JPS63144138A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPS63144138A
JPS63144138A JP29177786A JP29177786A JPS63144138A JP S63144138 A JPS63144138 A JP S63144138A JP 29177786 A JP29177786 A JP 29177786A JP 29177786 A JP29177786 A JP 29177786A JP S63144138 A JPS63144138 A JP S63144138A
Authority
JP
Japan
Prior art keywords
refractive index
dopant
glass body
lowers
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29177786A
Other languages
Japanese (ja)
Inventor
Takeshi Kitagawa
毅 北川
Shuichi Shibata
修一 柴田
Masaharu Horiguchi
堀口 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP29177786A priority Critical patent/JPS63144138A/en
Publication of JPS63144138A publication Critical patent/JPS63144138A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01853Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/14Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with boron and fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/32Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium

Abstract

PURPOSE:To attain a refractive index distribution in high controllability and obtain the titled preform having low transmission loss and high quality, by heating a hollow tubular quartz glass containing a specific dopant, thereby evaporating said dopant. CONSTITUTION:A hollow tubular quartz glass 8 containing one or more dopants effective in decreasing refractive index such as fluorine and/or B2O3, etc., and optionally one or more dopants effective in increasing refractive index and selected from Zr, Y, Nb, Ta, Al, Ti and Ga is heated to evaporate the dopants and diffuse the inner dopant toward the inner and outer surface layers having decreased dopant concentration. A desired refractive index distribution can be formed by this process to obtain the titled preform free from the problem of interfacial mismatching.

Description

【発明の詳細な説明】 〔発明の産業上利用分野〕 本発明は、低損失光ファイバ用母材の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application of the Invention] The present invention relates to a method of manufacturing a preform for a low-loss optical fiber.

〔発明の従来技術〕[Prior art to the invention]

石英系光ファイバ用母材の製造方法として、近年ゾルゲ
ル法が検討されている。ゾルゲル法は、原料のアルコキ
シドを溶媒で希釈し、水を添加してゾル溶液を調製し、
一定温度で保持してゾル溶液をゲル化させ、このゲルを
乾燥後ガラス化する方法であり、■収率が高い、■大量
生産に通している、■多種類のドーパントの添加が可能
等の特徴を有している。
In recent years, a sol-gel method has been studied as a method for manufacturing a base material for silica-based optical fibers. In the sol-gel method, the raw material alkoxide is diluted with a solvent and water is added to prepare a sol solution.
This is a method in which the sol solution is gelled by holding it at a constant temperature, and the gel is vitrified after drying. ■ It has a high yield, ■ It is suitable for mass production, and ■ It is possible to add many types of dopants. It has characteristics.

ゾルゲル法による光ファイバ用母材の製造方法としては
、ゾルゲルモールド法がある(特願昭60−11809
8号)。ゾルゲルモールド法は第1図にも示すように、
以下の工程により行われる。すなわち中空部形成部材2
を装着した容器3にクラッド用ゾル溶液1を注入しく第
1図(al)、これがゲル化した後で(第1図(b))
、中空部形成部材2を取り外す(第1図(C))。次ぎ
に形成された中空部4にコア用ゾル溶液を注入し、コア
用ゾル溶液がゲル化した(第1図(e))後で乾燥させ
る(第1図(f))。これを電気炉で加熱しガラス化を
行い(第1図(gl)、導波構造を有する光ファイバ用
母材7 (第1図(h))を製造する方法である。
As a method for manufacturing an optical fiber base material by the sol-gel method, there is a sol-gel mold method (Japanese Patent Application No. 11809/1983).
No. 8). As shown in Figure 1, the sol-gel mold method
This is carried out through the following steps. That is, the hollow part forming member 2
The sol solution 1 for cladding is injected into the container 3 equipped with the cladding sol solution 1 (Fig. 1 (al)), and after it becomes a gel (Fig. 1 (b)).
, remove the hollow part forming member 2 (FIG. 1(C)). Next, a core sol solution is injected into the formed hollow part 4, and after the core sol solution is gelled (FIG. 1(e)), it is dried (FIG. 1(f)). This is heated in an electric furnace and vitrified (FIG. 1 (gl)), which is a method for manufacturing an optical fiber base material 7 (FIG. 1 (h)) having a waveguide structure.

このプルゲルモールド法に既に知られている液相フッ素
添加を適用すれば(特願昭61−118663号)、ゲ
ルの強度が高まるため長手方向に径の変化のない円筒状
クラフトゲルを形成することができる。このクラッドゲ
ルを乾燥、ガラス化することにより容易に屈折率を低下
させるドーパントであるフッ素を含有した円筒状ガラス
体を得ることができる。
If the already known liquid phase fluoride addition is applied to this pull gel mold method (Japanese Patent Application No. 118663/1986), the strength of the gel will be increased, forming a cylindrical kraft gel with no change in diameter in the longitudinal direction. be able to. By drying and vitrifying this clad gel, a cylindrical glass body containing fluorine, which is a dopant that lowers the refractive index, can be easily obtained.

