JPS63143807A - Film forming equipment - Google Patents

Film forming equipment

Info

Publication number
JPS63143807A
JPS63143807A JP29057686A JP29057686A JPS63143807A JP S63143807 A JPS63143807 A JP S63143807A JP 29057686 A JP29057686 A JP 29057686A JP 29057686 A JP29057686 A JP 29057686A JP S63143807 A JPS63143807 A JP S63143807A
Authority
JP
Japan
Prior art keywords
thin film
electrode
film forming
film
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29057686A
Other languages
Japanese (ja)
Inventor
Nobuhiro Fukuda
福田 信弘
Yoshinori Ashida
芦田 芳徳
Koji Igarashi
孝司 五十嵐
Masato Koyama
正人 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP29057686A priority Critical patent/JPS63143807A/en
Publication of JPS63143807A publication Critical patent/JPS63143807A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a high quality film to be uniformly formed at a high film forming speed on a material on which the film is formed by providing the material at the side of and in parallel with a comb-like transmitting electrode outside of a pair of the electrodes by applying high frequency power to the conductive comb-like electrode which can transmit a gaseous material. CONSTITUTION:A comb-like electrode (gas transmitting electrode 3) applied with high frequency power is connected to an impedance matching circuit which enables impedance matching. A film forming equipment is so constructed that a material on which a film is formed is provided at the side of and in parallel with the transmitting electrode 3 outside of a pair of the electrodes and a raw material gas supplied in plasma is brought on the surface of the material on which a thin film is formed through the gas transmitting electrode 3. Since the interval between the gas transmitting electrode and the material on which the thin film is formed controls the speed of forming the thin film, if the interval is made constant at any position of the material, the speed of forming the thin film can be made constant irrespective of the position and the uniform thickness and high quality thin film can be formed irrespective of the shape or the size of the material on which the thin film is formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

[技術分野] 本発明は、高周波放電による成膜装置に関し、とくに、
被形成物上に均一に薄膜形成を行うに適した成膜装置に
関する。
[Technical Field] The present invention relates to a film forming apparatus using high frequency discharge, and in particular,
The present invention relates to a film forming apparatus suitable for uniformly forming a thin film on an object.

【従来技術およびその問題点】[Prior art and its problems]

