JPS63143835A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63143835A
JPS63143835A JP29061486A JP29061486A JPS63143835A JP S63143835 A JPS63143835 A JP S63143835A JP 29061486 A JP29061486 A JP 29061486A JP 29061486 A JP29061486 A JP 29061486A JP S63143835 A JPS63143835 A JP S63143835A
Authority
JP
Japan
Prior art keywords
oxide film
groove
film
trench
capacitor cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29061486A
Other languages
Japanese (ja)
Inventor
Hidetoshi Wakamatsu
若松 秀利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP29061486A priority Critical patent/JPS63143835A/en
Publication of JPS63143835A publication Critical patent/JPS63143835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To make it possible to shorten and simplify the process to a large extent, by forming a deep groove for a capacitor cell and shallow element isolating groove in a silicon substrate, and forming an oxide film at a thickness corresponding to the depth of the element isolating grooves by using RF bias sputtering technology. CONSTITUTION:Opening parts 25a and 25b are formed in resist 24 applied on a metal layer 23. With the resist 24 as a mask, the layer 23 and an oxide film 22 are etched through the opening parts 25a and 25b. With the layer 23 and the oxide film 22 as masks, a substrate 21 is etched. Thus element isolating grooves 26a and 26b are formed in the substrate 21. After the resist 24 is removed, resist 27 is applied on the entire surface. An opening part 28 is formed. The layer 23 and the oxide film 22 are etched through the opening part 28, and then the substrate 21 is etched. A groove 29 for a capacitor cell is formed in the substrate 21. Thereafter, an oxide film 32 is formed with a thickness corresponding to the depth of the element isolating groves by using RF sputtering technology, by which flattening can be performed, at the same time as the deposition of the oxide film.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、溝謙め込み素子分離領域と、溝底部に分離
用絶縁111t−有する菓子分離を兼ね備えた溝堀〕型
キャパシタセルとを有する半導体装置の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention has a Mizohori type capacitor cell which has a groove-contained element isolation region and a confectionery isolation having an isolation insulation 111t at the bottom of the groove. The present invention relates to a method for manufacturing a semiconductor device.

(従来の技術) lトランジスタ・lキャパシタ型のMO8IIダイナミ
ックメモリセルにおいt、シリコン基体ニ溝を堀ること
によシセル容量を増大させることは知られている。また
、最近、キャパシタセルをセル間分離の両方の機能をも
った構造にょシ、メモリ容量t−汲少さぜずにメモリ面
積を小さくする方法が発表されている。
(Prior Art) It is known that in a MO8II dynamic memory cell of the transistor/capacitor type, the cell capacitance can be increased by digging a groove in the silicon substrate. Recently, a method has been announced in which a capacitor cell is structured to have both the function of isolating cells, and a method of reducing the memory area without reducing the memory capacity t- has been announced.

第29は、溝°埋め込み素子分離領域と、溝底部に分離
用絶Ikmを有する菓子分離を兼ね備えた溝堀り型キャ
ノセシタセルとを有する従来の半導体装置の製造方法を
工程順に示す。以下、この従来の方法を順を追って説明
する。
The twenty-ninth example shows, in order of steps, a method for manufacturing a conventional semiconductor device having a trench-embedded element isolation region and a groove-drilled cano-separator cell having a confectionery separation function and having an isolation barrier Ikm at the bottom of the trench. This conventional method will be explained step by step below.

ます、シリコン基体l上に常圧CVD法奢用いて酸化m
2’t、次に減圧CVD法を用いて窒化シリコン膜3を
、さらに常圧CVD法を用いて酸化18!4を成長させ
る。さらに、その上にレジスト5t−tr布し、このレ
ゾス)5には素子分離領域とキャパシタセル領域のノぐ
ターンで開口部6t−形成する(第2図(a))。
First, oxidation is performed on a silicon substrate using an atmospheric pressure CVD method.
2't, next, a silicon nitride film 3 is grown using a low pressure CVD method, and an oxide film 18!4 is grown using a normal pressure CVD method. Furthermore, a resist 5t-tr is applied thereon, and an opening 6t- is formed in this resist 5 at the grooves of the element isolation region and the capacitor cell region (FIG. 2(a)).

