JPS6358851A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPS6358851A
JPS6358851A JP20167186A JP20167186A JPS6358851A JP S6358851 A JPS6358851 A JP S6358851A JP 20167186 A JP20167186 A JP 20167186A JP 20167186 A JP20167186 A JP 20167186A JP S6358851 A JPS6358851 A JP S6358851A
Authority
JP
Japan
Prior art keywords
oxide film
film
semiconductor
element isolation
field oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20167186A
Other languages
Japanese (ja)
Inventor
Kenichi Suzuki
研一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP20167186A priority Critical patent/JPS6358851A/en
Publication of JPS6358851A publication Critical patent/JPS6358851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To dispense with a mask and to form an element isolation structure by a method wherein with three regions of a field oxide film, an element forming region and element isolation regions formed in a self matching manner, the element isolation regions are formed after the field oxide film is formed and the wide field oxide film and the narrow element isolation regions are simultaneously flattened in an etchback process. CONSTITUTION:A wide field oxide film is formed in a first groove 20 in a self matching manner by a selective oxidation using patterned first and second nitride films 13 and 15 as masks. Moreover, with second grooves 23 formed almost vertically to a semiconductor substrate 11 using the field oxide film 22 and a patterned etching mask material as masks, these second grooves are filled with an embedding material 25 land furthermore, the substrate surface is continuously flattened by etchback and so on and narrow element isolation regions 26a and an element forming region 26 are also formed in a self matching manner. Accordingly, three regions of the field oxide film, the element isolation regions and the element forming region are simultaneously flattened without using a mask for flattening.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路装置の製造方法に係シ、特に素
子分離技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor integrated circuit device, and particularly to element isolation technology.

〔従来の技術〕[Conventional technology]

半導体集積回路装置の素子分離は、古くはPN接合分離
法が主流となっていたが、このPN接合分離法ではPN
接合の形成が拡散窓7J)ら等方的に行われる為面積的
な拡が9が大きく、エピタキシャル層の厚みが増加する
とそれに対応して拡大するという欠点があった。この為
、素子が微細化され、集積度が均大するにつれ、素子分
離領域の幅、面積を縮小する必要が生じ、シリコン基板
の選択酸化による厚いシリコン酸化膜(S i 02 
)を利用した酸化膜分離法(所謂、アイソプレーナ技術
)に移行していった。
In the past, the PN junction isolation method was the mainstream for device isolation in semiconductor integrated circuit devices;
Since the junction is formed isotropically through the diffusion window 7J), the areal expansion is large, and as the thickness of the epitaxial layer increases, the expansion increases accordingly. For this reason, as devices become finer and the degree of integration becomes more uniform, it becomes necessary to reduce the width and area of device isolation regions, and a thick silicon oxide film (S i 02
), the transition was made to an oxide film separation method (so-called isoplanar technology).

酸化膜分離法は、PN接合分離法に比べて著しく素子分
離領域を減少させるのみならず、素子形成領域以外の全
ての領域(以下、フィールド領域と称する)を厚い酸化
膜に変換する為、配線−基板間の浮遊容量が減少し、高
速化にも寄与する効果的な方法であった。
The oxide film isolation method not only significantly reduces the element isolation region compared to the PN junction isolation method, but also converts all regions other than the element formation region (hereinafter referred to as field regions) into a thick oxide film, which reduces wiring. - It was an effective method that reduced stray capacitance between substrates and contributed to speeding up.

また酸化膜分離法は、素子形成領域を、緩衝用の薄いシ
リコン酸化膜上に1iIlt酸化性のシリコン窒化膜(
SisN<)を積層して得られる2層膜よシ成る耐酸化
性マスクでへりと共に、厚い酸化膜を形成する領域に酸
化による体積の増大t−調整する為の溝を形成した後、
熱酸化t−施し、素子形成領域と素子分離領域を略平坦
面とする方法である。
In addition, in the oxide film isolation method, the element formation region is covered with an oxidizing silicon nitride film (1iIlt) on a thin silicon oxide film for buffering.
After forming grooves to adjust the volume increase due to oxidation in the region where a thick oxide film is to be formed, along with the edges, a groove is formed using an oxidation-resistant mask consisting of a two-layer film obtained by stacking SisN<).
This is a method in which thermal oxidation is performed to make the element forming region and the element isolation region substantially flat surfaces.

この為、溝の側面方向にも酸化が進み、素子分離領域の
幅は、写真食刻によって規定される幅よシも必らず太く
なυ、寸法的には約10μm程度が限界となる。
For this reason, oxidation also progresses in the side direction of the groove, and the width of the element isolation region is not necessarily wider than the width defined by photolithography, υ, and the limit is about 10 μm in terms of dimensions.

更に、素子形成領域のシリコン基板と耐酸化性マスクと
の間には、素子分離領域からの酸化膜のくさび状の張シ
出し、所謂ノ々−ズ・ビークが形成されること、及び素
子形成領域の周囲での酸化膜の盛υ上がシ、所謂ノ々−
ズ・ヘッドが形成され、完全な平坦表面が得られないと
いう欠点があった。
Furthermore, between the silicon substrate in the element formation region and the oxidation-resistant mask, a wedge-shaped extension of the oxide film from the element isolation region, a so-called nose beak, is formed, and the element formation The oxide film builds up around the area, so-called
However, the disadvantage is that a head is formed and a completely flat surface cannot be obtained.

一方、近年素子の微細化はさらに進み、高集積化の為に
はよシー層素子分離領域の幅、面積を縮小する必要が生
じてきている。
On the other hand, in recent years, the miniaturization of elements has progressed further, and in order to achieve higher integration, it has become necessary to reduce the width and area of the outer layer element isolation region.

最近になって、基板面に対して垂直に膜をエツチングす
る異方性エツチング技術として反応性イオンエツチング
(以下、RIEと称する)が実用化され、上述した酸化
膜分離法に代わる新たな素子分離技術が開発これつつあ
る。
Recently, reactive ion etching (hereinafter referred to as RIE) has been put into practical use as an anisotropic etching technique that etches a film perpendicular to the substrate surface, and has become a new device isolation method that can replace the oxide film isolation method described above. Technology is being developed.