〔発明が解決すべき問題点〕[Problems to be solved by the invention]

しかし、コアを形成する場合には、組成の異なる、すな
わち収縮率の異なるクラッドゲルとコアゲルを接合させ
たまま乾燥、ガラス化を行うため、コア・クラッド界面
に収縮率の差による応力が発・生し、ゲルの割れが生じ
やすく、歩留りが低いという欠点があった。また同じ原
因で、母材のコア・クラッド界面に剥離、気泡等が生じ
るため光ファイバの散乱損失が大きく低損失化を困難に
していた。
However, when forming the core, drying and vitrification are performed while bonding the clad gel and the core gel, which have different compositions, that is, different shrinkage rates, and stress is generated at the core-clad interface due to the difference in shrinkage rates. However, there were disadvantages in that the gel was prone to cracking and the yield was low. Furthermore, due to the same reason, peeling, bubbles, etc. occur at the core-clad interface of the base material, resulting in a large scattering loss of the optical fiber, making it difficult to reduce the loss.

本発明は上述の点に鑑みなされたものであり、コア・ク
ラッド界面に不整のない高品質光ファイバを経済的に製
造する方法を提供することを目的としている。
The present invention has been made in view of the above points, and an object of the present invention is to provide a method for economically manufacturing a high-quality optical fiber with no irregularities at the core-cladding interface.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、少なくとも一種以上の屈折率を低下させるド
ーパントを含む石英系の円筒状ガラス体を加熱して、屈
折率を低下させるドーパントを蒸発させ、屈折率分布を
形成する工程を含むことを特徴とする。
The present invention is characterized in that it includes a step of heating a quartz-based cylindrical glass body containing at least one kind of dopant that lowers the refractive index, evaporating the dopant that lowers the refractive index, and forming a refractive index distribution. shall be.

本工程を施こすことにより、円筒状ガラス体の内面より
屈折率を低下させるドーパントが蒸発し、内表面層の屈
折率が上昇する。したがって、本工程と同時に、もしく
は本工程終了後にこの円筒状ガラス体を酸・水素炎・電
気炉等で加熱・中実化し、コア(中実化前の円筒状ガラ
ス体の内表面層に相当する。)を有する光ファイバ用母
材を製造することができる。
By performing this step, the dopant that lowers the refractive index evaporates from the inner surface of the cylindrical glass body, and the refractive index of the inner surface layer increases. Therefore, at the same time as this process or after the completion of this process, this cylindrical glass body is heated and solidified using acid, hydrogen flame, electric furnace, etc., and the core (corresponding to the inner surface layer of the cylindrical glass body before solidification) is ) can be manufactured.

以下、図面により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

本発明では、第1図に示したゾルゲルモールド法で、第
1図(al、(b)、(C)、(d)、(e)、(f)
、(aに相当する工程をそれぞれ、第1工程、第2工程
、第3工程、第4工程、第5工程、第6エ程、第7エ程
と呼ぶ。
In the present invention, the sol-gel mold method shown in FIG.
, (The steps corresponding to a are called the first step, second step, third step, fourth step, fifth step, sixth step, and seventh step, respectively.

前記第3工程で中空部形成部材を除去した後、第4工程
、第5工程のコアゾル注入、ゲル化を行わずに、第6エ
程、第7エ程の乾燥、ガラス化処理を施し、屈折率を低
下させるドーパントを含む中空部を有する円筒状ガラス
体を得、この円筒状ガラス体を加熱して屈折率分布を形
成すると同時に、もしくはその後に中実化を行い光ファ
イバ用母材とする。
After removing the hollow part forming member in the third step, without performing coasol injection and gelation in the fourth and fifth steps, drying and vitrification processing in the sixth and seventh steps are performed, A cylindrical glass body having a hollow portion containing a dopant that lowers the refractive index is obtained, and this cylindrical glass body is heated to form a refractive index distribution, and at the same time or after that, it is solidified and used as a base material for optical fiber. do.