次に、レジスト5をマスクとして、−口部6を通してR
IE法によ〕上記酸化膜4.窒化シリコンiI3および
酸化1112の3層FNをエツチングすることにより、
この2層膜に開口部7に一形成する(第2図(b))。
Next, using the resist 5 as a mask, R
By IE method] The above oxide film 4. By etching the three-layer FN of silicon nitride iI3 and oxide 1112,
One opening 7 is formed in this two-layer film (FIG. 2(b)).

次に、レノス)5t−除去した後、上記3層膜をマスク
として、開口部7に通してシリコン基体1をエツチング
することによシ、このシリコン基体1にキャノぞシタセ
ル用の溝8と素子分離用の溝9を形成する(@2図(b
) )。
Next, after removing the silicon substrate 1, using the three-layer film as a mask, the silicon substrate 1 is etched through the opening 7 to form a trench 8 for the cell and an element in the silicon substrate 1. Form a groove 9 for separation (@Figure 2 (b)
) ).

次いで、溝9の底部に素子分離領域の反転防止用不純物
(コロンB”)t−イオン注入(40Kev。
Next, t-ion implantation (40 Kev) of an impurity (colon B'') for preventing inversion of the element isolation region into the bottom of the trench 9.

2 X 1013Long/am” ) シ、不純物イ
オン注入層10at形成する。この時、キャパシタセル
用の溝8の底部にも則−条件で不純物イオン注入層10
6を形成する(第2図Φ))。
2×1013Long/am”) An impurity ion implantation layer 10at is formed. At this time, an impurity ion implantation layer 10 is also formed at the bottom of the groove 8 for the capacitor cell under regular conditions.
6 (Fig. 2 Φ)).

次に、上記3層膜をエツチング除去した後、溝8.9内
を含む基体l上の全面に減圧CVD法により酸化膜11
を成長させる。さらに、その上にレゾストヲ如布し、表
面を平坦とする。しかる後、レノストと酸化膜11のエ
ツチング速度が同じ条件になるRIE法でエッチパック
を行い、1118゜9の全体にのみ分離用絶縁膜として
酸化膜11t−残す。その後、キャパシタセル用の溝8
に充填されている酸化j1iL11をRIE法を用いて
堀り出すことによシ、該溝8には、底部にのみ、分離用
絶縁膜として一部酸化膜11が残るようにする(第2図
(C))。
Next, after removing the three-layer film by etching, an oxide film 11 is formed on the entire surface of the substrate l including the inside of the groove 8.9 by low pressure CVD.
grow. Then apply a layer of resin over it to make the surface flat. Thereafter, an etch pack is performed using the RIE method under which the etching rates of the renost and the oxide film 11 are the same, leaving the oxide film 11t as an isolation insulating film only on the entire 1118°9 area. After that, groove 8 for capacitor cell
By excavating the oxide j1iL11 filled in the trench 8 using the RIE method, a portion of the oxide film 11 remains only at the bottom of the trench 8 as an isolation insulating film (see Fig. 2). (C)).

次いで、キャパシタセル用の溝8内壁および基体1表面
に熱酸化法によシセルゲート酸化膜12を形成し、続い
て減圧CVD法によシ溝8内および基体1上に多結晶シ
リコン膜を形成する。その後、多結晶シリコンHI4を
RIE法を用いて表面が平坦になるようにエッチパック
し、その後、該多結晶シリコン膜とセルゲート酸化膜1
2のノぐターニングを実施することKより、前記溝8に
埋め込まれた残存多結晶シリコン膜からなるキャノぞシ
タセルの!極13t−形成すると同時(、該電極13と
基体1間にのみセルゲート酸化膜12を残す(第2図(
d))。
Next, a cell gate oxide film 12 is formed on the inner wall of the capacitor cell trench 8 and the surface of the base 1 by thermal oxidation, and then a polycrystalline silicon film is formed inside the trench 8 and on the base 1 by low pressure CVD. . After that, the polycrystalline silicon film HI4 is etched and packed using RIE method so that the surface becomes flat, and then the polycrystalline silicon film and the cell gate oxide film 1
By carrying out Nog Turning in step 2, the cell consisting of the remaining polycrystalline silicon film buried in the groove 8 is formed. At the same time as the electrode 13t is formed (the cell gate oxide film 12 is left only between the electrode 13 and the substrate 1 (see Fig. 2).
d)).

