JPS63143760A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPS63143760A
JPS63143760A JP61289403A JP28940386A JPS63143760A JP S63143760 A JPS63143760 A JP S63143760A JP 61289403 A JP61289403 A JP 61289403A JP 28940386 A JP28940386 A JP 28940386A JP S63143760 A JPS63143760 A JP S63143760A
Authority
JP
Japan
Prior art keywords
heat
case
cooler
temperature
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61289403A
Other languages
Japanese (ja)
Other versions
JPH0517668B2 (en
Inventor
Yujiro Fujisaki
悠二郎 藤崎
Akira Kita
喜多 明
Koichiro Takashima
高嶋 皓一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Yuasa Corp
Original Assignee
Kawasaki Heavy Industries Ltd
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Yuasa Battery Corp filed Critical Kawasaki Heavy Industries Ltd
Priority to JP61289403A priority Critical patent/JPS63143760A/en
Publication of JPS63143760A publication Critical patent/JPS63143760A/en
Publication of JPH0517668B2 publication Critical patent/JPH0517668B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To maintain a quantity of heat within a definite temperature by providing a case inside a heat reserving furnace, wherein unit batteries are contained in many recessed parts, which are partly immersed in a sealed heat medium, equipped with a cooler outside the heat reserving furnace in order to thermally connect the case with the cooler. CONSTITUTION:A heat medium 5 is sealed immersing partly recessed parts 3 inside a case 4 and a cooler 6 is provided outside a heat reserving furnace 1. The case 4 and the cooler 6 are connected with piping 10 equipped with control valves 7, 8. On a liquid phase 11 of the heat medium, a temperature controller 12 is mounted, by which said control valve 7 is actuated. With the bottom of the cooler 6, a tube 13 containing a liquid is connected forming a circuit head. The lower part of the tube 13 and the liquid phase part of heat medium 11 are connected with piping 15 equipped with a valve 14. A heater 16 used for start-up is connected with piping 10 through a valve 17 and piping 15 through a valve 18. By the arrangement, a considerable quantity of heat can be transferred with a small temperature difference.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、充電、放電、休止の各モードを一定の温度範
囲内に維持することができる熱媒式のナトリウムフイオ
ウ電池に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heat medium type sodium fluoride battery that can maintain charge, discharge, and rest modes within a certain temperature range. .

〔従来の技術〕[Conventional technology]

電力貯蔵に用いられるナトリウム−イオウ型蓄電池にお
いては、充電、放電、休止の各モードにより発熱量が変
化する。しかし正常な作動のためには、全モードを通じ
、一定の温度範囲内に維持する必要がある。
In sodium-sulfur storage batteries used for power storage, the amount of heat generated changes depending on charging, discharging, and resting modes. However, for proper operation, the temperature must be maintained within a certain range throughout all modes.

従来は、ナトリウム−イオウ電池の温度維持と、多数の
単電池を均一な温度に保つため、単電池を収納する断熱
材壁の保温炉の内部で空気を循環し、発熱量が多いとき
には少量の外気を取り込んで冷却していた。
Conventionally, in order to maintain the temperature of sodium-sulfur batteries and to keep a large number of cells at a uniform temperature, air was circulated inside a heat insulating furnace with insulation walls that housed the cells, and when the amount of heat generated was large, a small amount of air was It was cooling by drawing in outside air.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来の方式はつぎのような問題点を
有している。
However, the above conventional method has the following problems.

(1)空気流への対流伝熱量はそれ程大きくないので、
競合する他の伝熱形態(輻射など)の影響を受けて、温
度が不均一になる。温度を均一にするためには、多量の
空気を循環しなければならず、多大の動力を必要とする
(1) Since the amount of convective heat transfer to the air flow is not that large,
Non-uniform temperatures due to the effects of other competing forms of heat transfer (such as radiation). In order to make the temperature uniform, a large amount of air must be circulated, which requires a large amount of power.

(2)空気流を保温炉内の各個所で均一にするのが難し
く、温度偏差が出やすい。
(2) It is difficult to make the air flow uniform at each location in the heat-retaining furnace, and temperature deviations are likely to occur.