従来、高周波放電による薄膜形成装置は、例えば第3図
に模式的に示したようなものであって、薄膜、たとえば
アモルファス太陽電池、感光体、薄膜半導体装置などに
用いられるアモルファスシリコン膜やアモルファスシリ
コンカーバイド膜などの形成に利用されてきた。しかし
ながら、複雑な形状の被形成物はもちろん板状物のよう
な単純な形状のものでも大面積になると被形成物上に均
一に*H影形成行うことは困難であった。この困難さを
解消するために放電1i極を被形成物に比してきわめて
大きくすることが試みられた。しかしながら、被形成物
が放電中にあるためか放電の乱れを解消することができ
ず、大面積の被形成物はともかく複雑形状の被形成物上
の均一形成は未だ満足のいくものではなかった。 また、当然のことながら、この方法では薄膜形成装置が
きわめて大きくなり低コスト化の要請にも応えることが
できなかった。さらに、第3図に示したように、放電電
極2゛、2“間にメツシュ状第3電極4を用いることも
試みられたが、この方法においては薄膜形成速度が極め
て低下するという問題があった。 本発明者は先に、ジシランから高速でアモルフナスシリ
コン膜を形成する技術を提案した。また、ジシランは易
分解性であるが、易反応性でもある。このために原料ジ
シランが多く存在する条件では分解生成物と原料ジシラ
ンとの間の反応が主体となり、膜の光電変換特性が低下
することを本発明者は見出した。この結果、ジシランや
ゲルマンのような易分解性であるが、易反応性でもある
原料を用いる場合においては、得られる薄膜は光電変換
装置の用途に対して、未だ、満足される特性は得られて
いない。 [基本的着想] 本発明者は高周波放電過程を詳細に検討した結果、高周
波放電を均一に保持することおよび被形成物により該放
電を乱さないことに、均一成膜の重要なポイントがある
ことを見出した。さらに、高周波印加電極の近傍におい
てジシラン等の原料がきわめて少なくなることをも見出
した。 本発明はかかる知見に基づいて成されるに到ったもので
ある。 [発明の目的] 本発明の目的は高周波放電を均一に保持することおよび
被形成物により該放電を乱すことなく、原料ガスの存在
量の低減を可能にする成膜装置を提供することであり、
また、被形成物上に高成膜速度で高品質膜を均一に形成
できる′p4膜形成装置を提供することである。 [発明の開示] すなわち、本発明は、(1)原料ガス導入手段、真空排
気手段および加熱手段を有する薄膜形成室内に、グロー
放電を生ぜしめるべく高周波電源に接続された電極対を
対抗配置してなる成膜装置にして、該電極対の少なくと
も一方の電極はガス状物質の透過を可能にする導電性の
電極、好ましくはすだれ状物構造であると共に該すだれ
状電極には高周波電力が印加され、且つ薄膜が形成さる
べき被形成物は、該電極対の外側で、該すだれ状透過電
極側に並行配置されてなることを特徴とする成膜装置で
ある。 該高周波が印加されたすだれ状物の電極(以下において
ガス透過電極と称す)はインピーダンス整合を可能にす
るためのインピーダンス整合回路に接続されているもの
である。該ガス透過電極と薄膜の被形成物との間隔は調
節可能であり、特に好ましくは、この間隔を一定に維持
することである。一定の間隔を保持させるために、ガス
透過電極の表面形状と薄膜の被形成物の表面形状とをほ
ぼ等しくすることはきわめて有効である。 本発明で使用するすだれ状物としては、第2図に示すよ
うに、幅0.2〜2.0ms 、厚み0.1〜l−一の
導電性の板状物(a)を、0.2〜2.0−  の間隔
(b)をおいてほぼ均二に並行配置し、それぞれの板状
物を電気的に接続した構造である。ガス透過電極の材質
として好ましいものはシリコンのエツチングに実用上に
耐える材質のもの、たとえばアルミニウム、ステンレス
スチール、タングステンやタンタルのようなものである
。 ガス透過電極に対向配置された他方の電極(以下対極と
称す)は好ましくはその表面形状はガス透過電極の表面
形状と同様のものである。対極の材質は導電性の金属で
ある。 原料ガスの供給方法は特に限られるものではなく、プラ
ズマ中に任意の原料供給手段により行われる。特に該対
極を第1v!Jに示すように、原料ガス供給手段として
利用し、この対極を通して原料ガスを供給するのは好ま
しい示例である。 本発明においては、薄膜形成表面近くに存在する原料ガ
スを極力少なくすることにポイントの一つがあるところ
、本発明者等は原料ガスの分解は高周波印加電極の近傍
でもっとも激しく生じることを見いだしたのである。こ
のため、原料ガスがプラズマ中から高周波印加電極を経
由して薄膜形成表面に到達することが望まれる。すなわ
ち、プラズマ中に供給された原料ガスをガス透過電極を
経由してI膜の被形成物の表面に到達させるように成膜
装置を構成することが本発明においては重要な要件とな
る。 ガス透過電極と薄膜の被形成物との間隔は薄膜の形成速
度を支配するものであるから、この間隔を被形成物の何
れの位置においても一定になるようにしておけば、薄膜
の形成速度を場所によらず一定にすることができ、該被
形成物の形状や大きさを問わず均一な厚みで高品質の薄
膜を形成することができるのである。なお、該間隔は該
被形成物の形状に応じて調整される。この時、ガス透過
電極は被形成物の形状に応じた形状に適宜形成すること
が便利である。たとえば、被形成物の表面形状が平面で
あれば、ガス透過電極も平面に形成され、その間隔は適
宜選択されるのである。また、該被形成物の表面形状に
凹凸があれば、ガス透過電極もそれに合わせて凹凸に形
成されればよいのである。 被形成物とガス透過電極の間隔の調整方法としては、任
意の調整方法を採用することが出来、とくに限定されな
い、該間隔が小さくなりすぎるとガス透過電極の形状が
被形成物に写し出されるので好ましくない、従って、該
間隔は少なくとも1−転好ましくは2ms以上、さらに
好ましくは4@11以上あることである。一方、この間
隔が大きすぎると一旦分解された原料ガスが反応をおこ
し結合するので、得られるWI膜の電気的特性は低下す
ることになる。この間隔は放電電力に依存して変化する
が100mm以内好ましくは50m−以内である。 本発明に用いうる原料ガスとは、Si@H1nh* (
n−1,2,3−・・・−・・−・−・・)などのシラ
ンガスであり、n−1,2および3はそれぞれモノシラ
ン、ジシラン、トリシランに謔亥当する。また5iH−
Fa−x<x暑0.1.2.3) やSi!HyFi−
y(y−0,1,2,3,5))で表わされるフッ化シ
ラン;ゲルマン(GeHa)やGeHzFa−z (2
・0,1,2.3 )で表わされるフッ化ゲルマンなど
ももちろん、本発明の原料ガスとして用いることができ
る。これらの原料ガスを用いることによりフッ素含有シ
リコンや5iGe合金を容易に形成することができる。 さらに炭素含有化合物や窒素含有化合物をシランガスと
ともに用いることにより炭素や窒素を含有するシリコン
薄膜を形成することもできる。なお、これらの半導体薄
膜を形成するにさいして、ボロンやリンのように価電子
を制御する元素の化合物を併用することにより、それぞ
れ、P型およびN型の半導体薄膜を形成することができ
る。また、シランガスをはじめとするこれらの原料ガス
は希釈しない状態で用いることができるが、水素やヘリ
ウムで希釈して用いることも、放電状態の安定性が高ま
り好ましいことである。 本発明において薄膜が形成さるべき被形成物(以下基体
と称す)は特に限定されるものではなく、たとえば、絶
縁性または導電性、透明または不透明のいずれでもよい
、基本的にはガラス、アルミナ、シリコン、ステンレス
スチール、アルミニウム、モリブデンなどの非金属、半
導体、金属はもとより、耐熱性の高分子等の物質で形成
されるフィルムあるいは板状の材料等を基体として有効
に用いることができる。 なお、本発明を利用して充電変換素子の如き半導体装置
を製造することも可能であるが、その場合は、基体に導
電性を付与する必要がある。これがためには、導電性め
基体を用いるか、あるいは絶縁性の基体上に導電性薄膜
を形成した基体を用いればよいことは、当業者には容易
に理解出来ることである。かかる導電性薄膜を形成する
材料としては、アルミニウム、モリブデン、ニクロム、
酸化インジウム、酸化錫、ステンレススチールなどの薄
膜または薄板などが有効に用いられる。また、基体が光
の入射側に用いられるならばその基体は透明の必要があ
るがこれ以外にはなんらの制限はない。 〔発明を実施するための好ましい形態]本発明において
、薄膜形成装置は、原料ガス導入手段、真空排気手段お
よび加熱手段を有する薄膜形成室内に、グロー放電を生
ぜしめるべく高周波電源に接続された電極対を対抗配置
してなる薄膜形成装置にして、該電極対の少なくとも一
方の電極はガス状物質の透過を可能にする構造例えば導