(発明が解決しようとする間m点) しかしながら、上記のよりな従来の方法では、レジスト
と酸化膜1lt−同一エツチング速度でエツチングして
酸化All It−*8,9内にのみ残すエッチパック
技術が必要であり、ま友キャパシタセル用の#jE8か
ら酸化膜11を堀り出す工程が必要であシ、プロセス全
体が長く複雑になるといり間組点があった。
(Point m while the invention is trying to solve) However, in the above-mentioned more conventional method, an etch pack technique is used in which the resist and the oxide film 1lt are etched at the same etching rate and left only in the oxidized All It-*8,9. This required a step of excavating the oxide film 11 from #jE8 for the Mayu capacitor cell, which made the entire process long and complicated, and there were some intermittent assembly points.

この発明は上記の膚に鑑みなされたもので、プロセスを
大幅に短縮、簡略化することが可能な半導体装置の製造
方法を提供することを目的とする。
The present invention was made in view of the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a semiconductor device that can significantly shorten and simplify the process.

(間m点を解決するための手段) この発明では、シリコン基体上に耐・エツチングマスク
層を形成し、そのマスク層をマスクとじてシリコン基体
をエツチングすることによシ、深いキャパシタセル用の
溝と浅い素子分離用の#1を基体に形成し、その後、酸
化膜の堆積と同時に平坦化が可能なRFバイアススパッ
タリング技術を用いて、素子分離用の溝の深さに対応す
る膜厚で酸化膜の形成を行う。
(Means for solving the gap m point) In this invention, an etching-resistant mask layer is formed on a silicon substrate, and the silicon substrate is etched using the mask layer as a mask. Grooves and #1 for shallow element isolation are formed on the substrate, and then, using RF bias sputtering technology that allows planarization at the same time as the deposition of the oxide film, a film thickness corresponding to the depth of the groove for element isolation is formed. Form an oxide film.

(作 用) 上記のような方法においては、RFバイアススパッタリ
ング技術を用いて上記のような膜厚で酸化膜の形成を行
うことにより、該酸化膜の形hX、t−終了した時点で
、菓子分離用の溝が前記酸化膜により平坦に埋められる
ようになる。Iた、深いキャノセシタセル用の溝には、
前記菓子分離用の溝の埋め込みと同時に、素子分離用溝
の酸化膜と同じ膜厚で底部に鼓化族(分離用絶縁膜)が
形成されるようになる。
(Function) In the above method, by forming an oxide film with the above thickness using RF bias sputtering technology, when the oxide film has the shape hX, t-, the confectionery The isolation trench is evenly filled with the oxide film. In addition, in the groove for the deep canosecita cell,
Simultaneously with the filling of the confectionery isolation trench, an isolation insulating film (isolation insulating film) is formed at the bottom with the same thickness as the oxide film of the device isolation trench.

(実施例) 以下この発明の一実施例と第1図を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to FIG. 1.

まず、(100)面のP型半導体シリコン基体21上に
熱酸化法によシ酸化膜(Sigh膜)22t−300A
程度成長させる。さらに、その上に、アルミニウム、チ
タン、タングステンるるいは高融点金属シリサイド膜を
用いて数百n膜厚のメタルN23を成長させる(第1図
(a))。
First, a silicon oxide film (Sigh film) 22t-300A is formed on the (100) plane P-type semiconductor silicon substrate 21 by a thermal oxidation method.
grow to a certain extent. Furthermore, a metal N23 having a thickness of several hundred nanometers is grown using aluminum, titanium, tungsten, or a high melting point metal silicide film (FIG. 1(a)).

次に、メタル層23上にレゾスト24を塗布し、このレ
ノスト24に、幅の広い素子分離領域パターンおよび幅
の狭い素子分離領域ノぐターンで一ロ部25a、25b
を通常のホトリソ工程によシ形成する(第1図Φ口。
Next, a resist 24 is applied on the metal layer 23, and a wide element isolation region pattern and a narrow element isolation region pattern are formed on the resist 24 in one round portion 25a, 25b.
is formed by a normal photolithography process (Fig. 1 Φ opening).