(3)  ファン、ダクトなどの付帯設備により、装置
の占有空間が大きくなる。
(3) Ancillary equipment such as fans and ducts increase the space occupied by the device.

(4)回転機器を必要とするので、設備費、保守・点検
量が割高となる。
(4) Since rotating equipment is required, equipment costs and maintenance/inspection costs are relatively high.

(5)空気流の理論的予測が難しいため、スケールアン
プが困難である。
(5) Scale amplifiers are difficult because it is difficult to theoretically predict airflow.

本発明は上記の諸点に鑑みなされたもので、熱媒の蒸発
・凝縮により、一定の温度範囲内に維持するようにした
ナトリウム−イオウ電池の提供を目的とするものである
The present invention was made in view of the above points, and an object of the present invention is to provide a sodium-sulfur battery that maintains a temperature within a certain range by evaporating and condensing a heat medium.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のナトリウム−イオウ電池は、ナトリウム−イオ
ウ電池の保温炉内に、単電池を収納する多数の凹部を有
するケースを設け、このケース内に液が凹部の少なくと
も一部を浸すように熱媒を封入し、保温炉の外部に放熱
部を設け、ケースと放熱部とを熱的に接続したことを特
徴としている。
In the sodium-sulfur battery of the present invention, a case having a large number of recesses for housing the cells is provided in a heat insulating furnace for the sodium-sulfur battery, and a heat medium is placed in the case so that the liquid soaks at least a portion of the recesses. is enclosed, a heat radiating section is provided outside the insulating furnace, and the case and the heat radiating section are thermally connected.

本発明において、放熱部としては、熱媒蒸気を冷却・凝
縮するクーラー、ヒートパイプ放熱部などが用いられる
。また熱媒としては熱媒油などが用いられる。
In the present invention, as the heat radiating section, a cooler that cools and condenses the heat medium vapor, a heat pipe heat radiating section, etc. are used. Further, as the heat medium, heat medium oil or the like is used.

〔作用〕[Effect]

電池の発熱量が大きいときには、保温炉の外部の放熱部
とケース内とを熱的に連絡して保温炉内を冷却し、電池
の発熱量が小さいときには、放熱部とケース内との連通
を遮断する。
When the amount of heat generated by the battery is large, the heat radiating part outside the heat insulating furnace is thermally connected to the inside of the case to cool the inside of the insulating furnace. Cut off.

〔実施例〕〔Example〕

以下、図面を参照して本発明の好適な実施例を詳細に説
明する。ただしこの実施例に記載されている構成機器の
材質、形状、その相対配置などは、とくに特定的な記載
がない限りは、本発明の範囲をそれらのみに限定する趣
旨のものではなく、単なる説明例にすぎない。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. However, unless there is a specific description, the materials, shapes, relative positions, etc. of the components described in this example are not intended to limit the scope of the present invention to these, but are merely illustrative. Just an example.

実施例1 第1図において、1はナトリウム−イオウ電池の保温炉
で、この保温炉1内に単電池2を収納する多数の凹部3
を有するケース4を設ける。このケース4内に液が凹部
3の一部を浸すように熱媒5を封入する。また保温炉1
の外部にクーラー6を設け、ケース4とクーラー6とを
制御弁7、弁8を備えた配管10で接続する。熱媒液相
部11には温度制御器12が接続され、この温度制御器
12により前記制御弁7が開閉するように構成されてい
る。クーラー6の下部には循環ヘッドを形成するように
、液体の入った筒体13が接続され、この筒体13の下
部と熱媒液相部11とが弁14を備えた配管15で接続
されている。16はスタートアンプ用のヒーターで、弁
17を介して配管10に、弁18を介して配管15に接
続されている。20は熱媒気相部、21は断熱壁である
Embodiment 1 In FIG. 1, reference numeral 1 denotes a heat insulating furnace for a sodium-sulfur battery, and the insulating furnace 1 has a number of recesses 3 in which cells 2 are housed.
A case 4 is provided. A heating medium 5 is sealed in the case 4 so that the liquid partially immerses the recess 3. In addition, the heat retention furnace 1
A cooler 6 is provided outside the case 4, and the case 4 and the cooler 6 are connected by a pipe 10 equipped with a control valve 7 and a valve 8. A temperature controller 12 is connected to the heat medium liquid phase portion 11, and the temperature controller 12 is configured to open and close the control valve 7. A cylinder 13 containing a liquid is connected to the lower part of the cooler 6 to form a circulation head, and the lower part of the cylinder 13 and the heat medium liquid phase part 11 are connected by a pipe 15 equipped with a valve 14. ing. 16 is a heater for the start amplifier, which is connected to the pipe 10 via a valve 17 and to the pipe 15 via a valve 18. 20 is a heat medium gas phase part, and 21 is a heat insulating wall.