電性のすだれ状物構造であると共に該すだれ状電極には
高周波電力が印加され、且つ薄膜が形成さるべき被形成
物は、該電極対の外側で、該透過電極側に並行配置され
たものである。 しかして、高周波電源として100KHz〜20MHz
の発振周波数を有する電源を用いて、インピーダンスマ
ツチング回路を介して該膜形成装置の放電電極に接続す
る。膜の形成は、圧力0.001 =10Torr、放
電電極の間隔を1〜100m−1基体は、室温〜500
℃までの範囲において加熱され、放電電力密度0.01
〜IW/cm”程度で行われる。 [実施例1〜7] 第1図に示す如く、薄膜形成室1に基体加熱手段6、真
空排気手段lO1基体保持手段を兼ねる基体搬送手段7
および容量結合型の電極対、すなわち、1.Om園の間
隔で配置された厚み0.5ms 、幅11I11のすだ
れ状物からなるガス透過電極3と原料ガス導入手段9を
有する対極2を有する薄膜形成装置を用いた。電極3は
インピーダンスマツチング回路を介して13.56 M
n2の発振周波数を有する高周波電源8に接続されてい
るものである。原料ガス導入手段によりジシランを30
3CCHの流量で供給し、真空排気手段で排気しつつ、
膜形成室の圧力を0.6Torrに調整する0周波数を
第1表に示すように適宜選択した後で、高周波電力を3
0w印加し、グロー放電を開始する。基体搬送手段によ
り膜形成室にガラス基体を搬送し、アモルファスシリコ
ン膜の形成を開始する0本実施例においては基体とすだ
れ目状電極との間隔を1〜loom−の範囲で変更した
。基体は膜形成中250℃に維持された、一定時間の膜
付けを終了した後、基体搬送手段で基体を膜形成室から
取出した。得られたアモルファスシリコン膜について膜
厚、光導電度および暗導電度を測定した。この結果を第
−表に示した、高速成膜条件においても膜質の均一性に
すぐれ、かつ光電変換特性も良好であることが明らかで
第−表 ある。 [産業上の利用可能性] 以上の実施例から明らかなように、本発明の装置を使用
すれば、高成膜速度を維持しながら、かつ充電特性に優
れているアモルファスシリコン膜を得ることが出来るこ
とが明らかであり、本発明は薄膜半導体の形成において
きわめて着用というべきである。
Conventionally, thin film forming apparatuses using high frequency discharge have been used, for example, as schematically shown in FIG. It has been used to form carbide films. However, it has been difficult to uniformly form *H shadows on a large area, whether it is a complicated shaped object or a simple shaped object such as a plate. In order to solve this difficulty, attempts have been made to make the discharge electrode 1i much larger than the object to be formed. However, because the object to be formed was in the process of discharging, it was not possible to eliminate disturbances in the discharge, and uniform formation on objects with complex shapes, even on large-area objects, was still unsatisfactory. . Furthermore, as a matter of course, this method requires an extremely large thin film forming apparatus and cannot meet the demand for cost reduction. Furthermore, as shown in FIG. 3, attempts have been made to use a mesh-like third electrode 4 between the discharge electrodes 2'' and 2'', but this method has the problem of extremely slowing down the thin film formation rate. The present inventor previously proposed a technology for forming an amorphous silicon film from disilane at high speed.Also, disilane is easily decomposed, but it is also easily reactive.For this reason, there is a large amount of raw material disilane. The inventors have found that under these conditions, the reaction between the decomposition products and the raw material disilane becomes the main reaction, and the photoelectric conversion properties of the film deteriorate. In the case of using raw materials that are also easily reactive, the resulting thin film has not yet achieved satisfactory characteristics for use in photoelectric conversion devices. [Basic idea] As a result of a detailed study of It was also found that the amount of raw materials such as disilane was extremely reduced. The present invention was made based on this knowledge. [Object of the Invention] The object of the present invention is to maintain uniform high-frequency discharge. Another object of the present invention is to provide a film forming apparatus that enables reduction of the amount of source gas present without disturbing the discharge due to objects to be formed.
Another object of the present invention is to provide a 'p4 film forming apparatus that can uniformly form a high quality film at a high film formation rate on an object to be formed. [Disclosure of the Invention] That is, the present invention provides (1) a thin film forming chamber having source gas introduction means, evacuation means, and heating means, in which a pair of electrodes connected to a high frequency power source are disposed opposite each other in order to generate glow discharge. At least one electrode of the pair of electrodes is a conductive electrode that allows