次に、上記レジスト24をマスクとして、上記開口部2
5 a、 25 be通してメタル層23および酸化膜
22をRIE法によフエッチングし、続すてRIE法の
エツチング条件を変えてメタル層23と酸化膜22をマ
スクとしてシリコン基体21をエツチングすることによ
シ、深さ0.5μ風程度の幅の広い素子分離用の溝26
aと、同深さの幅の狭い素子分離用の溝26bを基体2
1に形成する1第1図(C))。
Next, using the resist 24 as a mask, the opening 2
5a and 25be, the metal layer 23 and oxide film 22 are etched by the RIE method, and then the silicon substrate 21 is etched by changing the etching conditions of the RIE method and using the metal layer 23 and the oxide film 22 as a mask. In particular, a wide device isolation groove 26 with a depth of about 0.5μ
a, and a narrow device isolation groove 26b of the same depth as the base 2.
Figure 1 (C)).

灰に、レノス)24t−除去した後、再度全面にレノス
ト27t−塗布し、このレジスト27に、キャノぞシタ
セル領域パターンで開口部28をホトリソ工程によ多形
成する。そして、その勤口部28を通してメタル層23
と酸化111!221−RIB法によシエッチングし、
続いてRIE法のエツチング条件を変えてシリコン基体
21をエツチングすることにより、該基体21に深さ1
μ諷程度のキャパシタセル用の溝29′fr:形成する
(第1図0))。
After the ash is removed, the entire surface is again coated with LENOST 27t, and openings 28 are formed in this resist 27 in a pattern of the cell area using a photolithography process. Then, the metal layer 23 is passed through the opening part 28.
and etching by oxidation 111!221-RIB method,
Subsequently, by etching the silicon substrate 21 by changing the etching conditions of the RIE method, a depth of 1 is etched into the substrate 21.
A groove 29'fr for a capacitor cell having a diameter of approximately μ is formed (FIG. 10)).

次に、レノスト27を除去した後、溝26a。Next, after removing the lenost 27, the groove 26a is removed.

26b、29の内壁に熱酸化法によp酸化jII30を
200A&i度成長させる(第1図(e))。この酸化
膜30は、キャパシタセル用の溝29部においては、キ
ャノぞシタセルのゲート酸化膜として用イられる。
On the inner walls of 26b and 29, p-oxide jII 30 is grown at 200A&i degree by thermal oxidation method (FIG. 1(e)). This oxide film 30 is used as a gate oxide film of the capacitor cell in the trench 29 portion for the capacitor cell.

次に、溝26a、26bの底部に素子分離領域の反転防
止用不純物(ボロ7B)tイオン注入(40KeV、 
2 X 10 1ons/ar” ) L、不純物イオ
ン注入層31a、31bを形成する。この時、キャパシ
タセル用の溝29の底部にも同一条件で不純物イオン注
入層31cを形成する(@1図(e))。
Next, an impurity (boro 7B) t ion implantation (40 KeV,
2 x 10 1ons/ar") L, impurity ion implantation layers 31a and 31b are formed. At this time, an impurity ion implantation layer 31c is also formed under the same conditions at the bottom of the groove 29 for the capacitor cell (@1 figure ( e)).

次に、酸化膜の堆積と同時に平坦化が可能なRFバイア
ススノぐツタリング法を用いてシリコン基体21の全面
VI−酸化膜32t−堆積させる(第1図(e])。こ
の時、酸化&32の膜厚は、素子分離用の溝26a、2
6bの深さと同じとする。すると、素子分離用の溝26
a、26bにおいては、前記酸化膜32の形成終了時に
、該酸化膜32によシ平坦に塊められるようになる。ま
た、キャノ臂シタセル用の深い溝29においては、底部
に、素子分離用溝26a、26bの酸化膜32と向じ膜
厚で酸化膜32が分離用絶縁膜として形成される。
Next, the oxide film 32t is deposited on the entire surface of the silicon substrate 21 using the RF bias snorting method that allows planarization at the same time as the oxide film is deposited (FIG. 1(e)). The film thickness is the same as that of grooves 26a and 2 for element isolation.
It is assumed that the depth is the same as that of 6b. Then, the groove 26 for element isolation
In a and 26b, when the formation of the oxide film 32 is completed, the oxide film 32 becomes flat and agglomerated. Further, in the deep trench 29 for the canopy cell, an oxide film 32 is formed as an isolation insulating film at the bottom with a thickness similar to that of the oxide film 32 in the element isolation trenches 26a and 26b.

しかる後、メタル層23を除去し、同時にその上の不振
な酸化8132をリフトオフ法により除去□する(第1
図(f))。
After that, the metal layer 23 is removed, and at the same time, the unsatisfactory oxidation 8132 on it is removed by a lift-off method (first
Figure (f)).