つぎに上記のように構成されたナトリウム−イオウ電池
の動作について説明する。
Next, the operation of the sodium-sulfur battery configured as described above will be explained.

充電・休止モードでは、まず弁8.14.17.18を
閉めてヒーター16、クーラー6を系から切り離す。ケ
ース4内の液レベルは、凹部3の下部が液に浸るように
なっている。
In the charge/pause mode, first close the valves 8, 14, 17, and 18 to disconnect the heater 16 and cooler 6 from the system. The liquid level in the case 4 is such that the lower part of the recess 3 is immersed in the liquid.

休止モードでは単電池2の保有熱量が放出され、保温炉
1の主に側壁から外気中に放出される。したがってケー
ス4のうち、凹部3は高温、ケースの外周壁は低温とな
る。保温炉1の壁面からの放熱により、ケース4の外周
壁の温度が下がると、ここで凝縮が生し、蒸気圧が下が
る。これにより、ケースの凹部3の下部に接する液が蒸
発し、潜熱により凹部下部を冷却する。凹部上端から凹
部下端への熱量移動は、単電池2自身および凹部の壁内
の熱伝導により行われる。
In the rest mode, the heat capacity of the unit cell 2 is released, and is released into the outside air mainly from the side wall of the heat-retaining furnace 1. Therefore, in the case 4, the recess 3 has a high temperature, and the outer peripheral wall of the case has a low temperature. When the temperature of the outer peripheral wall of the case 4 decreases due to heat radiation from the wall surface of the heat-retaining furnace 1, condensation occurs there and the vapor pressure decreases. As a result, the liquid in contact with the lower part of the recess 3 of the case evaporates, and the lower part of the recess is cooled by latent heat. The amount of heat is transferred from the upper end of the recess to the lower end of the recess by heat conduction within the cell 2 itself and the wall of the recess.

圧力条件はすべての凹部で同じであるから、暴発は均等
に生じる。もし他より高温の凹部があれば、ここでの蒸
発量は他より多く優先的に冷却される。他より低温の凹
部があれば、そこでの7発量は少ない。さらに低温(そ
の圧力での平衡温度以下)の凹部では、凹部上端の蒸気
相との接触部で凝縮が生じ、凹部は加熱される。このよ
うに熱媒の蒸気は凹部を均等に冷却しながら、ケースの
外周壁へ熱量を運ぶ。このときのケース外周壁、蒸気、
凹部の温度差は、本発明者の試算結果によれば1℃以下
でよい。また凹部の上下温度差は、凹部の材質を1ff
lI11厚さの銅、凹部長を430mmとして試算した
結果、10℃以下でよい。
Since the pressure conditions are the same in all recesses, bursts occur evenly. If there is a concave part that is hotter than others, the amount of evaporation in this part is greater than in the other parts, and cooling is preferentially performed here. If there are recesses that are cooler than others, the amount of shots fired there will be lower. In addition, in a recess at a lower temperature (below the equilibrium temperature at that pressure), condensation occurs at the upper end of the recess in contact with the vapor phase, and the recess is heated. In this way, the vapor of the heating medium uniformly cools the recess while transporting heat to the outer peripheral wall of the case. At this time, the case outer wall, steam,
According to the inventor's calculation results, the temperature difference between the recesses may be 1° C. or less. Also, the temperature difference between the upper and lower sides of the recess is 1ff for the material of the recess.
As a result of trial calculations using copper with a thickness of lI11 and a concave portion of 430 mm, the temperature may be 10° C. or less.