これ迄に提案された種々の新しい素子分離技術を大別す
ると、以下の二つに分類される。
The various new element isolation techniques that have been proposed so far can be roughly classified into the following two categories.

その一つは、RIEによってシリコン基板に深い溝を堀
り、二酸化シリコン等の酸化膜を溝内壁に形成した後、
多結晶シリコン等を厚く堆積し、更にエツチノ々ツクし
て平坦化するものである。この為、バイポーラ型集積回
路装置に使用する場合には、基板全面に形成した埋込拡
散層を貫く深い溝を形成して埋込拡散用のマスク全省略
できるという第1」点がある(以下、溝堀り法と称する
)。
One method is to dig a deep trench in a silicon substrate by RIE, and after forming an oxide film such as silicon dioxide on the inside wall of the trench,
Polycrystalline silicon or the like is deposited thickly and then etched to make it planar. Therefore, when used in a bipolar integrated circuit device, the first point is that the mask for buried diffusion can be completely omitted by forming a deep groove that penetrates the buried diffusion layer formed on the entire surface of the substrate (see below). (referred to as the Mizohori method).

もう一つは素子形成領域の表面のみならず、溝の側壁も
耐酸化性マスクで被覆して、横方向酸化による素子分離
領域幅の増大と、ノ々−ズ・ピーク、ノ々−ズ・ヘッド
の形成を防止する方法である(以下、改良型選択酸化法
と称する)。この改良型選択酸化法は分離幅によらず平
坦化が可能であり、工程も比較的簡単であるという利点
を有する(ジャーナル オブ エレクトロケミカル ン
サエライ:ソリッドーステート サイエンス アンドテ
クノロジー(J、 Electrochem、 Soc
、 :5OLID−8TATE 5CIENCE AN
D TECHNOLOGY ) 132巻7号1985
年7月P、1705〜1707参照)。
The other method is to cover not only the surface of the element formation region but also the sidewalls of the trench with an oxidation-resistant mask to increase the width of the element isolation region due to lateral oxidation and reduce the noise peak and noise. This method prevents the formation of heads (hereinafter referred to as improved selective oxidation method). This improved selective oxidation method has the advantage that planarization is possible regardless of the separation width and the process is relatively simple (Journal of Electrochemistry: Solid State Science and Technology).
, :5OLID-8TATE 5CIENCE AN
D TECHNOLOGY) Volume 132 No. 7 1985
(See July P, 1705-1707).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記溝堀シ法においては、巣子間分離用
の幅の狭い溝と幅の広いフィールド領域の溝と全同時に
平坦化することが困難であり、この為平坦化用のマスク
が必要となり、厳しいマスク合わせ精度が要求され、更
に工程も複雑化するという問題があった。
However, in the above-mentioned Mizohori method, it is difficult to flatten the narrow grooves for separating nests and the wide field region grooves at the same time, and therefore a mask for flattening is required. However, there was a problem in that strict mask alignment accuracy was required and the process was further complicated.

一方、上記改良型選択酸化法は、埋込拡散7# k貫く
分離は実用的に不可能である為、埋込拡散用マスクを必
要とし、素子分離領域が狭くなるほど埋込拡散と分離の
マスク合わせ精度が厳しくなるので、上記溝堀シ法はど
分離領域幅を狭めることはできない。
On the other hand, in the above-mentioned improved selective oxidation method, since it is practically impossible to isolate through the buried diffusion 7#k, a buried diffusion mask is required. Since the alignment accuracy becomes severe, the trench separation region width cannot be narrowed using the above-mentioned trench-horizon method.

また、選択酸化膜直下に設けるチャンネルストップ用の
P+層が?埋込層と接触する為、寄生容tが溝堀シ法に
比べて大きいという問題がある。
Also, is there a P+ layer for channel stop provided directly under the selective oxide film? Since it comes into contact with the buried layer, there is a problem that the parasitic capacitance t is larger than that of the Mizohori method.

更に、横方向酸化が少ない為、チャンネルストップ用P
+層が拡散により分離酸化膜の外側に広がシ、リークや
耐圧低下の原因となる恐れがある。
Furthermore, since there is little lateral oxidation, P for channel stop
There is a risk that the + layer will spread outside the isolation oxide film due to diffusion, causing leakage and a drop in breakdown voltage.

また史に、一般の選択酸化法の場合にも言えることであ
るが、長時間の酸化によシ素子分離の為の厚いシリコン
酸化膜全形成する必要上等から、素子形成領域側壁に欠
陥が発生し易いという問題もある。
Also, as is the case with general selective oxidation methods, defects have occurred on the side walls of the device formation region due to the need to completely form a thick silicon oxide film for device isolation due to prolonged oxidation. There is also the problem of easy occurrence.