gaseous substances to pass through, preferably having a comb-like structure, and high-frequency power is applied to the comb-like electrode. The film forming apparatus is characterized in that the object on which the thin film is to be formed is arranged outside the electrode pair and parallel to the interdigital transmissive electrode. The transducer-shaped electrode (hereinafter referred to as a gas-permeable electrode) to which the high frequency is applied is connected to an impedance matching circuit to enable impedance matching. The distance between the gas-permeable electrode and the thin film formation is adjustable, and it is particularly preferred to keep this distance constant. In order to maintain a constant spacing, it is extremely effective to make the surface shape of the gas permeable electrode and the surface shape of the thin film substantially equal. As shown in FIG. 2, the blind-like material used in the present invention is a conductive plate-like material (a) with a width of 0.2 to 2.0 ms and a thickness of 0.1 to 1-1. It has a structure in which the plate-like objects are arranged almost evenly in parallel with an interval (b) of 2 to 2.0 mm, and the respective plate-like objects are electrically connected. Preferred materials for the gas permeable electrode are those that can practically withstand etching of silicon, such as aluminum, stainless steel, tungsten, and tantalum. The other electrode (hereinafter referred to as a counter electrode) disposed opposite to the gas permeable electrode preferably has a surface shape similar to that of the gas permeable electrode. The material of the counter electrode is a conductive metal. The method of supplying the raw material gas is not particularly limited, and any raw material supply means may be used to supply the raw material gas into the plasma. Especially the 1st v! As shown in J, it is a preferable example to use it as a raw material gas supply means and supply the raw material gas through this counter electrode. In the present invention, one of the key points is to minimize the amount of source gas present near the thin film forming surface, and the inventors have discovered that the decomposition of the source gas occurs most violently near the high frequency application electrode. It is. For this reason, it is desirable that the source gas reaches the thin film forming surface from the plasma via the high frequency application electrode. That is, it is an important requirement in the present invention to configure the film forming apparatus so that the source gas supplied into the plasma reaches the surface of the object on which the I film is formed via the gas permeable electrode. The distance between the gas permeable electrode and the object on which the thin film is formed controls the rate of thin film formation, so if this distance is made constant at any position on the object, the speed of thin film formation can be increased. can be made constant regardless of the location, and a high-quality thin film with a uniform thickness can be formed regardless of the shape or size of the object to be formed. Note that the interval is adjusted depending on the shape of the object to be formed. At this time, it is convenient to form the gas permeable electrode into a shape that corresponds to the shape of the object to be formed. For example, if the surface shape of the object to be formed is flat, the gas permeable electrodes are also formed flat, and the interval between them is selected as appropriate. Further, if the surface shape of the object to be formed has irregularities, the gas permeable electrode may also be formed with irregularities corresponding to the irregularities. Any method can be used to adjust the distance between the object to be formed and the gas-permeable electrode, and there is no particular limitation. It is not preferred, therefore, that the interval is at least 1 turn, preferably 2 ms or more, more preferably 4@11 or more. On the other hand, if this interval is too large, the once decomposed source gases will react and combine, resulting in a decrease in the electrical characteristics of the resulting WI film. This distance varies depending on the discharge power, but is within 100 mm, preferably within 50 m. The raw material gas that can be used in the present invention is Si@H1nh* (