第2図は本発明の屈折率分布を形成する工程の概念図を
示したものである。図中、符合8は屈折率を低下させる
ドーパントを含む石英系の円筒状ガラス体である。屈折
率を低下させるドーパントの蒸気圧が、石英ガラスの蒸
気圧より高い場合には、円筒状ガラス体を高温に加熱す
るとガラス体表面層のドーパントの一部が蒸発する。こ
の蒸発により、表面層におけるドーパントの濃度が低く
なり、ドーパントの濃度勾配に従って、すなわち濃度の
低い表面層に向かってドーパントが拡散する。
FIG. 2 shows a conceptual diagram of the process of forming a refractive index distribution according to the present invention. In the figure, reference numeral 8 denotes a quartz-based cylindrical glass body containing a dopant that lowers the refractive index. When the vapor pressure of the dopant that lowers the refractive index is higher than the vapor pressure of quartz glass, when the cylindrical glass body is heated to a high temperature, part of the dopant in the surface layer of the glass body evaporates. This evaporation lowers the concentration of the dopant in the surface layer and causes the dopant to diffuse along the dopant concentration gradient, ie toward the surface layer with lower concentration.

円筒状ガラス体内部のドーパントの濃度分布は、ドーパ
ントの蒸気圧、ドーパントの拡散定数、熱処理時間で定
まってくる。蒸気圧により定まるガラス体表面のドーパ
ントの濃度をCssガラス体内部で一定の熱処理前の濃
度をCO5拡散定数をD、熱処理時間をtとすると、熱
処理後の表面よりχの距離の点の濃度Cxは で表される。ただしφ(”/lはガウスの誤差関数であ
る。
The concentration distribution of the dopant inside the cylindrical glass body is determined by the vapor pressure of the dopant, the diffusion constant of the dopant, and the heat treatment time. The concentration of the dopant on the surface of the glass body determined by the vapor pressure is Css, the concentration before heat treatment is constant inside the glass body, the CO5 diffusion constant is D, and the heat treatment time is t, the concentration at a point at a distance of χ from the surface after heat treatment is Cx. is represented by . However, φ(''/l is a Gaussian error function.

第3図は熱処理時間tとともに円筒状ガラス体(外径2
a、内径2b)のドーパント濃度の径方向の分布が変化
する様子を示した図である。この第3図には熱処理時間
tが0% Ll、を父 (0く11<1.)の場合を示
している。
Figure 3 shows the heat treatment time t and the cylindrical glass body (outer diameter 2).
FIG. 4 is a diagram showing how the radial distribution of the dopant concentration in the inner diameter 2b) changes. FIG. 3 shows the case where the heat treatment time t is 0% Ll (0x11<1.).

ドーパントが屈折率を低下させるドーパントであれば、
円筒状ガラス体内部の石英ガラスの屈折率n。に対する
比屈折率差Δ−(n−nQ)/n。
If the dopant is a dopant that lowers the refractive index,
The refractive index n of the silica glass inside the cylindrical glass body. relative refractive index difference Δ-(n-nQ)/n.

は第4図に示すように円筒状ガラス体の内壁および外壁
で高い値となる。円筒状ガラス体の内壁の屈折率をns
、ガラス体内部の最低屈折率をn。
As shown in FIG. 4, the value is high on the inner and outer walls of the cylindrical glass body. The refractive index of the inner wall of the cylindrical glass body is ns
, the lowest refractive index inside the glass body is n.

とすると、コア・クラッド間の比屈折率差Δ。= (n
r −nt  /nt)が形成されることになる。
Then, the relative refractive index difference Δ between the core and cladding. = (n
r −nt /nt) will be formed.

次ぎに、ドーパントについて検討する。Next, we will consider dopants.

現在までのところ、石英ガラスの屈折率を低下させるド
ーパントとしては、三酸化二硼素(8gO3)とフッ素
(P )が知られている。石英ガラスの沸点が2230
℃であるのに対し、B2O3の沸点は約1500℃と低
く、8g03の方が石英ガラスより低温で蒸発しやすい
。また、フッ素ドープ石英ガラス中のフッ素の蒸発機構
はよく知られていないが、HF% SIF 4分子等の
フッ素系ガスとして蒸発しているものと考えられる。す
なわち、フッ素ドープ石英ガラス中では、フッ素原子は
ケイ素原子と強固に結合しているが、高温に加熱すると
フッ素−ケイ素間の結合が切れ、フッ素は自由に動いて
フッ素系ガス分子を生じるものと考えられる。
So far, diboron trioxide (8gO3) and fluorine (P2) are known as dopants that lower the refractive index of silica glass. The boiling point of quartz glass is 2230
℃, whereas the boiling point of B2O3 is as low as about 1500℃, and 8g03 evaporates more easily at a lower temperature than quartz glass. Furthermore, although the evaporation mechanism of fluorine in fluorine-doped quartz glass is not well known, it is thought that fluorine evaporates as a fluorine-based gas such as HF% SIF 4 molecules. In other words, in fluorine-doped quartz glass, fluorine atoms are strongly bonded to silicon atoms, but when heated to high temperatures, the fluorine-silicon bond is broken and fluorine moves freely, producing fluorine gas molecules. Conceivable.