本発明は上記の廓に鑑みてなされたもので、マスクを必
要としない簡単なプロセスによシ、溝堀シ法と選択酸化
法の利点を生かして素子分離構造全形成できる半導体集
積回路装置の製造方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and provides a semiconductor integrated circuit device in which an entire element isolation structure can be formed by a simple process that does not require a mask and by taking advantage of the trench-horizon method and the selective oxidation method. The purpose is to provide a manufacturing method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る半導体集積回路装置の製造方法は、(a)
半導体基体の一主面に緩衝用被膜、耐酸化性の第1の窒
化膜、エツチングマスク材料、耐酸化性の第2の窒化膜
及び多結晶半導体膜を順次形成する工程と、 (b)上記多結晶半導体膜、第2の窒化膜及びエツチン
グマスク材料の3層膜を選択的にノ々ターニングして、
幅の広い第1の開口部と幅の狭い第2の開口部とを形成
する工程と、 (c)上記パターニングされ念多結晶半導体膜全酸化し
て、此部全有する半1体酸化膜に改質する工程と、 (d)上記庇部を有する半導体酸化膜ヲマスクとして、
上記@1の開口部内の少なくとも上記第1の窒化膜と緩
衝用被膜全選択的にエツチング除去して第1の@を形成
する工程と、 (e)この後、少なくとも上記第1及びノ々ターニング
された第2の窒化膜をマスクとして酸化し、上記第1の
溝に選択的にフィールド酸化膜を形成する工程と、 (f)上記フィールド酸化膜を有しない第1の開口部、
及び第2の島口部の上記半導体基体表面を露出させた後
、上記フィールド酸化膜及びパターニングされたエツチ
ングマスク材料をマスクとして、上記半導体基体に対し
略垂直方向に第2の溝を形成する工程と、 (g))上記第2の溝の内壁部に半導体酸化膜を形成し
た後、基体全面に埋込み材料を堆積して上記第2の清音
埋込む工程と、 卸上記埋込み材料を上記半導体基体の表面と略等しい面
まで継続的に除去すると共に上記パターニングされたエ
ツチングマスク材料を除去し、上記第2の瀦の少なくと
も内権部及び上面部が絶縁された素子分離領域と、この
素子分離領域で囲まれた素子形成領域とを形成する工程
と、(itこの後、上記第1の窒化膜及び緩衝用被膜を
除去して上記素子シ成領域の表面を露出する工程とを含
むようにしたものである。
The method for manufacturing a semiconductor integrated circuit device according to the present invention includes (a)
a step of sequentially forming a buffer film, an oxidation-resistant first nitride film, an etching mask material, an oxidation-resistant second nitride film, and a polycrystalline semiconductor film on one main surface of the semiconductor substrate; (b) the above steps; selectively turning the three-layer film of the polycrystalline semiconductor film, the second nitride film, and the etching mask material;
forming a wide first opening and a narrow second opening; (c) fully oxidizing the patterned polycrystalline semiconductor film to form a semi-solid oxide film having all of these parts; (d) as a mask for the semiconductor oxide film having the above-mentioned eaves part;
(e) forming a first @ by selectively removing at least the first nitride film and the buffer coating in the opening of the @1; (e) after this, at least the first and non-turning steps; (f) forming a first opening having no field oxide film;
and after exposing the surface of the semiconductor substrate at the second island opening, forming a second groove in a direction substantially perpendicular to the semiconductor substrate using the field oxide film and the patterned etching mask material as a mask. (g)) After forming a semiconductor oxide film on the inner wall of the second groove, depositing a embedding material on the entire surface of the substrate to perform the second embedding step, and applying the embedding material to the semiconductor substrate. The patterned etching mask material is continuously removed to a surface substantially equal to the surface of the second trench, and an element isolation region in which at least an inner portion and an upper surface portion of the second trench are insulated, and this element isolation region are removed. and a step of removing the first nitride film and the buffer film to expose the surface of the element formation region. It is something.

〔作 用〕[For production]

以上のように、本発明によれば、少なくとtパターニン
グされた第1及び第2の窒化膜をマスクとして、選択酸
化により第1の海内に幅の広いフィールド酸化膜を自ピ
整合的に形成できる。ま念、フィールド酸化膜及びパタ
ーニング塾tたエツチングマスク材料をマスクとして半
導体基体に対し略垂直に第2の浦全形成すると共に、こ
の第2の溝を埋込み材料で埋込み、更にエッチパック等
により継続的レヒ基体表面を平坦化するようにしている
ので、幅の狭い素子分離領域と、素子形成領域をも自己
整置的に形成できる。
As described above, according to the present invention, a wide field oxide film is formed in the first sea by selective oxidation using at least the T-patterned first and second nitride films as masks. can. Using the field oxide film and the etching mask material used in the patterning school as a mask, a second trench is formed almost perpendicularly to the semiconductor substrate, and this second groove is filled with a filling material, and then continued using an etch pack or the like. Since the target substrate surface is flattened, narrow device isolation regions and device formation regions can be formed in a self-aligning manner.

しかも、これらフィールド酸化膜、素子分離領域及び素
子形成領域の3領域を平坦化用マスクを使用することな
く同時に平坦化することができるので、マスクを使用す
る場合の厳しいマスク合せ精度から解放てれ、合せ余裕
をとる必要がなくなり、−層の微細化が可能となる。
Moreover, since the three areas of the field oxide film, the element isolation region, and the element formation region can be planarized simultaneously without using a planarization mask, you are freed from the strict mask alignment precision that would be required when using a mask. , there is no need to provide a margin for alignment, and it is possible to miniaturize the layers.

更に、幅が狭くかつ深い分能用の第2の溝全形成できる
ので、従来の溝堀り法と改良型退択酸化法の利点全同時
に満たすことができる。即ち、トランジスタ間の縮小は
勿論のこと、ノぐイボーラ型では埋込拡散用マスク全省
略できると共に、チャンネルストップ用のP+層(必ず
しも必要としない)と炉型埋込拡散層の接触等の回避か
ら素子形成領域−基体間の容、t!に極めて小さくでき
る。しかも、MOS型等の他の半導体集積回路装置にお
いても、広く均一なフィールド酸化膜が得られる為、配
線−基体間の容址も十分低減できる。
Furthermore, since the second groove for narrow and deep separation can be completely formed, the advantages of the conventional groove digging method and the improved selective oxidation method can all be satisfied at the same time. In other words, not only can the distance between transistors be reduced, but the mask for buried diffusion can be completely omitted in the Nogu Ibora type, and contact between the P+ layer for channel stop (not necessarily required) and the furnace-type buried diffusion layer can be avoided. From the volume between the element formation region and the substrate, t! It can be made extremely small. Moreover, since a widely uniform field oxide film can be obtained even in other semiconductor integrated circuit devices such as a MOS type, the space between the wiring and the substrate can be sufficiently reduced.