It is a silane gas such as n-1, 2, 3-...-...), and n-1, 2, and 3 correspond to monosilane, disilane, and trisilane, respectively. Also 5iH-
Fa-x<x heat 0.1.2.3) and Si! HyFi-
Fluorinated silane represented by y(y-0,1,2,3,5)); germane (GeHa) and GeHzFa-z (2
Of course, fluorogermane represented by 0,1,2.3) can also be used as the raw material gas of the present invention. By using these raw material gases, fluorine-containing silicon and 5iGe alloy can be easily formed. Furthermore, a silicon thin film containing carbon or nitrogen can also be formed by using a carbon-containing compound or a nitrogen-containing compound together with silane gas. In forming these semiconductor thin films, P-type and N-type semiconductor thin films can be respectively formed by using a compound of an element that controls valence electrons, such as boron or phosphorus. Further, these raw material gases including silane gas can be used in an undiluted state, but it is also preferable to use them diluted with hydrogen or helium because this increases the stability of the discharge state. In the present invention, the object on which a thin film is to be formed (hereinafter referred to as the substrate) is not particularly limited, and may be insulating or conductive, transparent or opaque, and basically includes glass, alumina, In addition to non-metals, semiconductors, and metals such as silicon, stainless steel, aluminum, and molybdenum, film or plate-shaped materials formed of heat-resistant polymers and other substances can be effectively used as the substrate. Note that it is also possible to manufacture a semiconductor device such as a charge conversion element using the present invention, but in that case, it is necessary to impart conductivity to the base. Those skilled in the art will readily understand that for this purpose, a conductive substrate or a substrate formed by forming a conductive thin film on an insulating substrate may be used. Materials for forming such a conductive thin film include aluminum, molybdenum, nichrome,
Thin films or plates of indium oxide, tin oxide, stainless steel, etc. are effectively used. Furthermore, if the substrate is used on the light incident side, the substrate must be transparent, but there are no other restrictions. [Preferred form for carrying out the invention] In the present invention, a thin film forming apparatus includes an electrode connected to a high frequency power source to generate a glow discharge in a thin film forming chamber having a source gas introduction means, a vacuum evacuation means, and a heating means. A thin film forming apparatus is formed by arranging a pair of electrodes facing each other, and at least one of the electrodes has a structure that allows gaseous substances to pass through, such as a conductive interdigital structure, and the interdigital electrode has a high frequency The object to which electric power is applied and on which a thin film is to be formed is placed outside the electrode pair and parallel to the transparent electrode side. However, as a high frequency power source, 100KHz to 20MHz
A power supply having an oscillation frequency of is connected to the discharge electrode of the film forming apparatus via an impedance matching circuit. The film was formed at a pressure of 0.001 = 10 Torr, and a spacing between discharge electrodes of 1 to 100 m.
