JPS63144406A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS63144406A
JPS63144406A JP29106586A JP29106586A JPS63144406A JP S63144406 A JPS63144406 A JP S63144406A JP 29106586 A JP29106586 A JP 29106586A JP 29106586 A JP29106586 A JP 29106586A JP S63144406 A JPS63144406 A JP S63144406A
Authority
JP
Japan
Prior art keywords
film
thin
magnetic recording
lubricating layer
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29106586A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29106586A priority Critical patent/JPS63144406A/en
Publication of JPS63144406A publication Critical patent/JPS63144406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve a still characteristic and S/N at the time of short wavelength recording and reproducing by disposing a thin Bi-S film on a high- polymer film and laminating a thin ferromagnetic metallic film and lubricating layer thereon. CONSTITUTION:After the thin B-S film 2 is disposed on the high-polymer film 1, the thin ferromagnetic metallic film 3 and the lubricating layer 4 are laminated thereon. The high-polymer film 1 consists of PE terephthalate, PE naphthalate, etc., and the thin Bi-S film 21 is formed by a high-frequency sputtering method using, for example, Bi2S3 as a target or is obtd. by a method for introducing H2S as gas and depositing Bi by evaporation under glow discharge. The thin ferromagnetic metallic film 3 consisting of Mn-Bi, Co-Ni, etc., is formed by an electron beam vapor deposition method, ion plating method, etc. The lubricating layer 4 consists of a fatty acid, fatty acid ester, fluorine compd., etc., alone or a mixture composed thereof or may be a combination thereof with amorphous carbon and plasma-polymerized film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度磁気記録に適する強磁性金属薄膜を磁気
記録層とする磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetic recording medium whose magnetic recording layer is a ferromagnetic metal thin film suitable for high-density magnetic recording.

従来の技術 Go−N土−〇あるいはGo−Orをはじめとする強磁
性金属薄膜を磁気記録層とする磁気記録媒体は高密度記
録用媒体として注目され、その優れた高密度記録性能が
発揮されている。しかし、塗布型磁気記録媒体と比較し
た場合、金属薄膜の走行性、耐摩耗性はまだ充分なもの
とは言い難い。そこで上記2つの問題を同時に改善すべ
く種々の保護潤滑層が検討されているが、保護潤滑層の
膜厚が大きくスペーシング損失になるといった問題が依
然として残されている。〔特開昭64−113303号
、同56−143540号、四68−133631号、
同58−146027号。
Conventional technology Magnetic recording media whose magnetic recording layer is a ferromagnetic metal thin film such as Go-N or Go-Or have attracted attention as high-density recording media, and their excellent high-density recording performance has been demonstrated. ing. However, when compared with coated magnetic recording media, the runnability and wear resistance of metal thin films are still far from satisfactory. Therefore, various protective lubricant layers have been studied in order to simultaneously improve the above two problems, but the problem that the thickness of the protective lubricant layer is large and causes a spacing loss still remains. [JP-A-64-113303, JP-A No. 56-143540, JP-A No. 468-133631,
No. 58-146027.

同61−120331号等の公報参照〕一方、磁気記録
層自身の形状により上記問題を解決する方法が検討され
〔特開昭59−92427号公報、米国特許第4,56
4,549号明細書等参照〕、この形状効果と上記した
保護潤滑膜の改良により、実用性の向上がはかられてい
る。
61-120331, etc.] On the other hand, methods of solving the above problem by changing the shape of the magnetic recording layer itself have been studied [JP-A-59-92427, U.S. Patent No. 4,56.
No. 4,549, etc.], this shape effect and the above-mentioned improvement of the protective lubricant film have led to improvements in practicality.