また更に、フィールド酸化膜形成後に素子分離用の第2
の溝を形成するようにしているので、通常選択酸化法で
問題となる素子形成領域側壁部の欠陥が発生し易い領域
は、溝堀少工程で除去され、素子形成領域への欠陥の影
響を回避することもできる。
Furthermore, after the field oxide film is formed, a second
Therefore, the area where defects are likely to occur on the sidewalls of the element forming area, which is a problem with the normal selective oxidation method, is removed in the trenching process, reducing the influence of defects on the element forming area. It can also be avoided.

〔実施例〕〔Example〕

以下、第1図及び第2図に基き、本発明1−ノ々イボー
ラ型半導体集積回路装置に適用した場合の実施例につい
て詳細に説明する。
Hereinafter, based on FIGS. 1 and 2, an embodiment in which the present invention is applied to a Non-Ibora type semiconductor integrated circuit device will be described in detail.

最初、第1図について第1の実施例を説明する。First, a first embodiment will be described with reference to FIG.

まず第1図(A)に示す如く、P−型シリコン基板11
aの全面にN+型埋込層11bを1〜2μm程度形成し
、この上にN−型エピタキシャル層11cを1〜2μm
8度形成する。これらP−型シリコン基板11a、N+
型埋込Mllb、及びN−型エピタキシャル層11cと
によシリコン酸化から成る半導体基体11か構成される
First, as shown in FIG. 1(A), a P-type silicon substrate 11
An N+ type buried layer 11b with a thickness of about 1 to 2 μm is formed on the entire surface of a, and an N− type epitaxial layer 11c is formed on this with a thickness of 1 to 2 μm.
Form 8 times. These P- type silicon substrates 11a, N+
A semiconductor substrate 11 made of silicon oxide is constructed with a type-embedded Mllb and an N-type epitaxial layer 11c.

続いてこのシリコン基体11上に、シリコン酸化膜(S
igh)から成る緩衝用被膜12に200〜500A程
度、シリコン窒化膜(SisN4)から成る第1の窒化
膜13を1000〜2000′A程度、CVDシリコン
酸化@ (CVD −S i O21から成るエツチン
グマスク材料14に2000〜5000A程度、更にシ
リコン窒化膜(Si3N4)から成る第2の窒化膜15
t−1000〜200OA程度順次堆積する。しかる後
に、多結晶シリコン膜(Poly−3i)から成る多結
晶半導体膜16 ’k 5000〜10000′A程度
堆積する。
Subsequently, a silicon oxide film (S
The first nitride film 13 made of silicon nitride film (SisN4) was etched at about 1000 to 2000'A on the buffer film 12 made of silicon oxide (CVD silicon oxide @ (CVD-SiO21)). A second nitride film 15 of approximately 2000 to 5000 A is added to the material 14 and is made of a silicon nitride film (Si3N4).
About t-1000~200OA is deposited sequentially. Thereafter, a polycrystalline semiconductor film 16'k of about 5000 to 10000'A made of polycrystalline silicon film (Poly-3i) is deposited.

次に第1図(B)の如く、通常の写真食刻法によシ多結
晶シリコン膜16、シリコン窒化膜15及びCVDシリ
コン酸化膜14を選択的にエツチング除去し、フィール
ド領域を主に形成する為の幅の広い第1の開口部17と
素子分離領域を形成する為の幅の狭い第2の開口部(幅
0.5〜2.0μm程度)17aを形成する。
Next, as shown in FIG. 1(B), the polycrystalline silicon film 16, silicon nitride film 15, and CVD silicon oxide film 14 are selectively etched away using a normal photolithography method to mainly form field regions. A wide first opening 17 for forming an element isolation region and a narrow second opening 17a (about 0.5 to 2.0 μm wide) for forming an element isolation region are formed.

次いで第1図(C)の如く、多結晶シリコン膜16に熱
酸化を施して1〜2μm厚程度のシリコン酸化k(Si
02)から成る半導体酸化膜18に改質する。この際、
シリコン酸化膜18に改質されると体積は略2倍増加す
るので、横方向への膨みから庇部18aが張シ呂して形
成される。特に幅の狭い第2の開口部17aでは、隣シ
合うシリコン酸化膜18の庇部18a同志が接触した状
態となるので、中空部19が形成ちれる。ここで、庇部
18aの横方向への張り出し借は、多結晶シリコン膜1
6の膜厚をコントロールすることにょシ制御される。
Next, as shown in FIG. 1C, the polycrystalline silicon film 16 is thermally oxidized to form silicon oxide (Si) with a thickness of about 1 to 2 μm.
02) into a semiconductor oxide film 18 consisting of. On this occasion,
When the silicon oxide film 18 is modified, the volume increases approximately twice, so that the eaves portion 18a is formed to be stretched due to the lateral bulge. Particularly in the narrow second opening 17a, the eaves 18a of adjacent silicon oxide films 18 are in contact with each other, so that a hollow portion 19 is formed. Here, the lateral overhang of the eaves portion 18a is the width of the polycrystalline silicon film 1.
It is controlled by controlling the film thickness of 6.

続いて第1図(D)に示すように、庇部18aを有する
シリコン酸化膜18をマスクとして、異方性エツチング
技術を用いフィールド領域を形成する為の幅の広い第1
の開口部17にエツチングを施す。即ち、第1の開口部
17のシリコン窒化膜13及びシリコン酸化膜12を選
択的にエツチング除去し、更にN−型エピタキシャル層
11cに0.5〜1.0μm程度の適当な深さ?有する
幅のある第1の溝20を形成する。
Next, as shown in FIG. 1D, using the silicon oxide film 18 having the eaves 18a as a mask, an anisotropic etching technique is used to form a wide first etching field region.
The opening 17 is etched. That is, the silicon nitride film 13 and silicon oxide film 12 in the first opening 17 are selectively etched away, and the N- type epitaxial layer 11c is etched to an appropriate depth of about 0.5 to 1.0 μm. A first groove 20 having a width is formed.