放電モードでは、まず弁8.14を開いてクーラー6と
ケース4内とを連絡する。温度制御器12を作動させて
、単電池2の発熱量に見合う量の蒸気をケース4からク
ーラー乙に送る。クーラー乙の温度はケース4の温度よ
りも低(、圧力も低くなる、これにより、クーラー6の
下部配管である筒体13内の液位が上下するが、筒体1
3の底部での圧力は、ケース4内の液相の圧力と等しく
なる。なお筒体13は十分細くし、この液位の上下がケ
ース4内の液位を上下させることがないようにする。ま
た筒体13は十分長くし、クーラー6内が減圧になって
液相がクーラー内に入り込むことがないようにする。液
位がクーラー内にあると、液により凝縮転回が減少する
からである。
In the discharge mode, the valve 8.14 is first opened to communicate between the cooler 6 and the inside of the case 4. The temperature controller 12 is activated to send an amount of steam corresponding to the heat generation amount of the cell 2 from the case 4 to the cooler B. The temperature of cooler O is lower than the temperature of case 4 (and the pressure is also lower. As a result, the liquid level in cylinder 13, which is the lower piping of cooler 6, rises and falls, but cylinder 1
The pressure at the bottom of case 3 is equal to the pressure of the liquid phase in case 4. The cylindrical body 13 is made sufficiently thin so that the rise and fall of this liquid level does not cause the rise or fall of the liquid level inside the case 4. Further, the cylinder body 13 is made sufficiently long to prevent the inside of the cooler 6 from being depressurized and the liquid phase from entering the cooler. This is because if the liquid level is within the cooler, the liquid will reduce the condensation turnover.

放電モードにおける温度分布は、本発明者の試算によれ
ばつぎの如くである。すなわち、ケース外周壁、蒸気、
凹部の温度差は約1℃以下でよく、ケース内、クーラー
の温度差は20℃程度、凹部上部、凹部下部の温度差は
10℃程度でよい。
According to the inventor's calculations, the temperature distribution in the discharge mode is as follows. That is, the case outer wall, steam,
The temperature difference between the recesses may be approximately 1° C. or less, the temperature difference within the case and the cooler may be approximately 20° C., and the temperature difference between the upper and lower portions of the recess may be approximately 10° C.

スタートアンプ時では、弁17.18を開いてヒーター
16内で熱媒を蒸発させ、その蒸気をケース4内で凝縮
させ、加熱を行う。
At the time of start amplifier, the valves 17 and 18 are opened to evaporate the heat medium in the heater 16, and the vapor is condensed in the case 4 to perform heating.

つぎに下記の内容のナトリウム−イオウ電池を設計、試
作した。
Next, a sodium-sulfur battery was designed and prototyped as described below.

電池容量 0.54に―H電池×890本発熱量  全
ての電池で放電時 7000Kca l / II充電
時 700Kca l / H 炉形状 本体内面 長さ2.34mx幅1.34mx高さ1.0
8m本体外形 長さ2.75mX幅1.74mX高さ1
.48m本体の壁の熱伝導率   0.03Kca l
 / mH℃本体の熱容量      770 Kca
l/ ’C凝縮器  仏画  0.5M ケース 外 形  長さ2.34mX幅1.34mx高さ0.4
3m凹 部  直径78.5mm x長さ430mm 
x厚さ1mm(銅製)を炉内に2段積 熱媒 物 性  新日鉄化学−社製商品名す−ムエス900(
登録商標) ケース内ホールドアンプ量150kg/lケース(液深
220mm) クーラー循環流N     100kg/H循環のため
の所要ヘッド 0.3m 上記のナトリウム−イオウ電池の運転モードと温度、圧
力の変化は第2図に示す如くであった。
Battery capacity 0.54-H batteries x 890 Calorific value When all batteries are discharged 7000Kcal / II when charged 700Kcal / H Furnace shape Inside of main body Length 2.34m x Width 1.34m x Height 1.0
8m Body external dimensions Length 2.75m x Width 1.74m x Height 1
.. Thermal conductivity of the wall of the 48m body: 0.03Kcal
/ mH℃ Heat capacity of main body 770 Kca
l/'C condenser Buddhist painting 0.5M Case outside shape Length 2.34m x Width 1.34m x Height 0.4
3m recess 78.5mm diameter x 430mm length
x 1 mm thick (made of copper) is stacked in two stages in the furnace.
(Registered Trademark) Amount of hold amplifier in the case 150 kg/l Case (liquid depth 220 mm) Cooler circulation flow N Required head for 100 kg/H circulation 0.3 m The operating mode, temperature, and pressure changes of the above sodium-sulfur battery are as follows. It was as shown in Figure 2.