次いで、鍵29を含むシリコン基体21上の全面に多結
晶シリコン膜33を堆積させ、この多結晶シリコン膜3
3をRIE法を用いて所望の厚さく3000A程反)に
なるまでエッチパックする。
Next, a polycrystalline silicon film 33 is deposited on the entire surface of the silicon substrate 21 including the key 29, and this polycrystalline silicon film 3
3 was etch-packed using the RIE method until the desired thickness (approximately 3000A) was obtained.

これは、膜厚制動と、平坦化を目的として行われる。し
かる後、多結晶シリコン膜33と、その下の酸化&22
のバターニングを実施することにより、残存多結晶シリ
コン膜33からなる溝29に埋め込まれたキャパシタセ
ルの電極33at−形成するとともに、その電極33m
とシリコン基体21間にのみ酸化膜22f:残す(第1
図輸))。
This is done for the purpose of controlling the film thickness and flattening the film. After that, the polycrystalline silicon film 33 and the oxidation layer 22 below it are removed.
By performing the patterning, an electrode 33at- of the capacitor cell buried in the groove 29 made of the remaining polycrystalline silicon film 33 is formed, and the electrode 33m is
oxide film 22f: left only between and silicon substrate 21 (first
Illustration)).

(発明の効果) 以上詳細に説明したように、この発明の方法によれは、
シリコン基体に深いキャノ臂シタセル用の溝と浅い素子
分離用の#lを形成した後、RFバイアススパッタリン
グ技術を用いて素子分離用溝の深さに対応する膜厚で絃
化kt−形成したので、該酸化膜の形成終了に伴い、エ
ッチパック技術を用いずに、素子分離用溝を平坦mai
lj化k(分離用絶縁膜)で埋めることが可能となる。
(Effects of the Invention) As explained in detail above, the method of this invention has the following advantages:
After forming a deep groove for the canopy cell and a shallow #l for element isolation in the silicon substrate, we used RF bias sputtering technology to form a film with a thickness corresponding to the depth of the element isolation groove. With the completion of the formation of the oxide film, the device isolation trenches were flattened without using etch pack technology.
It becomes possible to fill it with lj-oxide (isolation insulating film).

また、深いキャパシタセル用δkにおいては、酸化膜の
堀シ出し工程を無くして底部にのみ酸化膜を分離用絶縁
膜として形成できる。そして、このようにエッチパック
技術や掘り出し工程を不要とし得ることにより、プロセ
ス全体の短縮、簡略化が可能となる。
Further, in the case of δk for a deep capacitor cell, the oxide film can be formed as an isolation insulating film only at the bottom without the step of excavating the oxide film. Since the etch pack technique and digging process can be made unnecessary in this way, the entire process can be shortened and simplified.

また、この発明の方法によれば、実施例のように輪の広
い素子分離用の溝と幅の狭い菓子分離用の#Itt−有
する場合でも、同時に両方の#1を酸化膜(分離用絶縁
膜)で平坦に埋めることができる。
Furthermore, according to the method of the present invention, even when there is a groove for separating devices with a wide ring and #Itt- for separating confectionery with a narrow width as in the embodiment, both #1s are simultaneously formed using an oxide film (an isolation insulating film). can be filled flat with a film).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体装置の製造方法の一実施例を
示す工程断面図、@21は従来の半導体装置の製造方法
を示す工程断面図である。 21・・・P型半導体シリコン基体、22・・・酸化膜
、23・・・メタル層、26a、26b・・・素子分離
用の溝、29・・・キャノ9シタセル用の溝、32・・
・酸化膜。
FIG. 1 is a process sectional view showing an embodiment of the semiconductor device manufacturing method of the present invention, and @21 is a process sectional view showing a conventional semiconductor device manufacturing method. 21... P-type semiconductor silicon substrate, 22... Oxide film, 23... Metal layer, 26a, 26b... Groove for element isolation, 29... Groove for cano-nine cell, 32...
·Oxide film.