発明が解決しようとする問題点 しかしながら上記した構成では、高密度ディジタル記録
を目的とした時に、エラー率が不安定で改良が望まれて
いる。特にディスク状媒体や、回転ヘリカルスキャン方
式に適用可能な媒体として備えるべき、耐久性能、とり
わけ同一トラックをくり返し再生するスチル特性を満足
させようとすると、保護潤滑剤の種類が限られ、かつ必
要な潤滑剤量も多くなり、スペーシング損失が大きくな
り、信号対雑音比(以下S/Nと記す)の低下を伴なう
ことから改善が望まれていた。本発明は上記した事情に
鑑み、なされたもので、スチル特性を改善し、S/Nも
実用水準に保った磁気記録媒体を提供するものである。
Problems to be Solved by the Invention However, with the above configuration, when high-density digital recording is intended, the error rate is unstable and improvements are desired. In particular, the types of protective lubricants are limited and the types of protective lubricants required are limited, especially when trying to satisfy the durability performance that disk-shaped media and media that can be applied to the rotating helical scan method, especially the still characteristics that reproduce the same track repeatedly. Improvements have been desired since the amount of lubricant increases, the spacing loss increases, and the signal-to-noise ratio (hereinafter referred to as S/N) decreases. The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a magnetic recording medium with improved still characteristics and S/N maintained at a practical level.

問題点を解決するだめの手段 上記した問題点を解決するために、本発明の磁気記録媒
体は、高分子フィルム上にBi −S系薄膜を配した上
に強磁性金属薄膜、潤滑層を積層したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the magnetic recording medium of the present invention has a Bi-S thin film arranged on a polymer film, and then a ferromagnetic metal thin film and a lubricating layer laminated thereon. This is what I did.

作用 本発明の磁気記録媒体は上記した構成により、強磁性金
属薄膜の磁気特性5面内磁化膜では特に角形比が改善さ
れ、垂直磁化膜では特に磁気特性の垂直異方性が改善さ
れることから短波長出力が改良されS/Nが改良される
上に、下地のBi−8系薄膜の一部構成元素が強磁性金
属薄膜形成時に柱状微粒子の粒界拡散により、表面に部
分的に偏在するため、極圧下での磁気記録層の破壊が起
りにくくなるだめ、潤滑剤を薄くでき、スペーシング損
失も小さいので、S/Nも良好な特性が維持されること
になるのである。
The magnetic recording medium of the present invention has the above-described configuration, and the magnetic properties of the ferromagnetic metal thin film are improved, particularly in the squareness ratio in the case of an in-plane magnetized film, and in particular in the perpendicular anisotropy of the magnetic properties in the perpendicularly magnetized film. In addition to improving short wavelength output and improving S/N, some constituent elements of the underlying Bi-8 thin film are partially unevenly distributed on the surface due to grain boundary diffusion of columnar fine particles during the formation of the ferromagnetic metal thin film. Therefore, the magnetic recording layer is less likely to be destroyed under extreme pressure, the lubricant can be made thinner, the spacing loss is small, and good S/N characteristics are maintained.

実施例 以下、図面を参照しながら本発明の実施例について説明
する。第1図は本発明の第1の実施例の磁気記録媒体の
拡大断面図である。第1図で、1はポリエチレンテレフ
タレート、ポリエチレンナフタレート、ポリエーテルサ
ルフォン、ポリサルフォン、ポリカーボネート、ポリフ
ェニレンサルファイド、セルロースアセテートブチレー
ト、ボリアiトイミド、ポリイミド等の高分子フィルム
で2はBi−3系薄膜で例えばBi2 B5をターゲッ
トにして高周波スパッタリング法で形成するか、H2S
をガスとして導入して、グロー放電中でBiを蒸着する
等の方法で得られるもので、BiとSの原子比率はBi
/S =0.1〜0.5の範囲が磁気特性の改良と、耐
久性の向上の両面から適当である。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an enlarged sectional view of a magnetic recording medium according to a first embodiment of the present invention. In Figure 1, 1 is a polymer film such as polyethylene terephthalate, polyethylene naphthalate, polyether sulfone, polysulfone, polycarbonate, polyphenylene sulfide, cellulose acetate butyrate, boria i-toimide, polyimide, etc., and 2 is a Bi-3 thin film. For example, it can be formed by high frequency sputtering using Bi2B5 as a target, or H2S
It is obtained by introducing Bi as a gas and depositing Bi in a glow discharge, and the atomic ratio of Bi and S is Bi.
A range of /S = 0.1 to 0.5 is appropriate from the standpoint of both improving magnetic properties and improving durability.