しかし、低温ではフッ素−ケイ素間の結合のためフッ素
が移動できないので、フッ素ドープ石英ガラスは室温で
安定に存在する。
However, since fluorine cannot move at low temperatures due to the fluorine-silicon bond, fluorine-doped quartz glass exists stably at room temperature.

円筒状ホウ素ドープ石英ガラスまたは円筒状フッ素ドー
プ石英ガラスを高温に保持すると、ホウ素またはフッ素
の蒸発と拡散が生じ、第3図、第4し1に示すようなド
ーパント分布、屈折率分布を形成させることが可能にな
る。
When a cylindrical boron-doped quartz glass or a cylindrical fluorine-doped quartz glass is held at a high temperature, boron or fluorine evaporates and diffuses, forming a dopant distribution and a refractive index distribution as shown in FIGS. 3, 4 and 1. becomes possible.

熱処理温度としては、より高温の方がドーパントの蒸気
圧が高くなり、コア・クラ・ノド間の屈折率差を大きく
することができ、かつ処理時間を短縮できるため有利で
あるが、2200℃以上の温度では屈折率分布を形成す
る以前に円筒状ガラス体が中実化してしまうために好ま
しくない。適当な熱処理温度は1400℃以上2200
℃以下である。
Regarding the heat treatment temperature, a higher temperature is advantageous because the vapor pressure of the dopant is higher, the refractive index difference between the core, the core, and the node can be increased, and the treatment time can be shortened. This temperature is not preferable because the cylindrical glass body becomes solid before the refractive index distribution is formed. Appropriate heat treatment temperature is 1400℃ or higher and 2200℃
below ℃.

熱処理時間は屈折率分布を低下させるドーパントの濃度
分布、すなわち屈折率分布を決定する。
The heat treatment time determines the concentration distribution of the dopant that lowers the refractive index distribution, that is, the refractive index distribution.

■式よりD % C0% Csが一定であるときばCに
はχ/、/″′ri″tの関数となっている。このため
、ドーパントの拡散距離を2倍にしようとすると、熱処
理時間は4倍にしなければならない。短時間の熱処理を
施すと、拡散距離は短いので、母材の外径/コア径比は
大きくなり、シングルモードファイバに適した屈折率分
布となる。また、長時間の熱処理を施すと外径/コア径
比は小さくなり、マルチモードファイバに適した屈折率
分布が形成できる。
From the formula (2), if D % C0% Cs is constant, C is a function of χ/, /''ri''t. Therefore, in order to double the dopant diffusion distance, the heat treatment time must be quadrupled. When heat treatment is performed for a short time, the diffusion distance is short, so the outer diameter/core diameter ratio of the base material increases, resulting in a refractive index distribution suitable for a single mode fiber. Further, when heat treatment is performed for a long time, the outer diameter/core diameter ratio becomes smaller, and a refractive index distribution suitable for a multimode fiber can be formed.

同様の考察により、熱処理時間は円筒状ガラス体の径に
依存する。もし、同じ外径/コア径比を得るため外径お
よび内径がそれぞれ2倍の円筒状ガラス体を用いた場合
には4倍の熱処理時間を要することになる。
Based on similar considerations, the heat treatment time depends on the diameter of the cylindrical glass body. If a cylindrical glass body with twice the outer diameter and twice the inner diameter is used in order to obtain the same outer diameter/core diameter ratio, the heat treatment time will be four times longer.

熱処理に際しては、円筒状ガラス体中空部に不活性ガス
等を流して屈折率を低下させるドーパントの蒸気を系外
に除去することが望ましい。雰囲気中のドーパント蒸気
の分圧を減少させればドーパントの蒸発量が増し、円筒
状ガラス体の内壁表面におけるドーパント濃度Csを小
さくすることができ、コア・クラッド間の比屈折率差 Δ。= (ns−nも)/noを大きくできるからであ
る。
During the heat treatment, it is desirable to flow an inert gas or the like into the hollow part of the cylindrical glass body to remove the dopant vapor that lowers the refractive index from the system. If the partial pressure of the dopant vapor in the atmosphere is reduced, the amount of dopant evaporated increases, the dopant concentration Cs on the inner wall surface of the cylindrical glass body can be reduced, and the relative refractive index difference Δ between the core and the cladding. This is because = (ns-n also)/no can be increased.

以上説明したように、屈折率を低下させるドーパントを
含む円筒状ガラス体を加熱して屈折率を低下させるドー
パントを蒸発させることにより、屈折率分布を形成する
ことができる。その際に熱処理温度、熱処理時間および
雰囲気を調節することにより、コア・クラッド間の屈折
率差および外径/コア径比を制御することが可能である
As explained above, a refractive index distribution can be formed by heating a cylindrical glass body containing a dopant that lowers the refractive index and evaporating the dopant that lowers the refractive index. At that time, by adjusting the heat treatment temperature, heat treatment time, and atmosphere, it is possible to control the refractive index difference between the core and cladding and the outer diameter/core diameter ratio.