Claims (1)

【特許請求の範囲】 シリコン基板にキャパシタセル用の溝と素子分離用の溝
を形成し、素子分離用の溝全体とキャパシタセル用の溝
底部に分離用絶縁膜を有する半導体装置の製造方法にお
いて、 (a)シリコン基体上に耐エッチングマスク層を形成す
る工程と、 (b)そのマスク層をマスクとしてシリコン基体をエッ
チングすることにより、深いキャパシタセル用の溝と、
浅い素子分離用の溝を形成する工程と、 (c)その後、酸化膜の堆積と同時に平坦化が可能なR
Fバイアススパッタリング技術を用いて、素子分離用の
溝の深さに対応する膜厚で酸化膜を形成することにより
、前記素子分離用溝の全体およびキャパシタセル用溝の
底部に同時に素子分離用絶縁膜を形成する工程とを具備
してなる半導体装置の製造方法。
[Claims] In a method for manufacturing a semiconductor device, in which a capacitor cell trench and an element isolation trench are formed in a silicon substrate, and an isolation insulating film is provided over the entire element isolation trench and at the bottom of the capacitor cell trench. (a) forming an etching-resistant mask layer on the silicon substrate; (b) etching the silicon substrate using the mask layer as a mask to form a deep capacitor cell groove;
(c) After that, the step of forming a trench for shallow device isolation, and (c) the step of forming an R, which can be flattened at the same time as the oxide film is deposited.
By forming an oxide film with a thickness corresponding to the depth of the element isolation groove using F bias sputtering technology, element isolation insulation is simultaneously formed on the entire element isolation groove and the bottom of the capacitor cell groove. 1. A method for manufacturing a semiconductor device, comprising the step of forming a film.
JP29061486A 1986-12-08 1986-12-08 Manufacture of semiconductor device Pending JPS63143835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29061486A JPS63143835A (en) 1986-12-08 1986-12-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29061486A JPS63143835A (en) 1986-12-08 1986-12-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63143835A true JPS63143835A (en) 1988-06-16

Family

ID=17758272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29061486A Pending JPS63143835A (en) 1986-12-08 1986-12-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63143835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536675A (en) * 1993-12-30 1996-07-16 Intel Corporation Isolation structure formation for semiconductor circuit fabrication
US6242323B1 (en) 1997-02-18 2001-06-05 Hitachi, Ltd. Semiconductor device and process for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536675A (en) * 1993-12-30 1996-07-16 Intel Corporation Isolation structure formation for semiconductor circuit fabrication
US6242323B1 (en) 1997-02-18 2001-06-05 Hitachi, Ltd. Semiconductor device and process for producing the same
US6559027B2 (en) 1997-02-18 2003-05-06 Hitachi, Ltd. Semiconductor device and process for producing the sme
US6881646B2 (en) 1997-02-18 2005-04-19 Renesas Technology Corp. Semiconductor device and process for producing the same
US7402473B2 (en) 1997-02-18 2008-07-22 Renesas Technology Corp. Semiconductor device and process for producing the same

Similar Documents

Publication Publication Date Title
US6184108B1 (en) Method of making trench isolation structures with oxidized silicon regions
JPH03155151A (en) Manufacture of semiconductor structure
JPS63143835A (en) Manufacture of semiconductor device
JPH05849B2 (en)
JPH06181255A (en) Semiconductor device and its manufacture
JPH02143527A (en) Wiring formation
JPS6080244A (en) Element isolation method of semiconductor device
JPH11260903A (en) Method for forming non-cavity trench isolation
JPH0491468A (en) Manufacture of semiconductor device
JPH0823027A (en) Manufacture of semiconductor device
JPH043455A (en) Soi transistor laminated semiconductor device and manufacture thereof
JPH11312730A (en) Manufacturing method of semiconductor device
JPH01129439A (en) Manufacture of semiconductor device
JP2692918B2 (en) Method for manufacturing semiconductor device
JPS60161632A (en) Semiconductor device and manufacture thereof
JPH01258439A (en) Semiconductor device and manufacture thereof
JPH056935A (en) Manufacture of semiconductor device provided with groove filling step
KR0168122B1 (en) Manufacturing method of semiconductor device
JPS61174739A (en) Manufacture of semiconductor device
KR19990051399A (en) Device Separation Method of Semiconductor Device
JPS61158158A (en) Manufacture of semiconductor device
JPS6358851A (en) Manufacture of semiconductor integrated circuit device
JPH01278742A (en) Manufacture of semiconductor device
JPS61107740A (en) Manufacture of semiconductor device
JP2001023923A (en) Manufacture of contact pad