Heated in the range up to ℃, discharge power density 0.01
~IW/cm''. [Examples 1 to 7] As shown in FIG. 1, a thin film forming chamber 1 was equipped with a substrate heating means 6, a vacuum evacuation means 1O1, and a substrate transport means 7 which also served as a substrate holding means.
and a capacitively coupled electrode pair, namely 1. A thin film forming apparatus was used, which had a gas permeable electrode 3 made of a screen-shaped material having a thickness of 0.5 ms and a width of 11I11 arranged at intervals of 0.5 ms, and a counter electrode 2 having a source gas introducing means 9. Electrode 3 is connected to 13.56 M via an impedance matching circuit.
It is connected to a high frequency power source 8 having an oscillation frequency of n2. 30% of disilane is introduced by the raw material gas introduction means.
While supplying at a flow rate of 3CCH and exhausting with a vacuum evacuation means,
After appropriately selecting the zero frequency for adjusting the pressure in the film forming chamber to 0.6 Torr as shown in Table 1, the high frequency power was adjusted to 3 Torr.
Apply 0W to start glow discharge. A glass substrate is transported to a film forming chamber by the substrate transport means, and formation of an amorphous silicon film is started. The substrate was maintained at 250° C. during film formation. After completing the film formation for a certain period of time, the substrate was taken out from the film forming chamber by the substrate transport means. The film thickness, photoconductivity, and dark conductivity of the obtained amorphous silicon film were measured. The results are shown in Table 1. It is clear that even under high-speed film formation conditions, the film quality was excellent in uniformity and the photoelectric conversion characteristics were also good. [Industrial Applicability] As is clear from the above examples, by using the apparatus of the present invention, it is possible to obtain an amorphous silicon film with excellent charging characteristics while maintaining a high film formation rate. It is clear that the present invention can be used in the formation of thin film semiconductors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の成膜装置を示す模式図であり、基体は
対向する電極外でかつガス透過電極側に存在する。第2
図はすだれ状電極を示す平面図であり、a、bおよびC
はそれぞれ導電性の板状物、開口部および電気的接続部
を表す、第3図は従来の成膜装置を示す模式図であり、
基体は対向する電極間に存在する。 図において、 1−・−・−・−薄膜形成室、2−・−・−・一対極、
2°、2″・−・−・放電電極、3・・−・−・−ガス
透過電極、4−・−・−・メツシュ状第3電掻、5−・
−・−・・均熱板、6・・−・・・基体加熱手段をそれ
ぞれ示す。 特許出願人 三井東圧化学株式会社 手1klE争甫正書(方式) 昭和62年3月1ら日 特許庁長官 黒 1)明 雄 殿 1、事件の°表示 昭和61年特許願第290576号 2、発明の名称 成膜装置 3、補正をする者 事件との関係   特許出願人 住所 東京都千代田区霞が関三丁目2番5号4、補正命
令の日時
FIG. 1 is a schematic diagram showing a film forming apparatus of the present invention, in which the substrate is located outside the opposing electrodes and on the gas permeable electrode side. Second
The figure is a plan view showing interdigital electrodes, a, b and C.
3 represents a conductive plate, an opening, and an electrical connection, respectively. FIG. 3 is a schematic diagram showing a conventional film forming apparatus.
A substrate exists between opposing electrodes. In the figure, 1--・--- thin film forming chamber, 2--- one counter electrode,
2°, 2″・−・−・Discharge electrode, 3・・・−・・Gas permeable electrode, 4−・・−・−・Mesh-like third electrode, 5−・・
-.--. Soaking plate, 6.--. Substrate heating means, respectively. Patent Applicant Mitsui Toatsu Kagaku Co., Ltd. Hand 1klE Complaint (Method) March 1, 1986 Director-General of the Patent Office Kuro 1) Akio Yu 1, Indication of Case Patent Application No. 290576 of 1988 2 , Name of the invention Film forming apparatus 3, Person making the amendment Relationship to the case Patent applicant address 3-2-5-4 Kasumigaseki, Chiyoda-ku, Tokyo Date and time of the amendment order

