnetic layer 2 is not so thin because it has a correlation with the thickness.

なお、上記した実施例に用いたAgは比較的硬さの低い
材料であるため、この材料が磁性層2の表面に介在され
ることによって磁性層2表面の自己油滑性が良くなり、
磁気ヘッドの摺動性が高められる。また、磁性層2の磁
性粒子より貴の平衡電位をもつ材料を磁性層2表面に介
在させることで耐食性も良くなる。
Since Ag used in the above-mentioned examples is a material having a relatively low hardness, the self-lubricity of the surface of the magnetic layer 2 is improved by interposing this material on the surface of the magnetic layer 2.
The slidability of the magnetic head is improved. Further, by interposing a material having a higher equilibrium potential than the magnetic particles of the magnetic layer 2 on the surface of the magnetic layer 2, the corrosion resistance is improved.

[発明の効果] 以上詳述したように、本発明の磁気記録媒体の製造方
法によれば、磁性粒子の集合体としての磁性層に電食孔
を局部電池作用により形成し、その電食孔に磁性層の磁
性粒子よりも磁性が弱いか、非磁性、又は反磁性の材料
を埋め込むことにより、磁性層の磁性粒子を孤立化する
ことができる。このために磁気特性としての磁壁移動抵
抗が大きくなり、磁性層の厚さが同程度のものに比べよ
り高い保磁力を得ることができる。このため、再生出力
の低下を回避できることにもなり、さらに残留磁束を必
要以上に大きくしなくても住むため、再生波形幅の抑制
にもなる。したがって、磁気記録密度の大幅な向上が図
れ、薄膜高密度の磁気記録媒体を提供することができる
のである。
[Effects of the Invention] As described in detail above, according to the method for manufacturing a magnetic recording medium of the present invention, an electrolytic pit is formed in a magnetic layer as an aggregate of magnetic particles by a local cell action, and the electrolytic pit is formed. The magnetic particles in the magnetic layer can be isolated by embedding a material having weaker magnetism than the magnetic particles in the magnetic layer, or a non-magnetic or diamagnetic material. For this reason, the domain wall motion resistance as a magnetic property becomes large, and a higher coercive force can be obtained as compared with a magnetic layer having the same thickness. For this reason, it is possible to avoid a reduction in the reproduction output, and it is possible to live without increasing the residual magnetic flux more than necessary, so that the reproduction waveform width can be suppressed. Therefore, the magnetic recording density can be significantly improved, and a thin film high density magnetic recording medium can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係る磁気記録媒体の断面
図、第2図はこの磁気記録媒体の第1の製造方法につい
ての製造工程の説明図、第3図は、本発明の第2の製造
方法についての製造工程の説明図、第4図は本発明に係
る磁気記録媒体と従来品との磁気記録特性(磁性層の厚
さと保磁力との関係)の比較データを示す図、第5図は
この第2の製造方法における材料の無電解メッキ液中へ
の浸漬時間と保磁力及び飽和磁束との関係の説明図であ
る。 1……基材、2……磁性層、3……微小孔(電食孔)、
4……非磁性材料(Ag粒子)。
FIG. 1 is a sectional view of a magnetic recording medium according to an embodiment of the present invention, FIG. 2 is an explanatory view of a manufacturing process for a first manufacturing method of this magnetic recording medium, and FIG. FIG. 4 is an explanatory view of a manufacturing process of the manufacturing method of FIG. 2, FIG. 4 is a view showing comparative data of magnetic recording characteristics (relationship between magnetic layer thickness and coercive force) between the magnetic recording medium according to the present invention and a conventional product, FIG. 5 is an explanatory view of the relationship between the immersion time of the material in the electroless plating solution and the coercive force and the saturation magnetic flux in the second manufacturing method. 1 ... Substrate, 2 ... Magnetic layer, 3 ... Micropores (electrolytic corrosion holes),
4 ... Non-magnetic material (Ag particles).