次に、シリコン酸化膜18を除去し、基体全面にシリコ
ン窒化膜(Si3N4)から成る第3の窒化M21を5
00〜100OA程度被着した後、異方性エツチング技
術を用いてこれにエツチングを施すことによシ、第1図
(E)に示す如く第1の溝20の側壁部、及び@1の開
口部17と第2の開口部17aの各側壁部とに上記シリ
コン窒化膜21を残存形成するようにする。なお図示し
てはいないが、シリコン酸化膜18は、第1の溝20の
側壁部に第3の窒化膜21を形成した後に除去しても良
い。また必要があれば、第1の溝20の内壁部にシリコ
ン酸化膜(SiOz3から成る第2の緩衝用被膜を設け
るようにしても良い。
Next, the silicon oxide film 18 is removed, and a third nitride M21 made of a silicon nitride film (Si3N4) is deposited on the entire surface of the base.
After depositing about 00 to 100 OA, etching is performed using an anisotropic etching technique to form the side wall portion of the first groove 20 and the opening @1 as shown in FIG. 1(E). The silicon nitride film 21 is left to be formed on the portion 17 and each side wall portion of the second opening 17a. Although not shown, the silicon oxide film 18 may be removed after the third nitride film 21 is formed on the side wall of the first groove 20. Further, if necessary, a second buffer film made of a silicon oxide film (SiOz3) may be provided on the inner wall of the first groove 20.

次いで第1図(F)の如く、シリコン窒化膜13゜15
.21をマスクとして基体に熱酸化処理を施すことによ
シ、フィールド領域22aとなるフィールド酸化膜(S
iOz)22を形成する。このフィールド酸化膜22は
炉−型埋込層11bに渡って成長すると共に、この成長
時の体積増加によシ基体表面は概ね平坦化される。
Next, as shown in FIG. 1(F), a silicon nitride film 13°15
.. By performing thermal oxidation treatment on the substrate using 21 as a mask, a field oxide film (S
iOz) 22 is formed. This field oxide film 22 grows over the furnace-type buried layer 11b, and the surface of the substrate is generally flattened due to the increase in volume during this growth.

しかる後に第1図(G)の如く、基体表面のシリコン窒
化膜15、シリコン窒化膜13で第1の開口部17に残
存するものと第2の開口部17a内のもの、それに第1
及びwI、2の開口部17.17aの側壁部のシリコン
窒化膜21を夫々エツチング除去し、更に第1及び第2
の開口部17.17aよシ漏出した緩衝用のシリコン酸
化膜12をエツチング除去して、N−型エピタキシャル
層11cの表面全露出さセーる。
Thereafter, as shown in FIG. 1(G), the silicon nitride film 15 on the surface of the substrate, the silicon nitride film 13 remaining in the first opening 17, that in the second opening 17a, and the first silicon nitride film 15 are removed.
The silicon nitride film 21 on the side wall of the opening 17.17a of the first and second openings 17.17a and 2.
The buffering silicon oxide film 12 leaked through the openings 17 and 17a is removed by etching, leaving the entire surface of the N-type epitaxial layer 11c exposed.

次に第1図(H)の如く、CVDシリコン酸化膜14及
びフィールド酸化膜22をマスクとしてシリコン基体1
1表面に対して垂直に異方性エツチング1−[し−1N
−型エピタキシャル層11C及び炉型埋込Ji!+11
bix通してP″″型シ11コン基板11aに達する、
4〜6μm程度の深さを有する幅の狭い第2の溝23を
形成する。なお、ここで必要とあれば、第2の溝23の
底部に自己整合によシボロンイオン(B)f、注入して
P型チャンネルストップ層(図示せず)を形成しておく
Next, as shown in FIG. 1(H), using the CVD silicon oxide film 14 and field oxide film 22 as masks, the silicon substrate
Anisotropic etching 1-[shi-1N
- type epitaxial layer 11C and furnace type embedding Ji! +11
through BIX to reach the P″″ type silicon 11 board 11a.
A narrow second groove 23 having a depth of about 4 to 6 μm is formed. If necessary, ciboron ions (B)f are implanted into the bottom of the second groove 23 by self-alignment to form a P-type channel stop layer (not shown).

次いで第1図CI)の如く、第2の溝23の内壁部に1
000〜3000人厚程度の熱酸化膜(Sigh)から
成る半導体酸化膜24を形成した後、基体全面に多結晶
シリコン膜から成る埋込み材料25を4〜6μm程度と
厚く堆粕して、上記第2の溝丁゛を埋め込む。
Next, as shown in FIG. 1 CI), a
After forming a semiconductor oxide film 24 made of a thermal oxide film (Sigh) with a thickness of about 0.000 to 3000 μm, a embedding material 25 made of a polycrystalline silicon film is deposited to a thickness of about 4 to 6 μm over the entire surface of the substrate. Insert the second groove.

続いて、公知技術により多結晶シリコン膜25をエツチ
ノ々ツクする。このエッチパックの深さは基体表面と概
ね等しい面までとし、最終工程)ておいて素子形成領域
26及び素子分離領域26aが平坦となるような適当な
深さとする。更にCVDシリコン酸化膜14を除去し、
シリコン窒化Ii2.13をマスクとして第2の溝23
内の多結晶シリコン膜25の表面を熱酸化膜(Si(h
lから成る半導体酸化膜25aに改質すると、第1図(
J)に示す如き断面構造となる。
Subsequently, the polycrystalline silicon film 25 is etched using a known technique. The depth of this etch pack is set to a level approximately equal to the surface of the substrate, and is set to an appropriate depth so that the element forming region 26 and the element isolation region 26a are flat in the final step. Furthermore, the CVD silicon oxide film 14 is removed,
Second groove 23 using silicon nitride Ii2.13 as a mask
The surface of the polycrystalline silicon film 25 inside is covered with a thermal oxide film (Si(h
When the semiconductor oxide film 25a is modified to consist of
The cross-sectional structure is as shown in J).