Claims (4)

【特許請求の範囲】[Claims] (1)原料ガス導入手段、真空排気手段および加熱手段
を有する薄膜形成室内に、グロー放電を生ぜしめるべく
高周波電源に接続された電極対を対抗配置してなる成膜
装置にして、該電極対の少なくとも一方の電極はガス状
物質の透過を可能にする導電性のすだれ状物構造である
と共に該すだれ状電極には高周波電力が印加され、且つ
薄膜が形成さるべき被形成物は、該電極対の外側で、該
すだれ状透過電極側に並行配置されてなることを特徴と
する成膜装置。
(1) A film forming apparatus is constructed in which a pair of electrodes connected to a high frequency power source are arranged opposite each other to generate glow discharge in a thin film forming chamber having source gas introducing means, evacuation means, and heating means, and the electrode pair At least one of the electrodes has a conductive interdigital structure that allows gaseous substances to pass through, and high-frequency power is applied to the interdigital electrode, and the object on which a thin film is to be formed is connected to the electrode. A film forming apparatus characterized in that the film forming apparatus is arranged on the outside of the pair and parallel to the interdigital transmissive electrode.
(2)すだれ状透過電極と薄膜が形成さるべき被形成物
との間隔を調節可能に構成してなる特許請求の範囲第1
項記載の成膜装置。
(2) Claim 1, wherein the distance between the interdigital transmissive electrode and the object on which the thin film is to be formed can be adjusted.
The film forming apparatus described in Section 1.
(3)すだれ状透過電極と薄膜が形成さるべき被形成物
との間隔は一定の間隔を保持してなる特許請求の範囲第
1項記載の成膜装置。
(3) The film forming apparatus according to claim 1, wherein a constant distance is maintained between the interdigital transmissive electrode and the object on which the thin film is to be formed.
(4)すだれ状透過電極の表面形状と薄膜が形成さるべ
き被形成物の表面形状とをほぼ等しくして一定の間隔を
保持させる特許請求の範囲第1項記載の成膜装置。
(4) The film forming apparatus according to claim 1, wherein the surface shape of the interdigital transmissive electrode and the surface shape of the object on which the thin film is to be formed are made substantially equal to maintain a constant interval.
JP29057686A 1986-12-08 1986-12-08 Film forming equipment Pending JPS63143807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29057686A JPS63143807A (en) 1986-12-08 1986-12-08 Film forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29057686A JPS63143807A (en) 1986-12-08 1986-12-08 Film forming equipment