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基材表面に形成される磁性粒子の集合体と
しての磁性層の表面に、該磁性粒子に対して貴の平衡電
位をもつ粒子を略均一な分散状態で付着させ、次にこの
材料を電解質液に浸漬して前記貴の平衡電位をもつ粒子
と磁性層との局部電池作用により該磁性層の表面に電食
孔を形成させ、しかる後、この電食孔中に前記磁性粒子
よりも磁性が弱いか、非磁性、又は反磁性の材料を埋め
込むようにしたことを特徴とする磁気記録媒体の製造方
法。
1. Particles having a noble equilibrium potential with respect to the magnetic particles are adhered to the surface of a magnetic layer as an aggregate of magnetic particles formed on the surface of a base material in a substantially uniform dispersion state, and then, This material is immersed in an electrolyte solution to form an electrolytic pit on the surface of the magnetic layer by the local cell action of the particles having the noble equilibrium potential and the magnetic layer, and then the magnetic pit is formed in the electrolytic pit. A method of manufacturing a magnetic recording medium, characterized in that a material having weaker magnetism than particles, or a nonmagnetic or diamagnetic material is embedded.
【請求項2】基材表面に磁性粒子の集合体としての磁性
層が形成される材料を、該磁性粒子に対して貴の平衡電
位をもつ原子イオンを含む無電解メッキ液に浸漬して該
原子イオンを前記磁性層の表面に析出させると共に、該
析出粒子と前記磁性層との局部電池作用により該磁性層
の表面に電食孔を形成させ、次にこの電食孔中に前記磁
性粒子よりも磁性が弱いか非磁性、又は反磁性の材料を
埋め込むようにしたことを特徴とする磁気記録媒体の製
造方法。
2. A material for forming a magnetic layer as an aggregate of magnetic particles on the surface of a base material is dipped in an electroless plating solution containing atomic ions having a noble equilibrium potential with respect to the magnetic particles. Atomic ions are deposited on the surface of the magnetic layer, and an electrolytic pit is formed on the surface of the magnetic layer by a local cell action of the deposited particles and the magnetic layer, and then the magnetic particle is placed in the electrolytic pit. A method of manufacturing a magnetic recording medium, characterized in that a material having weaker magnetism, non-magnetism, or diamagnetism is embedded.
JP61290704A 1986-12-05 1986-12-05 Method of manufacturing magnetic recording medium Expired - Lifetime JP2521932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61290704A JP2521932B2 (en) 1986-12-05 1986-12-05 Method of manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61290704A JP2521932B2 (en) 1986-12-05 1986-12-05 Method of manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS63144419A JPS63144419A (en) 1988-06-16
JP2521932B2 true JP2521932B2 (en) 1996-08-07

Family

ID=17759431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61290704A Expired - Lifetime JP2521932B2 (en) 1986-12-05 1986-12-05 Method of manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2521932B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619824A (en) * 1984-06-25 1986-01-17 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS61220128A (en) * 1985-03-26 1986-09-30 Hitachi Metals Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPS63144419A (en) 1988-06-16

Similar Documents

Publication Publication Date Title
EP0013883B1 (en) Thin magnetic film heads
US4109287A (en) Process for recording information or sound and process for preparation of recording materials used therefor
CN100371989C (en) Soft magnetic thin film and magnetic recording head
US4150172A (en) Method for producing a square loop magnetic media for very high density recording
US4388367A (en) Perpendicular magnetic recording medium and fabrication
JP3102505B2 (en) Method for manufacturing soft magnetic multilayer plating film, soft magnetic multilayer plating film, and magnetic head
US4405677A (en) Post treatment of perpendicular magnetic recording media
JP2521932B2 (en) Method of manufacturing magnetic recording medium
US3702239A (en) Magnetic storage medium
US3704211A (en) Process for electroplating magnetic films for high density recording
US4581109A (en) Magnetic plated media and process thereof
JP2522246B2 (en) Method of manufacturing thin film magnetic recording medium
US4619872A (en) Magnetic plated media
JPS63149827A (en) Magnetic recording medium and its production
JP2007220777A (en) Soft magnetic thin film, its manufacturing method, and magnetic head
US3073762A (en) Electrodeposition of cobalt phosphorus alloys
JP3116125B2 (en) Method for manufacturing soft magnetic thin film
JPH0141990B2 (en)
JP2696826B2 (en) Manufacturing method of magnetic recording medium
US5182009A (en) Plating process
US3893824A (en) Ferromagnetic thin films by electroplating
JP3514800B2 (en) Soft magnetic thin film and method of manufacturing the same
US3549418A (en) Magnetic recording films of cobalt
JPH0515790B2 (en)
JP2662904B2 (en) Cobalt-nickel-phosphorus alloy magnetic film, magnetic recording medium therefor, and method of manufacturing the same