Bi/Sが056を越えると耐久性が低下し、B工/S
が0.1以下になると、磁気特性が低下することがら適
当な範囲が定まる。上記したものは目安としてとらえる
べきであることは勿論で、磁気記録層を面内磁化膜とす
るか垂直磁化膜とするか或いは、必要な電磁変換特性が
得られれば、耐久性の向上に重点を置けばよいなど適宜
調整することができる。Bi −S系薄膜は、平均した
厚みとしては200Å以下〜20人までの範囲に選ぶの
が好ましい。それはひとつには、凹凸効果が耐久向上に
役立つのと、200Å以上になると、付着強度低下が起
ることがあるためである。3はMn −Bi 。
When Bi/S exceeds 056, durability decreases, and B/S
If it becomes 0.1 or less, the magnetic properties deteriorate, so an appropriate range is determined. Of course, the above should be taken as a guideline, and if the magnetic recording layer is made of an in-plane magnetization film or a perpendicular magnetization film, or if the necessary electromagnetic conversion characteristics are obtained, it is important to focus on improving durability. You can make adjustments as appropriate, such as by placing . The Bi-S thin film is preferably selected to have an average thickness of 200 Å or less to 20 Å or less. This is partly because the unevenness effect is useful for improving durability, and partly because when the thickness exceeds 200 Å, the adhesion strength may decrease. 3 is Mn-Bi.

Go−Ni 、 Go−Cr 、 Go−Mo 、 G
o−W、Go−Ti。
Go-Ni, Go-Cr, Go-Mo, G
o-W, Go-Ti.

Go−Ta、 Go−Ru、 Fa−Ag、 Go−3
m。
Go-Ta, Go-Ru, Fa-Ag, Go-3
m.

Go−Fe 、 Co−Pt 、 Go−Rh 、 G
o−0,Go−Os。
Go-Fe, Co-Pt, Go-Rh, G
o-0, Go-Os.

Go−Ni−0、Co−0r−Nb、 Go −Ni−
Cr 。
Go-Ni-0, Co-0r-Nb, Go-Ni-
Cr.

Go −Mn −Bi 、  などの強磁性金属薄膜で
電子ビーム蒸着法、イオンブレーティング法、イオンビ
ームデポジション法、スハソタ2ノ/グ法等で形成され
るものである。4は潤滑層で、脂肪酸、脂肪酸エステル
、フッ素化合物2等の単独又は混合物、或いは必要に応
じて、アモルファスカーボン、プラズマ重合膜との組み
合わせでもよい。
A ferromagnetic metal thin film such as Go-Mn-Bi is formed by an electron beam evaporation method, an ion blating method, an ion beam deposition method, a Suhasota2N/G method, or the like. Reference numeral 4 denotes a lubricating layer, which may be made of a fatty acid, a fatty acid ester, a fluorine compound 2, etc., alone or in combination, or, if necessary, in combination with amorphous carbon or a plasma polymerized film.

第2図は、第2の実施例の磁気記録媒体の拡大断面図で
、第2図で第1の実施例で述べた要素と共通でよいもの
については同一の番号を付しである。@2図で5は下塗
り層で、磁気記録層に微細な突起を設けて、更に耐久性
を改良するだめのもので、5i02 、 J!20s 
、カーボア CaCO3、BaSO4等の無機微粒子、
ポリ酢酸ビニル、ポリウレタン。
FIG. 2 is an enlarged cross-sectional view of a magnetic recording medium according to a second embodiment, and elements in FIG. 2 that may be common to those described in the first embodiment are given the same numbers. @2 In Figure 5, 5 is an undercoat layer, which has fine protrusions on the magnetic recording layer to further improve durability. 5i02, J! 20s
, Carbore Inorganic fine particles such as CaCO3 and BaSO4,
Polyvinyl acetate, polyurethane.

ポリイソプレン、アクリロニトリル、ブタジェン共重合
体、ポリスチレン、ポリアクリロニトリル。
Polyisoprene, acrylonitrile, butadiene copolymer, polystyrene, polyacrylonitrile.

ポリメチルメタクリレート、ポリエステル等の有機微粒
子のうち、直径60人から200人程鹿のものを選んで
、0.1〜100ケ/(μm )2程度、分散させて、
樹脂で高分子フィルム上に固定したものか、水溶性高分
子等のミミズ状隆起、或いはミミズ状隆起と、上記した
微粒子とのコンビネーション等から構成されるものであ
る。この上に積層する2 、3.4は第1の実施例での
べたもので最適な組み合わせを選択すればよい。
Among organic fine particles such as polymethyl methacrylate and polyester, particles with a diameter of about 60 to 200 deer were selected and dispersed at a rate of about 0.1 to 100 particles/(μm)2.
It is composed of something fixed on a polymer film with a resin, a worm-like protuberance of a water-soluble polymer, or a combination of a worm-like protuberance and the above-mentioned fine particles. 2 and 3.4 to be laminated on top of this are those described in the first embodiment, and the optimum combination may be selected.