また必要な放熱量、炉内の伝熱量を蒸発・凝縮伝熱で伝
えるための温度差を試算した結果、異なる電池間の温度
差はすべてのモードで1℃以下、1本の電池の上下の温
度差は、放電時でlO℃程度、他のモードではそれ以下
になることが判明した。
In addition, as a result of trial calculations of the required amount of heat dissipation and the temperature difference required to transfer the amount of heat transfer in the furnace through evaporation and condensation heat transfer, the temperature difference between different batteries was less than 1°C in all modes, and the temperature difference between the top and bottom of one battery was 1°C or less in all modes. It was found that the temperature difference was about 10° C. during discharge, and less than that in other modes.

なお上下温度差の許容値は、異なる電池間温度差の許容
値より大きい。
Note that the allowable value for the upper and lower temperature difference is greater than the allowable value for the temperature difference between different batteries.

実施例2 第3図において、1はナトリウム−イオウ電池の保温炉
で、この保温炉1内に単電池2を収納する多数の凹部3
を有するケース4を設ける。このケース4内に液が凹部
3の一部を浸すように熱媒5を封入する。ケース4下部
と保温炉1底部との間の空間22に起動用のヒーター2
3を設け、ケース4上部と保温炉1上部との間の空間2
4にヒートパイプ輻射受熱部25を設け、この受熱部2
5と、保温炉の外部に設けられたヒートバイブ放熱部2
6とを熱流を遮断、連通ずるための制御弁27を介して
接続している。熱媒気相部20には温度制御器12が接
続され、この温度制御器12により前記制御弁27が開
閉するように構成されている。11は熱媒液相部である
Embodiment 2 In FIG. 3, reference numeral 1 denotes a heat insulating furnace for a sodium-sulfur battery, and a large number of recesses 3 in which cells 2 are housed in the heat insulating furnace 1.
A case 4 is provided. A heating medium 5 is sealed in the case 4 so that the liquid partially immerses the recess 3. A heater 2 for starting is installed in the space 22 between the bottom of the case 4 and the bottom of the heat retention furnace 1.
3 is provided, and a space 2 between the upper part of the case 4 and the upper part of the heat retention furnace 1 is provided.
4 is provided with a heat pipe radiation heat receiving section 25, and this heat receiving section 2
5, and a heat vibrator heat dissipation section 2 provided outside the heat retention furnace.
6 through a control valve 27 for blocking and communicating heat flow. A temperature controller 12 is connected to the heat medium gas phase section 20, and the temperature controller 12 is configured to open and close the control valve 27. 11 is a heat medium liquid phase part.

つぎに上記のように構成されたナトリウム−イオウ電池
の動作について説明する。
Next, the operation of the sodium-sulfur battery configured as described above will be explained.

充電・休止モードでは、弁27を閉め、かつヒーターの
熱源を停止する充電・休止モードの動作は実施例1の場
合と同様である。
In the charge/pause mode, the operation of the charge/pause mode in which the valve 27 is closed and the heat source of the heater is stopped is the same as in the first embodiment.