本発明をゾルゲル法に適用すれば、円筒状ガラス体を製
造した後で屈折率分布を形成することができ、コア・ク
ラフト界面の応力に基づくゲルの割れは生じない。コア
・クラフト間の境界はガラス化後、ドーパントの拡散に
より形成するため、界面の剥離、気泡等は全く生じない
If the present invention is applied to the sol-gel method, a refractive index distribution can be formed after manufacturing a cylindrical glass body, and cracking of the gel due to stress at the core-craft interface will not occur. Since the boundary between the core and the craft is formed by dopant diffusion after vitrification, no peeling at the interface, no bubbles, etc. occur.

本発明の方法によれば上記のような利点がある。The method of the present invention has the advantages described above.

以下、実施例にて説明する。Examples will be described below.

実施例1 屈折率を低下させるドーパントとして、フッ素を含有す
る円筒状ガラス体試料(外径20IIIlφ、内径8 
ms+φ、石英ガラスに対する比屈折率差−0,4%)
3個をゾルゲル法で作製し、これらのガラス体をガラス
旋盤に装着し、酸・水素炎で加熱処理を施した。熱処理
温度は1900℃、熱処理時間は各試料について30分
く試料A ”) 、60分(試料B)、90分(試料C
)とした、ガラス体中空部の雰囲気調整は毎分100m
Jのヘリウムガスを流す方法により行った。熱処理後、
さらに温度を上げて短時間で中実化を行った。試料を冷
却後空間フィルタリング法により径方向の屈折率分布の
測定を行った。結果を第5図に示す。縦軸は、石英の屈
折率(no)に対する比屈折率差Δ−(n −n o 
) / n 。
Example 1 Cylindrical glass body sample containing fluorine as a dopant that lowers the refractive index (outer diameter 20IIIlφ, inner diameter 8
ms+φ, relative refractive index difference with respect to quartz glass -0.4%)
Three pieces were produced using the sol-gel method, and these glass bodies were mounted on a glass lathe and heat-treated with an acid/hydrogen flame. The heat treatment temperature was 1900°C, and the heat treatment time was 30 minutes for each sample (sample A''), 60 minutes (sample B), and 90 minutes (sample C).
), the atmosphere in the hollow part of the glass body is adjusted at a rate of 100 m/min.
This was carried out by the method of flowing helium gas. After heat treatment,
By raising the temperature further, solidification was achieved in a short time. After cooling the sample, the radial refractive index distribution was measured using the spatial filtering method. The results are shown in Figure 5. The vertical axis represents the relative refractive index difference Δ−(n −no
)/n.

を示し、横軸は各試料の径方向の座標Xを中実化後の径
で表している。各試料のコアに相当する部分(χ−〇)
とクラフトに相当する部分(χ−r/2)の量比屈折率
差Δ。はそれぞれA 70.24%、B:0.25%、
C: 0.24%であった。
, and the horizontal axis represents the radial coordinate X of each sample in terms of the diameter after solidification. Portion corresponding to the core of each sample (χ−〇)
and the quantitative refractive index difference Δ of the portion corresponding to the craft (χ-r/2). are respectively A 70.24%, B: 0.25%,
C: 0.24%.

実施例2 実施例1で用いたものと同じ円筒状ガラス体試料を作製
し、このガラス体をガラス旋盤に装着して、ガラス体中
空部を真空ポンプで減圧しながら1900℃の加熱処理
と同時に中実化を行った。それに要した時間は30分間
であった。得られた棒状ガラス体の屈折率分布を第6図
に示す。コア・クラッド間の比屈折率差Δ。は、0.2
7%、外径/コア径比は20であった。この棒状ガラス
体を紡糸して最低損失1dB /km以下の光ファイバ
を得た。
Example 2 A cylindrical glass body sample similar to that used in Example 1 was prepared, and this glass body was mounted on a glass lathe, and while the hollow part of the glass body was depressurized with a vacuum pump, it was simultaneously heated at 1900°C. We made it into a solid state. The time required for this was 30 minutes. The refractive index distribution of the obtained rod-shaped glass body is shown in FIG. Relative refractive index difference Δ between core and cladding. is 0.2
7%, and the outer diameter/core diameter ratio was 20. This rod-shaped glass body was spun to obtain an optical fiber with a minimum loss of 1 dB/km or less.