以下、更に具体的な実施例を比較例との対比で説明する
。厚み10μmのポリエチレンテレフタレートフィルム
上にH2Sをo、5(l /min )導入しながら1
3.56 (MHz )の高周波グロー放電を起して、
Biを蒸発させ、Bi−8薄膜を70人(均一膜厚換算
で実際は凹凸ができていて、凹凸の高さは90人であっ
た)形成した。Bi/S =0.23  とした。その
上に、直径1mの円節キャンに沿わせてGo −Ni 
(Ni、 20 wt% )を3.5X10−5(To
rr)の酸素中で最小入射角45度で電子ビーム蒸着し
た。厚みQ、15μmのGo −Ni −0膜の保磁力
は1060 (Os)、角型比は0.92であった(テ
ープ人)0厚み10μのポリエチレンテレフタレートフ
ィルム上に直径100人の5i02微粒子を13ケ/μ
m ) 2ポリエステル樹脂で固定した上に、テープ人
と同じ手法でBi−8膜を4膜人(Bi /S = 0
.34 )配し、その上にGo −Or垂直磁化膜(O
r 20wt%)0.13μmを高周波スパンタリング
法で形成した(テープB)。
Hereinafter, more specific examples will be described in comparison with comparative examples. 1 while introducing H2S at a rate of 5 (l/min) onto a polyethylene terephthalate film with a thickness of 10 μm.
A high frequency glow discharge of 3.56 (MHz) is generated,
Bi was evaporated and a Bi-8 thin film was formed by 70 people (actually, unevenness was formed in terms of uniform film thickness, and the height of the unevenness was 90 people). Bi/S was set at 0.23. On top of that, Go-Ni is placed along a 1m diameter circular can
(Ni, 20 wt%) at 3.5X10-5 (To
Electron beam evaporation was performed in oxygen with a minimum incidence angle of 45 degrees. The coercive force of the Go-Ni-0 film with a thickness Q of 15 μm was 1060 (Os), and the squareness ratio was 0.92. 13 pieces/μ
m) After fixing with 2 polyester resin, 4 Bi-8 films were applied using the same method as the tape film (Bi/S = 0
.. 34) and a Go-Or perpendicular magnetization film (O
r20wt%) 0.13 μm by high frequency sputtering method (Tape B).

テープBで用いた5i02微粒子を配したフィルム上に
、Bi −S薄膜を配さすに夫h、Go−Ni−0膜、
 Go −Cr膜を同じ製造条件で形成した。得られた
Go−Ni−0膜の保磁力は9ss(Os)、角型比は
0.74であり(テープC)、Co−Cr膜の垂直方向
の保磁力は490(Oe)であった(テープD)。尚テ
ープBのGo−Cr膜の保持力は600(Oe)であっ
た。
A Bi-S thin film was placed on the film with the 5i02 fine particles used in Tape B, a Go-Ni-0 film, and a Go-Ni-0 film.
A Go-Cr film was formed under the same manufacturing conditions. The coercive force of the obtained Go-Ni-0 film was 9ss (Os), the squareness ratio was 0.74 (tape C), and the coercive force in the vertical direction of the Co-Cr film was 490 (Oe). (Tape D). The retention strength of the Go-Cr film of Tape B was 600 (Oe).

テープA−Dは共通して、真空蒸着法で、パーフロロオ
クタン酸を70人潤滑層として形成し、8ミリ幅の磁気
テープとした。
Tapes A to D were commonly formed using a vacuum evaporation method to form perfluorooctanoic acid as a 70-layer lubricant layer to form magnetic tapes with a width of 8 mm.