最後に第1図(K)に示すように、シリコン窒化膜13
及びシリコン酸化膜12を順欠除去し、この後素子形成
領域26に所望の素子を形成することによりノ々イポー
ラ型半導体集積回路装置を得る。
Finally, as shown in FIG. 1(K), the silicon nitride film 13
Then, the silicon oxide film 12 is sequentially removed, and then a desired element is formed in the element forming region 26, thereby obtaining a non-ipolar type semiconductor integrated circuit device.

このように、不発EA′ftバイポーラ型半導体集積回
路装置に適用した場合、幅が狭く深さのある素子分離用
の第2の溝23を自己整合的に形成できるので、トラン
ジスタ間の縮小は勿論のこと、埋込拡散用のマスクを省
略できる。しかもP+型チャンネルストップ層を形成す
る場合には、とのP+型チャンネルストップ層とす型埋
込拡散層11bの横方内拡がりが無く、両者の接触が回
避できるので、素子形成領域26−基体間の寄生容量を
極めて小さくできる。
In this way, when applied to a failed EA'ft bipolar semiconductor integrated circuit device, the narrow and deep second groove 23 for element isolation can be formed in a self-aligned manner, so it is possible to reduce the distance between transistors. This means that the mask for embedded diffusion can be omitted. Moreover, when forming the P+ type channel stop layer, there is no lateral inward expansion of the P+ type channel stop layer and the buried diffusion layer 11b, and contact between the two can be avoided. The parasitic capacitance between the two can be made extremely small.

次に第2図について、本発明の第2の実施例を説明する
。なお、上述した第1の実施例とは第1図(H)に示す
深さのある第2の溝23の形成工程までは同一工程であ
る為、その説明全省略し、以後の工程について同一また
は相幽個所に同一符号を付して述べることとする。
Next, referring to FIG. 2, a second embodiment of the present invention will be described. Note that the steps of the first embodiment described above are the same up to the step of forming the deep second groove 23 shown in FIG. Otherwise, the same reference numerals will be used to describe the relevant parts.

第1図(H)に引き続き、第2図(A)に示すように第
2の溝23の内壁部に熱酸化膜(St(hlから成る半
導体酸化膜24を形成した後、基体全面にCVDシリコ
ン酸化膜(CVD−31O2)から成る埋込み材料25
全厚く堆頼して、第2の溝23を先金に埋め込む。
Continuing from FIG. 1(H), as shown in FIG. 2(A), a semiconductor oxide film 24 made of a thermal oxide film (St(hl) is formed on the inner wall of the second trench 23, and then CVD is applied to the entire surface of the substrate. Buried material 25 made of silicon oxide film (CVD-31O2)
The second groove 23 is embedded in the first metal by depositing it completely thickly.

続いて第2図CB)の如く、公知技術に’ 1)CVD
シリコン酸化膜25をエッチパックして、シリコン窒化
膜(Si3N4)から成る第1の窒化膜13が露出し念
時点でエツチングを停止する。図中、26は素子形成領
域、26aは素子分離領域である。
Subsequently, as shown in Figure 2 CB), the known technology is '1) CVD.
The silicon oxide film 25 is etched back to expose the first nitride film 13 made of a silicon nitride film (Si3N4), and the etching is stopped just in case. In the figure, 26 is an element formation region, and 26a is an element isolation region.

この後、第2図(C)の如くシリコン窒化膜13及びシ
リコン酸化膜(SiOz)から成る緩衝用破膜12を除
去し、しかる後に素子形成領域26に所望の素子を作シ
込んでノ々イボーラ型半導体集積画路装置とする。
Thereafter, as shown in FIG. 2(C), the buffer membrane 12 made of the silicon nitride film 13 and silicon oxide film (SiOz) is removed, and then a desired element is fabricated in the element formation area 26 and then removed. It will be an Ibora type semiconductor integrated circuit device.

この第2の実81例によれば、第1の実2a例のように
エッチパック工程後の埋込み材料25表面の酸化工程(
第1図(J)参照)が3太となり、工程が短縮されるば
かシでなく、同工程で形成される素子形成領域26での
ノ々−ズビークの影響を完全に抑制することができる。
According to this second example 81, the oxidation process (
(see FIG. 1(J)) is now 3 thick, which not only shortens the process, but also completely suppresses the influence of nose beaks in the element forming region 26 formed in the same process.

また第2の実施例では、素子分離領域26aが全てシリ
コン酸化膜で構成される為、選択酸化工程(第1図(F
)参照)で僅かに生ずるフィールド酸化膜22上の表面
段差も、CVDシリコン酸化膜25による埋込み及びエ
ッチノ々ツクにょシ同時に完全に平坦化することが可能
となる。更に、素子形成の際、酸化膜分離法の利点であ
る自己整合的プロセスka極的に採用できる構造とする
ことができる。
In addition, in the second embodiment, since the element isolation region 26a is entirely composed of a silicon oxide film, a selective oxidation process (FIG. 1 (F
It is possible to completely flatten the slight surface step difference on the field oxide film 22 that occurs in the step (see ) at the same time as filling with the CVD silicon oxide film 25 and etching notches. Furthermore, when forming an element, a structure can be obtained in which a self-aligned process, which is an advantage of the oxide film separation method, can be adopted in a highly advantageous manner.

ここにおいて、上述した各実施例では、本発明をノ々イ
ポーラ型半導体集積回路装置に適用した場合について述
べているが、本発明の適用範囲はこれて限定されるもの
ではなく、MOS型、その他の半導体集積回路装置に広
く適用することができる。
Here, in each of the above-mentioned embodiments, the case where the present invention is applied to a non-polar type semiconductor integrated circuit device is described, but the scope of application of the present invention is not limited to this, and the present invention is not limited to this. It can be widely applied to semiconductor integrated circuit devices.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように、本発明によればフィール
ド酸化膜、素子形成領域及び素子分離領域の3領域を自
己整合的に形成すると共に、フィールド酸化膜形成後に
素子分離領域?形成しエッチパック工程で亀の広いフィ
ールミ′酸化膜と幅の狭い素子分離領域とを同時に平坦
化するようVCしている。
As described in detail above, according to the present invention, the three regions of the field oxide film, the element formation region, and the element isolation region are formed in a self-aligned manner, and the element isolation region is formed after the field oxide film is formed. During the formation and etch-pack process, VC is applied so that the wide-field Fieldy oxide film and the narrow-width element isolation region are simultaneously planarized.