実施例3 実施例1で用いたものと同じ円筒状ガラス体試料と作製
し、この円筒状ガラス体の屈折分布形成および中実化を
紡糸と同時に行った。紡糸は均温部が3 ctmのカー
ボン炉を用いて2000℃で行った。
Example 3 The same cylindrical glass body sample as that used in Example 1 was prepared, and the formation of the refraction distribution and solidification of this cylindrical glass body were performed simultaneously with spinning. The spinning was carried out at 2000° C. using a carbon furnace with a soaking section of 3 ctm.

母材の送り速度は毎分1.5 mm+とじ、温度200
0℃の均温部を通過する時間を20分間とした。中実化
のため円筒状ガラス体中空部の減圧を行いながら紡糸し
た。作製した光ファイバの最低損失は1dB /Km以
下であった。
The feed speed of the base material is 1.5 mm per minute + stapling, and the temperature is 200 mm.
The time it took to pass through the 0°C isothermal section was 20 minutes. Spinning was performed while reducing the pressure in the hollow part of the cylindrical glass body to make it solid. The minimum loss of the produced optical fiber was 1 dB/Km or less.

実施例4 実施例1で用いたものと同じ円筒状ガラス体試料を作製
し、石英ガラス管(外径30+n+mφ、内径20mm
φ)に挿入し、この石英ガラス管をガラス旋盤に装着し
、1700℃に加熱して、フッ素を含有する円筒状ガラ
ス体を石英ガラス管で被覆した。その後ガラス体中空部
を真空ポンプで減圧しながら1900℃の加熱処理と同
時に中実化を行った。それに要した時間は30分間であ
った。得られたガラス体の屈折率分布を第7図に示す。
Example 4 The same cylindrical glass sample as used in Example 1 was prepared, and a quartz glass tube (outer diameter 30+n+mφ, inner diameter 20mm
φ), this quartz glass tube was mounted on a glass lathe, and heated to 1700° C. to cover the fluorine-containing cylindrical glass body with the quartz glass tube. Thereafter, while the hollow part of the glass body was depressurized using a vacuum pump, solidification was performed at the same time as heat treatment at 1900°C. The time required for this was 30 minutes. The refractive index distribution of the obtained glass body is shown in FIG.

石英ガラス管でフッ素を含有する円筒状ガラス体を被覆
しているため、円筒状ガラス体外面からのフッ素の蒸発
を抑え、平坦な屈折率分布をもつクラッド層を形成する
ことが可能となった。
Since the cylindrical glass body containing fluorine is covered with a quartz glass tube, it is possible to suppress the evaporation of fluorine from the outer surface of the cylindrical glass body and form a cladding layer with a flat refractive index distribution. .

実施例5 屈折率分布を低下させるドーパントとして三酸化二硼素
およびフッ素を含有する円筒状ガラス体(外径20wm
φ、内径8III+1φ、石英ガラスに対する比屈折率
−0,45%)を作製し、実施例4と同様の実験を行っ
た。得られたガラス体のコア・クラッド間の比屈折率差
Δ。は0.3%であった。
Example 5 Cylindrical glass body (outer diameter 20 wm) containing diboron trioxide and fluorine as dopants to lower the refractive index distribution
φ, inner diameter 8III+1φ, relative refractive index relative to silica glass -0.45%), and the same experiment as in Example 4 was conducted. The relative refractive index difference Δ between the core and cladding of the obtained glass body. was 0.3%.

実施例6 より大きなコア・クラッド間の比屈折率差を実現するた
めに、屈折率を上昇させるドーパントであり、高温にお
ける蒸気圧が小さい(沸点4399℃)酸化ジルコニウ
ムおよびフッ素を含有する円筒状ガラス体(外径20…
mφ、内径3 mmφ、石英に対する比屈折率差Δ−0
,11%)を作製し、実施例4と同様の実験を行った。
Example 6 Cylindrical glass containing zirconium oxide and fluorine, which are dopants that increase the refractive index and have a low vapor pressure at high temperatures (boiling point 4399°C), in order to achieve a larger relative refractive index difference between the core and cladding. Body (outer diameter 20...
mφ, inner diameter 3 mmφ, relative refractive index difference Δ-0 with respect to quartz
, 11%) and conducted the same experiment as in Example 4.

得られたガラス体の屈折率分布を第8図に示す。フッ素
および石英ガラスと比べ蒸発しに(いことから、コア部
(X=O)の屈折率は、石英ガラスの屈折率より大きい
値(Δ−0,3%)を示し、コア・クラッド間の比屈折
率差Δ。は0.41%であった。
FIG. 8 shows the refractive index distribution of the obtained glass body. Because fluorine and silica glass are less susceptible to evaporation, the refractive index of the core (X=O) is larger than the refractive index of silica glass (Δ-0.3%), and the refractive index between the core and cladding is The relative refractive index difference Δ was 0.41%.