放電モードでは、まず制御弁27を開けて、ヒートパイ
プ放熱部26とヒートパイプ輻射受熱部25とを熱的に
連絡し、受熱部25の温度が炉内の他の個所に比べ低下
するようにする。ケース側壁の上部、天井壁(熱媒蒸気
接触部)、および単電池2自身の上部からヒートバイブ
輻射受熱部25に対して輻射で熱量が移動する。試設計
例では、ケース4とヒートバイブ輻射受熱部25との温
度差は50℃となる。ケース4内の液相接触部では、熱
媒が蒸発し、蒸気接触部でこれが凝縮してケース内の温
度は均一に保たれる。なお蒸発部、凝縮部の温度差は2
℃程度である。
In the discharge mode, first, the control valve 27 is opened to thermally communicate the heat pipe heat dissipating section 26 and the heat pipe radiation heat receiving section 25, so that the temperature of the heat receiving section 25 is lower than that of other parts in the furnace. do. The amount of heat is transferred by radiation from the upper part of the case side wall, the ceiling wall (heat medium vapor contact part), and the upper part of the unit cell 2 itself to the heat vibe radiation heat receiving part 25. In the trial design example, the temperature difference between the case 4 and the heat vibe radiation heat receiving section 25 is 50°C. The heat medium evaporates at the liquid phase contact portion within the case 4, and condenses at the vapor contact portion, thereby maintaining a uniform temperature within the case. The temperature difference between the evaporation section and the condensation section is 2
It is about ℃.

スタートアップ時では、ケース底面をヒーター23によ
り加熱する。
At startup, the bottom surface of the case is heated by the heater 23.

つぎにケースの凹部3とケースの外周壁とを同じ材質(
銅製)とし、凹部内において単電池2のまわりに上下方
向熱伝導用の銅円筒を入れ、炉本体の仕様、ケースの上
記以外の仕様を実施例1と同様にしてナトリウム−イオ
ウ電池を設計、試作した。ヒートパイプ輻射受熱部25
の面積はlOdであった。
Next, the recess 3 of the case and the outer peripheral wall of the case are made of the same material (
A sodium-sulfur battery was designed, with a copper cylinder for vertical heat conduction placed around the cell 2 in the recess, and the specifications of the furnace body and case other than those described above being the same as in Example 1. I made a prototype. Heat pipe radiation heat receiving section 25
The area of was 1Od.

運転モードと温度、圧力の変化は第2図に示す如くであ
った。
The operating mode, temperature, and pressure changes were as shown in Figure 2.

実施例3〜5 第4図に示すように、ケース4の凹部3において、単電
池2のまわりに上下方向熱移動用の金属円筒28を設け
たり、第5図に示すように、ケース4の凹部3において
、単電池2の外側に砂、ガラス小粒子などの導電性のな
い熱伝導体30を充填したり、第6図に示すように、凹
部の外側のケース4内に金網、セラミック多孔質、ワイ
ヤウールなどの多孔質体31を設ける。第4図および第
5図の場合は、上下方向の熱移動が円滑に行われ、第6
図の場合は、熱媒の液面が下がっても、熱媒が多孔質体
31の内部を伝わって上昇し、液面が凹部3の一部を浸
すのと同等の効果を奏する。第4図〜第6図は互いに組
み合わせて使用することもできる。他の構成、作用は実
施例1または実施例2の場合と同様である。
Examples 3 to 5 As shown in FIG. 4, a metal cylinder 28 for vertical heat transfer is provided around the cell 2 in the recess 3 of the case 4, and as shown in FIG. In the recess 3, the outside of the unit cell 2 is filled with a non-conductive thermal conductor 30 such as sand or small glass particles, or a wire mesh or ceramic porous is placed inside the case 4 outside the recess as shown in FIG. A porous material 31 such as wool or wire wool is provided. In the case of Fig. 4 and Fig. 5, the heat transfer in the vertical direction is carried out smoothly, and the
In the case shown in the figure, even if the liquid level of the heating medium falls, the heating medium rises through the inside of the porous body 31, producing the same effect as when the liquid level submerges a part of the recess 3. 4 to 6 can also be used in combination with each other. The other configurations and operations are the same as in the first embodiment or the second embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように構成されているので、つぎのよう
な効果を有している。
Since the present invention is configured as described above, it has the following effects.

fl+  蒸発、凝縮伝熱を利用するので、炉内各部の
温度差が小さくなり、この小さい温度差で十分な熱量を
伝えることができる。
fl+ Since evaporation and condensation heat transfer are utilized, the temperature difference between various parts in the furnace is small, and a sufficient amount of heat can be transmitted with this small temperature difference.