従って、平坦化用マスク等のマスクf:f要とし、厳し
いマスク合せ精度から解放され、合せ余裕をとる必要が
なく、工程の簡略化と共に累子形成領堵への欠陥の影響
を回避しつつよシー層の素子の微細化が実現できるとい
う効果がある。
Therefore, a mask such as a flattening mask f:f is required, freeing from strict mask alignment accuracy, eliminating the need for alignment allowance, simplifying the process, and avoiding the influence of defects on the lattice formation area. This has the effect of making it possible to miniaturize the elements of the thin layer.

更に本発明によれば、上記のようなマスクに必要としな
い簡単な工程で、従来の溝堀シ法と選択酸化法の両者の
利点を充分に生かした結合を可能とし、寄生容:ik大
幅に低減すると共に微細で高平坦性を有する優れた素子
分離構造を得ることができるという効果がある。
Furthermore, according to the present invention, it is possible to perform bonding that takes full advantage of the advantages of both the conventional trench trenching method and selective oxidation method through a simple process that does not require the above-mentioned mask, and the parasitic capacitance: ik can be significantly reduced. This has the effect that it is possible to obtain an excellent element isolation structure that is fine and has high flatness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を説明する工程断面図、
第2図は本発明の第2の実施例を説明する工程断面図で
ある。 11・・・半導体基体、12・・・緩衝用被膜、13・
・・第1の窒化膜、14・・・エツチングマスク材料、
15・・・第2の窒化膜、16・・・多結晶半導体膜、
17・・・第1の開口部、17a・・・第2の開口部、
18・・・半導体酸化膜、18a・・・庇部、20・・
・第1の溝、21・・・第3の窒化膜、22・・・フィ
ールド酸化膜、22a・・・フィールド領域、23・・
・第2の溝、24・・・半導体酸化膜、25・・・埋込
み材料、26・・・菓子形成領域、26 a・・・素子
分離領域。 特許出願人 沖電気工業株式会社 +7’2111聞ロ訃176 第2@間0並18  千
4体酸化腰(Stell  180 : A en不茫
明のオ潤文オセ1列tL!tiFlする工丁工断i囚第
1図 20 才1llt^ 2I゛シト311′i1イLハ11(S轟JN4)22
71−ルドeJZALm L5th+  226: 1
<−ルドや東j龜4(発シ門ので計)の15姥イダ’+
tai門Jする工T工断60図第1図 23 第2の2A 24牛塩’&11&+hM(5,OJ)  25:j!
jA7++4’7廿fraly−j=)不死!17′1
ejln?、QFI !4を明す4工THWjrfnP
第1図 26 #千f15戚4負を戒    26a素子今熟亀
傾上へ:F−円−ロー97:l1の支方士=イデ1乞姦
兇Bハす3工T¥止な6bし]第1図 244傳4#緘イしハ41(δaOz)25.)”IA
呵2NIC’JD−5i01)26儀+乃^牟1磯  
    260  本子弄亀4い歳+Q 鯛の22 の
’1 方tff’lE喜フjvMTろ工Ti1t’r面
[J第2図
FIG. 1 is a process sectional view explaining the first embodiment of the present invention;
FIG. 2 is a process cross-sectional view illustrating a second embodiment of the present invention. 11... Semiconductor substrate, 12... Buffer coating, 13.
... first nitride film, 14... etching mask material,
15... Second nitride film, 16... Polycrystalline semiconductor film,
17...first opening, 17a...second opening,
18...Semiconductor oxide film, 18a...Eave part, 20...
- First groove, 21... Third nitride film, 22... Field oxide film, 22a... Field region, 23...
- Second groove, 24... Semiconductor oxide film, 25... Burying material, 26... Confectionery forming region, 26 a... Element isolation region. Patent Applicant: Oki Electric Industry Co., Ltd. Dangerous Prisoner Figure 1 20 1llt^ 2I゛Sito311'i1I Lha11 (S Todoro JN4) 22
71-Led eJZALm L5th+ 226: 1
<-Rudo and East Jaku 4 (Hatsushimon no Soto total) 15 Uda'+
taimon J construction T section 60 Figure 1 Figure 23 2nd 2A 24 Beef salt'&11&+hM (5, OJ) 25:j!
jA7++4'7廿fraly-j=) Immortality! 17'1
ejln? , QFI! 4-engine THWjrfnP that reveals 4
Fig. 1 26 # 1000 f15 Relatives 4 Negative precepts 26a Motoko Imajukugame tilt: F-Yen-Ro 97:11's support officer = Ide 1 Beggar B Has 3 Ko T ¥ stop 6b] Figure 1 244 傳4#緘いしは41(δaOz)25. )”IA
2NIC'JD-5i01) 26gi+No^mu1iso
260 Honko tortoise 4 years old + Q sea bream 22 '1 directiontff'lE joy jvMT filter Ti1t'r side [J 2nd figure

Claims (1)