なお、以上全ての実施例では屈折率を低下させるドーパ
ントを含む円筒状ガラス体をゾルゲル法で作製したガラ
ス体に対しても通用回部であり、MCVD法やOvD法
等他の方法で合成したガラス体についても応用可能で、
この点について限定されるものではない。
In addition, in all the above examples, the cylindrical glass body containing a dopant that lowers the refractive index is also applicable to a glass body produced by the sol-gel method, and it is also applicable to a glass body synthesized by other methods such as the MCVD method or the OvD method. It can also be applied to glass bodies,
There is no limitation in this respect.

さらに、ここでは加熱方法としてガラス体をガラス旋盤
にて保持し、酸・水素炎にて加熱する方法およびカーボ
ン炉で加熱する方法を用いたが、1400℃以上まで加
熱する方法であれば、いかなる加熱方法に対しても使用
可能であり、シリコニット電気炉その他の方法も用いる
ことができ、この点について限定されるものではない。
Furthermore, as heating methods here, we used a method of holding the glass body in a glass lathe and heating it with an acid/hydrogen flame and a method of heating it in a carbon furnace, but any method that heats it to 1400°C or higher can be used. It can also be used for heating methods, such as silicone electric furnaces and other methods, and is not limited in this respect.

実施例6では高温における蒸気圧の小さい屈折率を上昇
させるドーパントとして二酸化ジルコニウムを用いたが
、屈折率を上昇させ、かつ熱処理温度における蒸気圧が
屈折率を低下させるドーパントの蒸気圧および石英ガラ
スの蒸気圧より小さいものであればいかなる酸化物、ハ
ロゲン化物を用いてもよく、インドリウム、ニオブ、タ
ンタル、アルミニウム、チタン、ガリウム等も使用可能
であるのは当然である。
In Example 6, zirconium dioxide was used as a dopant that increases the refractive index with a small vapor pressure at high temperatures, but the vapor pressure of the dopant that increases the refractive index and whose vapor pressure at the heat treatment temperature decreases the refractive index, Any oxide or halide may be used as long as it has a pressure lower than the vapor pressure, and it goes without saying that indium, niobium, tantalum, aluminum, titanium, gallium, etc. can also be used.

C発明の効果〕 以上説明したように、本発明の!!造方法によれば屈折
率を低下させるドーパントを含む円筒状ガラス体を加熱
して屈折率を低下させるドーパントを蒸発させることに
より、制御性よく屈折率分布を形成することができ、界
面の不整の問題のない高品質光ファイバ用母材を簡単に
製造することができる。
C. Effects of the invention] As explained above, the effects of the invention! ! According to the manufacturing method, by heating a cylindrical glass body containing a dopant that lowers the refractive index and evaporating the dopant that lowers the refractive index, it is possible to form a refractive index distribution with good controllability, and to eliminate irregularities at the interface. A problem-free, high-quality base material for optical fiber can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はゾルゲルモールド法の工程図、第2図は本発明
の方法に使用する屈折率を低下させるドーパントを含む
円筒状ガラス体の斜視図、第3図は熱処理後の円筒状ガ
ラス体中のドーパントの濃度分布を示す図であり、Cえ
は熱処理前のドーパント濃度を、Csは表面のドーパン
ト濃度を示しており、第4図は熱処理後の円筒状ガラス
体中の屈折率分布を示す図であり、tは熱処理時間を示
しており、第5図は実施例1で作製したA、B、C3個
のガラス体試料の屈折率分布を示す図、第6図は実施例
2で作製した棒状ガラス母材の屈折率分布を示す図、第
7図は実施例4で作製した石英ガラス管を被覆したガラ
ス母材の屈折率分布を示す図、第8図は実施例6で作製
した酸化ジルコニウムおよびフッ素を含有するガラス体
より作製した母材の屈折率分布を示す図である。 1 ・・・容器、4 ・・・中空部、5 ・・・コア用
ゾル溶液、6 ・・・乾燥ゲル、7 ・・・光ファイバ
用母材、8 ・・・円筒状ガラス体。
Fig. 1 is a process diagram of the sol-gel molding method, Fig. 2 is a perspective view of a cylindrical glass body containing a dopant that lowers the refractive index used in the method of the present invention, and Fig. 3 is a diagram of the interior of the cylindrical glass body after heat treatment. FIG. 4 is a diagram showing the dopant concentration distribution in the cylindrical glass body, where Ce shows the dopant concentration before heat treatment, Cs shows the dopant concentration on the surface, and FIG. 4 shows the refractive index distribution in the cylindrical glass body after heat treatment. 5 is a diagram showing the refractive index distribution of three glass body samples A, B, and C prepared in Example 1, and FIG. 6 is a diagram showing the refractive index distribution of three glass body samples prepared in Example 2. 7 is a diagram showing the refractive index distribution of the glass base material covering the quartz glass tube produced in Example 4, and FIG. 8 is a diagram showing the refractive index distribution of the glass base material coated with the quartz glass tube produced in Example 6. FIG. 2 is a diagram showing the refractive index distribution of a base material made from a glass body containing zirconium oxide and fluorine. DESCRIPTION OF SYMBOLS 1... Container, 4... Hollow part, 5... Sol solution for core, 6... Dry gel, 7... Preform material for optical fiber, 8... Cylindrical glass body.