ギャップ長0.2μmのフェライトヘッドで記録再生と
、スチル特性を比較した。記録波長0.75μmでの再
生出力はテープ人がテープCより14(dB)大きく、
S/Nでは1 (dB)良好で、スチル特性は出力が初
期より2 dB低下するまでの時間で比較したところ、
テープ人は83分、テープCは47分であった。
Recording and reproduction using a ferrite head with a gap length of 0.2 μm and still characteristics were compared. The playback output at a recording wavelength of 0.75 μm is 14 (dB) larger than Tape C.
The S/N ratio is 1 (dB) good, and the still characteristics are compared based on the time it takes for the output to drop by 2 dB from the initial level.
Tape Person was 83 minutes long and Tape C was 47 minutes long.

記録波長0.5μmでの再生出力は、テープBの方がテ
ープDより3.7(dB)高く、S/Nでは2.4 (
dB)良好でメチル特性はテープBが56分、テープD
が22分で、夫々実施例の方がS/Nスチル特性共に優
位にあることがわかった、発明の効果 以上のように本発明によれば、スチル特性、短波長記録
再生時のS/N共に改良された磁気記録媒体が得られる
といったすぐれた効果がある。
The reproduction output of tape B at a recording wavelength of 0.5 μm is 3.7 (dB) higher than that of tape D, and the S/N is 2.4 (
dB) good and methyl characteristics are 56 minutes for tape B and tape D
was 22 minutes, and it was found that each of the examples was superior in both the S/N still characteristics. Effects of the Invention As described above, according to the present invention, the still characteristics and the S/N during short wavelength recording and reproduction are superior. In both cases, an improved magnetic recording medium can be obtained, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例に係る磁気記録媒体の拡
大断面図、第2図は本発明の第2の実施例に係る磁気記
録媒体の拡大断面図である。 1・・・・・・高分子フィルム、2・・・・・・Bi 
−S薄膜、3・・・・・強磁性金属薄膜、4・・・・・
・潤滑層、6・・・・・・下塗り層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名l 
・−高分子フィルム
FIG. 1 is an enlarged sectional view of a magnetic recording medium according to a first embodiment of the invention, and FIG. 2 is an enlarged sectional view of a magnetic recording medium according to a second embodiment of the invention. 1...Polymer film, 2...Bi
-S thin film, 3...Ferromagnetic metal thin film, 4...
- Lubricating layer, 6...Undercoat layer. Name of agent: Patent attorney Toshio Nakao and 1 other person
・-Polymer film

Claims (1)

【特許請求の範囲】[Claims] 高分子フィルム上にBi−S系薄膜を配した上に強磁性
金属薄膜、潤滑層を積層してなることを特徴とする磁気
記録媒体。
A magnetic recording medium comprising a Bi-S thin film disposed on a polymer film, a ferromagnetic metal thin film, and a lubricating layer laminated thereon.
JP29106586A 1986-12-05 1986-12-05 Magnetic recording medium Pending JPS63144406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29106586A JPS63144406A (en) 1986-12-05 1986-12-05 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29106586A JPS63144406A (en) 1986-12-05 1986-12-05 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS63144406A true JPS63144406A (en) 1988-06-16

Family

ID=17763968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29106586A Pending JPS63144406A (en) 1986-12-05 1986-12-05 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS63144406A (en)

Similar Documents

Publication Publication Date Title
JPH05342553A (en) Magnetic recording medium and its production
JPS63144406A (en) Magnetic recording medium
JPS62246129A (en) Magnetic recoding medium
JPS62128019A (en) Magnetic recording medium
JPH06215344A (en) Magnetic recording medium
JPH02179917A (en) Magnetic recording medium
JPH0354719A (en) Magnetic recording medium
JP2553621B2 (en) Magnetic recording media
JPS6267720A (en) Magnetic recording medium
JPS63102027A (en) Magnetic recording medium
JPH0268712A (en) Thin film magnetic recording medium
JPH01205716A (en) Magnetic recording medium
JPH02149917A (en) Magnetic recording medium
JPH0262715A (en) Magnetic recording medium
JPS61284829A (en) Magnetic recording medium
JPS61284830A (en) Magnetic recording medium
JPH01205717A (en) Magnetic recording medium
JPS62289921A (en) Magnetic recording medium
JPH01204214A (en) Magnetic recording medium
JPH01263913A (en) Magnetic recording medium
JPS6378339A (en) Production of magnetic recording medium
JPS62246125A (en) Magnetic recording medium
JPH02282919A (en) Magnetic recording medium
JPS63197023A (en) Magnetic recording medium
JPH01263920A (en) Magnetic recording medium