(2)  炉内温度に自己平衡性があり、均一温度にな
る。
(2) The temperature inside the furnace has self-equilibrium and is uniform.

(3)実施例1に示す発明においては、熱媒の循環は、
液・蒸気の比重差を利用して行われ、動力は不要であり
、タービンを設けて動力回収を図ることも可能である。
(3) In the invention shown in Example 1, the circulation of the heating medium is as follows:
It is carried out by utilizing the difference in specific gravity between liquid and steam, and no power is required, so it is also possible to install a turbine to recover the power.

(4)休止・充電モードで炉の断熱が必要なときには、
放熱部、ヒーターなどの付加物を熱的に切り離すことが
容易である。なお空気循環式では、冷却空気が不要なと
きでも、空気取入口周辺の放熱がある。
(4) When furnace insulation is required in rest/charging mode,
It is easy to thermally separate additional items such as heat radiating parts and heaters. Note that with air circulation type, heat is radiated around the air intake even when cooling air is not required.

(5)蓄熱器付加など、将来のシステム拡張が容易であ
る。
(5) Future system expansion, such as adding a heat storage device, is easy.

(6)熱媒を適切に選べば、全系を減圧下で運転でき、
装置の検査、保守を簡便に行うことができる。
(6) If the heating medium is selected appropriately, the entire system can be operated under reduced pressure.
Equipment inspection and maintenance can be performed easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のナトリウム−イオウ電池の一実施例を
示す断面説明図、第2図は第1図および第3図に示す電
池の作動と、lサイクル中の電池温度およびケース内圧
力との関係を示すグラフ、第3図は本発明のナトリウム
−イオウ電池の他の実施例を示す断面説明図、第4図〜
第6図は単電池およびケースまわりの他の例を示す説明
図である。 1−保温炉、2−単電池、3−凹部、4・−ケース、5
−熱媒、6−・クーラー、7−・−制御弁、8.14.
17.18−・弁、10.15・−配管、11−・熱媒
液相部、12・一温度制御器、13・・・筒体、16・
−・ヒーター、2〇−熱媒気相部、21・−断熱壁、2
2.24−・空間、23−ヒーター、25−ヒートパイ
プ輻射受熱部、26−・ヒートパイプ放熱部、27−・
−制御弁、28・・・金属円筒、30−・熱伝導体、3
1・−多孔質体
FIG. 1 is a cross-sectional explanatory diagram showing one embodiment of the sodium-sulfur battery of the present invention, and FIG. 2 shows the operation of the battery shown in FIGS. 1 and 3, and the battery temperature and case internal pressure during one cycle. FIG. 3 is a cross-sectional explanatory diagram showing other embodiments of the sodium-sulfur battery of the present invention, and FIGS.
FIG. 6 is an explanatory diagram showing another example of the cell and the surroundings of the case. 1-Heating furnace, 2-cell, 3-recess, 4-case, 5
-Heating medium, 6-.Cooler, 7-.-Control valve, 8.14.
17.18--Valve, 10.15--Piping, 11--Heating medium liquid phase part, 12--Temperature controller, 13--Cylinder, 16-
-・Heater, 20-heat medium gas phase part, 21・-insulation wall, 2
2.24-・Space, 23-Heater, 25-Heat pipe radiation heat receiving section, 26-・Heat pipe heat radiation section, 27-・
- Control valve, 28... Metal cylinder, 30 - Heat conductor, 3
1.-Porous body

Claims (1)