Claims (4)

【特許請求の範囲】[Claims] (1)少なくとも一種以上の屈折率を低下させるドーパ
ントを含む石英系中空筒状ガラス体を加熱して、屈折率
を低下させるドーパントを蒸発させ、屈折率分布を形成
する工程を含むことを特徴とする光ファイバ用母材の製
造方法。
(1) It is characterized by including the step of heating a quartz-based hollow cylindrical glass body containing at least one kind of dopant that lowers the refractive index, evaporating the dopant that lowers the refractive index, and forming a refractive index distribution. A method for manufacturing an optical fiber base material.
(2)屈折率を低下させるドーパントがフッ素および/
または三酸化二硼素である特許請求の範囲第1項記載の
光ファイバ用母材の製造方法。
(2) The dopant that lowers the refractive index is fluorine and/or
or diboron trioxide, the method for producing an optical fiber preform according to claim 1.
(3)石英系中空筒状ガラス体が、屈折率を低下させる
ドーパントと同時に屈折率を上昇させるドーパントを含
んでいる特許請求の範囲第1項または第2項記載の光フ
ァイバ用母材の製造方法。
(3) Manufacturing the optical fiber preform according to claim 1 or 2, wherein the silica-based hollow cylindrical glass body contains a dopant that lowers the refractive index and a dopant that increases the refractive index at the same time. Method.
(4)屈折率を上昇させるドーパントがジルコニウム、
イットリウム、ニオブ、タンタル、アルミニウム、チタ
ン、ガリウムの内の1または複数である特許請求の範囲
第3項記載の光ファイバ用母材の製造方法。
(4) The dopant that increases the refractive index is zirconium,
4. The method for manufacturing an optical fiber preform according to claim 3, wherein the preform is one or more of yttrium, niobium, tantalum, aluminum, titanium, and gallium.
JP29177786A 1986-12-08 1986-12-08 Production of optical fiber preform Pending JPS63144138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29177786A JPS63144138A (en) 1986-12-08 1986-12-08 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29177786A JPS63144138A (en) 1986-12-08 1986-12-08 Production of optical fiber preform

Publications (1)

Publication Number Publication Date
JPS63144138A true JPS63144138A (en) 1988-06-16

Family

ID=17773285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29177786A Pending JPS63144138A (en) 1986-12-08 1986-12-08 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JPS63144138A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772862A (en) * 1988-03-03 1998-06-30 Asahi Glass Company Ltd. Film comprising silicon dioxide as the main component and method for its productiion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772862A (en) * 1988-03-03 1998-06-30 Asahi Glass Company Ltd. Film comprising silicon dioxide as the main component and method for its productiion

Similar Documents

Publication Publication Date Title
US5123940A (en) Sol-gel doping of optical fiber preform
US4263031A (en) Method of producing glass optical filaments
EP0198510B1 (en) Method of producing glass preform for optical fiber
US4082420A (en) An optical transmission fiber containing fluorine
CN109665713B (en) Low water peak large-size optical fiber preform and manufacturing method thereof
US4675038A (en) Glass fibres and optical communication
KR20090127300A (en) Reduction of optical fiber cane/preform deformation during consolidation
US4161505A (en) Process for producing optical transmission fiber
US4504297A (en) Optical fiber preform manufacturing method
US4295869A (en) Process for producing optical transmission fiber
US4165152A (en) Process for producing optical transmission fiber
JPS58145634A (en) Manufacture of doped glassy silica
US4874416A (en) Base material of optical fibers and a method for the preparation thereof
CN109942182B (en) Optical fiber preform manufacturing method based on sleeve method
GB1596088A (en) Method of making glass articles
WO2020177352A1 (en) Optical fiber preform based on continuous fused quartz bushing, and manufacturing method therefor
JPS63144138A (en) Production of optical fiber preform
US20020178761A1 (en) Method of low PMD optical fiber manufacture
KR100315475B1 (en) Method for fabricating an optical fiber preform
JPH0281004A (en) Optical fiber and its production
JPH0479981B2 (en)
JPH04243931A (en) Production of optical fiber preform
JPS63315530A (en) Production of optical fiber preform
JPH0324415B2 (en)
JP2002047013A (en) Method of manufacturing glass article