【特許請求の範囲】[Claims] (1)(a)半導体基体の一主面に緩衝用被膜、耐酸化
性の第1の窒化膜、エッチングマスク材料、耐酸化性の
第2の窒化膜及び多結晶半導体膜を順次形成する工程と
、 (b)上記多結晶半導体膜、第2の窒化膜及びエッチン
グマスク材料の3層膜を選択的にパターニングして、幅
の広い第1の開口部と幅の狭い第2の開口部とを形成す
る工程と、 (c)上記パターニングされた多結晶半導体膜を酸化し
て、庇部を有する半導体酸化膜に改質する工程と、 (d)上記庇部を有する半導体酸化膜をマスクとして、
上記第1の開口部内の少なくとも上記第1の窒化膜と緩
衝用被膜を選択的にエッチング除去して第1の溝を形成
する工程と、 (e)この後、少なくとも上記第1及びパターニングさ
れた第2の窒化膜をマスクとして酸化し、上記第1の溝
に選択的にフィールド酸化膜を形成する工程と、 (f)上記フィールド酸化膜を有しない第1の開口部、
及び第2の開口部の上記半導体基体表面を露出させた後
、上記フィールド酸化膜及びパターニングされたエッチ
ングマスク材料をマスクとして、上記半導体基体に対し
略垂直方向に第2の溝を形成する工程と、 (g)上記第2の溝の内壁部に半導体酸化膜を形成した
後、基体全面に埋込み材料を堆積して上記第2の溝を埋
込む工程と、 (h)上記埋込み材料を上記半導体基体の表面と略等し
い面まで継続的に除去すると共に上記パターニングされ
たエッチングマスク材料を除去し、上記第2の溝の少な
くとも内壁部及び上面部が絶縁された素子分離領域と、
この素子分離領域で囲まれた素子形成領域とを形成する
工程と、 (i)この後、上記第1の窒化膜及び緩衝用被膜を除去
して上記素子形成領域の表面を露出する工程 とを含むことを特徴とする半導体集積回路装置の製造方
法。
(1) (a) Step of sequentially forming a buffer film, an oxidation-resistant first nitride film, an etching mask material, an oxidation-resistant second nitride film, and a polycrystalline semiconductor film on one main surface of a semiconductor substrate and (b) selectively patterning the three-layer film of the polycrystalline semiconductor film, the second nitride film, and the etching mask material to form a wide first opening and a narrow second opening. (c) oxidizing the patterned polycrystalline semiconductor film to modify it into a semiconductor oxide film having an eaves part; (d) using the semiconductor oxide film having the eaves part as a mask; ,
selectively etching away at least the first nitride film and the buffer film in the first opening to form a first groove; (e) after this, at least the first and patterned oxidizing using a second nitride film as a mask to selectively form a field oxide film in the first groove; (f) a first opening having no field oxide film;
and after exposing the surface of the semiconductor substrate in the second opening, forming a second groove in a direction substantially perpendicular to the semiconductor substrate using the field oxide film and the patterned etching mask material as a mask. (g) forming a semiconductor oxide film on the inner wall of the second trench, and then depositing a embedding material on the entire surface of the base to bury the second trench; (h) applying the embedding material to the semiconductor oxide film; an element isolation region in which at least an inner wall portion and an upper surface portion of the second groove are insulated by continuously removing the patterned etching mask material to a surface substantially equal to the surface of the substrate;
forming an element formation region surrounded by the element isolation region; and (i) thereafter, removing the first nitride film and the buffer film to expose the surface of the element formation region. A method of manufacturing a semiconductor integrated circuit device, comprising:
JP20167186A 1986-08-29 1986-08-29 Manufacture of semiconductor integrated circuit device Pending JPS6358851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20167186A JPS6358851A (en) 1986-08-29 1986-08-29 Manufacture of semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20167186A JPS6358851A (en) 1986-08-29 1986-08-29 Manufacture of semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS6358851A true JPS6358851A (en) 1988-03-14

Family

ID=16444969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20167186A Pending JPS6358851A (en) 1986-08-29 1986-08-29 Manufacture of semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6358851A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201969A (en) * 1993-12-22 1995-08-04 Lg Semicon Co Ltd Separation method of semiconductor element
JPH08172087A (en) * 1994-06-16 1996-07-02 Lg Semicon Co Ltd Structure of separation membrane of semiconductor element and its formation
KR20190053281A (en) 2016-11-15 2019-05-17 산코 가부시키가이샤 METHOD FOR MANUFACTURING ANTI-ANTIOXIDANT AND METHOD FOR MANUFACTURING POLYURETHANE ELASTIC FIB

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201969A (en) * 1993-12-22 1995-08-04 Lg Semicon Co Ltd Separation method of semiconductor element
JPH08172087A (en) * 1994-06-16 1996-07-02 Lg Semicon Co Ltd Structure of separation membrane of semiconductor element and its formation
KR20190053281A (en) 2016-11-15 2019-05-17 산코 가부시키가이샤 METHOD FOR MANUFACTURING ANTI-ANTIOXIDANT AND METHOD FOR MANUFACTURING POLYURETHANE ELASTIC FIB

Similar Documents

Publication Publication Date Title
US6461934B2 (en) Method of manufacturing semiconductor device having trench type element isolation regions
JPS6352468B2 (en)
US6184108B1 (en) Method of making trench isolation structures with oxidized silicon regions
JPH0653314A (en) Semiconductor device and its manufacture
JPH0410740B2 (en)
JPS6348180B2 (en)
JP2006049835A (en) Semiconductor element having element isolation film in trench structure and manufacturing method for the same
JPS62500831A (en) groove transistor
JPH0621210A (en) Manufacture of semiconductor device
JPS6358851A (en) Manufacture of semiconductor integrated circuit device
JPS6080244A (en) Element isolation method of semiconductor device
JP3160928B2 (en) Element isolation formation method
JPS6167932A (en) Manufacture of semiconductor integrated circuit device
JPH0834241B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS61168241A (en) Forming method of element separating region
JPH0420267B2 (en)
JPH02304926A (en) Element isolation structure and manufacture thereof
JPH0344060A (en) Manufacture of semiconductor integrated circuit device
JPH07302788A (en) Formation of shallow groove and deep groove in silicon substrate
JPS61201445A (en) Manufacture of semiconductor integrated circuit device
JPH0230160A (en) Semiconductor device
JPH06232248A (en) Manufacture of semiconductor device
JPH09306984A (en) Manufacture of semiconductor device
JP2003152073A (en) Method for manufacturing semiconductor device
JPH0371651A (en) Manufacture of semiconductor