【特許請求の範囲】[Claims] 1 ナトリウム−イオウ電池の保温炉内に、単電池を収
納する多数の凹部を有するケースを設け、このケース内
に液が凹部の少なくとも一部を浸すように熱媒を封入し
、保温炉の外部に放熱部を設け、ケースと放熱部とを熱
的に接続したことを特徴とするナトリウム−イオウ電池
1. A case having a number of recesses for housing the cells is provided in the insulating furnace for the sodium-sulfur battery, and a heating medium is sealed in this case so that the liquid soaks at least a portion of the recesses, and the outside of the insulating furnace is A sodium-sulfur battery characterized by having a heat dissipating section provided in the casing and thermally connecting the case and the heat dissipating section.
JP61289403A 1986-12-04 1986-12-04 Sodium-sulfur battery Granted JPS63143760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61289403A JPS63143760A (en) 1986-12-04 1986-12-04 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61289403A JPS63143760A (en) 1986-12-04 1986-12-04 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPS63143760A true JPS63143760A (en) 1988-06-16
JPH0517668B2 JPH0517668B2 (en) 1993-03-09

Family

ID=17742780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61289403A Granted JPS63143760A (en) 1986-12-04 1986-12-04 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPS63143760A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367834A (en) * 2013-07-15 2013-10-23 华南理工大学 Power battery water-cooled heat dissipation system of electric automobile
CN112448064A (en) * 2019-08-30 2021-03-05 百度(美国)有限责任公司 Battery thermal management system with passive battery pack cooling
FR3101731A1 (en) * 2019-10-03 2021-04-09 Valeo Systemes Thermiques "Device for cooling an electrical element liable to release heat in operation"

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174237A (en) * 1974-12-23 1976-06-28 Yuasa Battery Co Ltd DENCHIONDOSEIGYO SOCHI
JPS61110974A (en) * 1984-11-06 1986-05-29 Yuasa Battery Co Ltd High temperature cell device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174237A (en) * 1974-12-23 1976-06-28 Yuasa Battery Co Ltd DENCHIONDOSEIGYO SOCHI
JPS61110974A (en) * 1984-11-06 1986-05-29 Yuasa Battery Co Ltd High temperature cell device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367834A (en) * 2013-07-15 2013-10-23 华南理工大学 Power battery water-cooled heat dissipation system of electric automobile
CN112448064A (en) * 2019-08-30 2021-03-05 百度(美国)有限责任公司 Battery thermal management system with passive battery pack cooling
FR3101731A1 (en) * 2019-10-03 2021-04-09 Valeo Systemes Thermiques "Device for cooling an electrical element liable to release heat in operation"

Also Published As

Publication number Publication date
JPH0517668B2 (en) 1993-03-09

Similar Documents

Publication Publication Date Title
US4329407A (en) Electrochemical storage battery
JPH09184695A (en) Passive cooling of enclosure using heat pipe
US3532158A (en) Thermal control structure
US4291756A (en) Heat accumulator
US3702533A (en) Hot-gas machine comprising a heat transfer device
JPH08222280A (en) Cooling structure of na-s battery module
US3817322A (en) Heating system
JPS63143760A (en) Sodium-sulfur battery
RU2431088C2 (en) Radiator of condenser
RU2641775C1 (en) Caloric engine unit heating system
GB2134698A (en) Power storage battery
JPS62136774A (en) Heat insulating method for fuel cell stack
Watanabe et al. Development of a variable-conductance heat-pipe for a sodium-sulfur (NAS) battery
US3842820A (en) Device for supplying thermal energy to one or more places to be heated
CN214751568U (en) Conveyer for special ceramic manufacture
JPH05275245A (en) Heat recovery system of transformer by heat pipe
RU2180421C2 (en) Air dehumidifier for spacecraft pressurized compartment
JPS63175355A (en) Sodium-surfur cell
JP2016529465A (en) Energy storage system
JP2723132B2 (en) Heat treatment furnace
CN211015252U (en) Heat radiator for reinforcement type computer
JPH09273877A (en) Heat pipe type air cooler
SU1464019A1 (en) Apparatus for freezing biological objects
WO2016121117A1 (en) Heat storing waste heat recovering device, combustion device using same, and cogeneration system
KR101713715B1 (en) Cooling system