Publications (1)

Publication Number Publication Date
JPS63143807A true JPS63143807A (en) 1988-06-16

Family

ID=17757811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29057686A Pending JPS63143807A (en) 1986-12-08 1986-12-08 Film forming equipment

Country Status (1)

Country Link
JP (1) JPS63143807A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429572A (en) * 1977-08-09 1979-03-05 Fujitsu Ltd Plasma unit
JPS5713746A (en) * 1980-06-30 1982-01-23 Fujitsu Ltd Vapor-phase growing apparatus
JPS607133A (en) * 1983-06-24 1985-01-14 Toshiba Corp Plasma cvd device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429572A (en) * 1977-08-09 1979-03-05 Fujitsu Ltd Plasma unit
JPS5713746A (en) * 1980-06-30 1982-01-23 Fujitsu Ltd Vapor-phase growing apparatus
JPS607133A (en) * 1983-06-24 1985-01-14 Toshiba Corp Plasma cvd device

Similar Documents

Publication Publication Date Title
US4615298A (en) Method of making non-crystalline semiconductor layer
EP0002383B1 (en) Method and apparatus for depositing semiconductor and other films
US20040140036A1 (en) Plasma processing method and apparatus
GB2043042A (en) Production of semiconductor bodies made of amorphous silicon
US6531654B2 (en) Semiconductor thin-film formation process, and amorphous silicon solar-cell device
JP2616760B2 (en) Plasma gas phase reactor
JP3960792B2 (en) Plasma CVD apparatus and method for manufacturing amorphous silicon thin film
JPS63143807A (en) Film forming equipment
JPS63143808A (en) Thin film forming equipment
JPS63143809A (en) Equipment for forming thin film
JP2695155B2 (en) Film formation method
JPH0250969A (en) Thin film forming device
JPS6062113A (en) Plasma cvd equipment
JP2648684B2 (en) Plasma gas phase reactor
JP2649331B2 (en) Plasma processing method
JP3040247B2 (en) Manufacturing method of silicon thin film
JP2004091885A (en) Apparatus for depositing thin film and method for depositing thin film using this apparatus
JP2649330B2 (en) Plasma processing method
JPH0249385B2 (en) PURAZUMACVD SOCHI
JPH0250967A (en) Formation of thin film and device therefor
JPS63142627A (en) Manufacture of semiconductor thin film
JPH0249386B2 (en) PURAZUMACVD SOCHI
JPH05335244A (en) Forming method for amorphous silicon thin film
JP2728874B2 (en) Semiconductor device manufacturing method
JP2670561B2 (en) Film formation method by plasma vapor phase reaction