JPS63175355A - Sodium-surfur cell - Google Patents

Sodium-surfur cell

Info

Publication number
JPS63175355A
JPS63175355A JP62006978A JP697887A JPS63175355A JP S63175355 A JPS63175355 A JP S63175355A JP 62006978 A JP62006978 A JP 62006978A JP 697887 A JP697887 A JP 697887A JP S63175355 A JPS63175355 A JP S63175355A
Authority
JP
Japan
Prior art keywords
heat
furnace
temperature
sodium
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62006978A
Other languages
Japanese (ja)
Inventor
Yujiro Fujisaki
悠二郎 藤崎
Akira Kita
喜多 明
Koichiro Takashima
高嶋 皓一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Yuasa Corp
Original Assignee
Kawasaki Heavy Industries Ltd
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Yuasa Battery Corp filed Critical Kawasaki Heavy Industries Ltd
Priority to JP62006978A priority Critical patent/JPS63175355A/en
Publication of JPS63175355A publication Critical patent/JPS63175355A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To make a cell temperature uniform, by setting up a heat pipe in a heat insulating furnace, and connecting this heat pipe thermally to the radiator installed at the outside of the heat insulating furnace. CONSTITUTION:A furnace wall of each surface of a heat insulating furnace 2 housing a sodium-surface cell 1 is formed with an adiabator 3 in ununiformed specifications so as to cause dominant heat flux inside the furnace to be unevenly distributed in one direction, a lot of heat pipes 4 and 8 are set up on the direction where the heat flux is unevenly distributed, and these heat pipes 4 and 8 are thermally connected to the radiator 5 installed at the outside of the heat insulating furnace 2 is constituted of the adiabator 3 all over the surfaces. In this case, the value of heat conductivity/thickness of the dadiabator is set to the large in the longitudinal surface and smaller in the vertical surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、充電、放電、休止の各モードで各電池温度の
経時的変化、および各時点での多数の電池の温度分布を
各々所定の温度範囲に維持することができる、ヒートパ
イプを備えたナトリウム−イオウ電池に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention measures changes over time in the temperature of each battery in each mode of charging, discharging, and resting, and the temperature distribution of a large number of batteries at each time point. The present invention relates to a sodium-sulfur battery with heat pipes that can be maintained in a temperature range.

〔従来の技術〕[Conventional technology]

電力貯蔵に用いられるナトリウム−イオウ型電池におい
ては、充電、放電、休止の各モードにより発熱量が変化
する。しかし正常な作動のためには、全モードを通じ、
経時変化、温度分布を各々所定の範囲内に維持する必要
がある。
In sodium-sulfur batteries used for power storage, the amount of heat generated changes depending on charging, discharging, and resting modes. However, for normal operation, through all modes,
It is necessary to maintain changes over time and temperature distribution within predetermined ranges.

従来は、ナトリウム−イオウ電池の温度維持と、多数の
単電池を均一な温度に保つため、単電池を収納する断熱
材壁の保温炉の内部で空気を循環し、発熱量が多いとき
には少量の外気を取り込んで冷却していた。
Conventionally, in order to maintain the temperature of sodium-sulfur batteries and to keep a large number of cells at a uniform temperature, air was circulated inside a heat insulating furnace with insulation walls that housed the cells, and when the amount of heat generated was large, a small amount of air was It was cooling by drawing in outside air.

また特開昭59−143281号公報に示されるように
、電池温度を一定範囲に保つために、触媒コンバータ2
6および冷却空気を送入して冷却フィン24により冷却
する冷却部を設け、これらと電池とをヒートパイプを介
して接続した構造のものが提案されている。
In addition, as shown in Japanese Patent Application Laid-open No. 59-143281, in order to maintain the battery temperature within a certain range, the catalytic converter
A structure has been proposed in which a cooling section 6 and cooling air is introduced and cooled by cooling fins 24, and these and a battery are connected via a heat pipe.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来の空気循環方式はつぎのような
問題点を有している。
However, the conventional air circulation system described above has the following problems.

(1)  空気流への対流伝熱量はそれ程大きくないの
で、競合する他の伝熱形態(輻射など)の影響を受けて
、温度が不均一になる。温度を均一にするためには、多
量の空気を循環しなければならず、多大の動力を必要と
する。
(1) Since the amount of convective heat transfer to the airflow is not very large, the temperature becomes non-uniform due to the influence of other competing forms of heat transfer (such as radiation). In order to make the temperature uniform, a large amount of air must be circulated, which requires a large amount of power.

(2)空気流を保温炉内の各個所で不均一にするのが難
しく、温度偏差が出やすい。
(2) It is difficult to make the air flow non-uniform at each location in the heat-retaining furnace, and temperature deviations are likely to occur.

(3)  ファン、ダクトなどの付帯設備により、装置
の占有空間が太き(なる。
(3) Ancillary equipment such as fans and ducts increase the space occupied by the equipment.

(4)付帯設備に伴い、炉壁の断熱が難しく、熱ロスが
増えやすい。
(4) Due to the accompanying equipment, it is difficult to insulate the furnace wall, which tends to increase heat loss.

(5)回転機器を必要とするので、設備費、保守・点検
費が割高となる。
(5) Since rotating equipment is required, equipment costs and maintenance/inspection costs are relatively high.

(6)  空気流の理論的予測が難しいため、スケール
アップが困難である。
(6) Scaling up is difficult because it is difficult to theoretically predict airflow.

(7)電力節減のため、休止時にはファンを止めるのが
望ましいが、ファン停止時の温度分布を予測するのが難
しい。
(7) In order to save power, it is desirable to stop the fan when the fan is at rest, but it is difficult to predict the temperature distribution when the fan is stopped.

また特開昭59−143281号公報記載の構造におい
ては、小型の電池では、熱収支は通常、放熱過剰気味と
なるので、触媒コンバータという熱源により温度維持す
るのが妥当であるが、101−〜50に賀級の大型の電
池では、放熱不足気味とできるので、電池自身の発熱お
よび保有熱を利用して、温度を一定範囲に保つのがエネ
ルギ上、存利となる。また大型電池では、炉内の温度分
布を一定範囲に保つため、炉内を均温化する何らかの機
構が必要である。
In addition, in the structure described in JP-A-59-143281, in a small battery, the heat balance is usually a bit excessive in heat radiation, so it is appropriate to maintain the temperature with a heat source called a catalytic converter. Large batteries, such as 50 to 60, may have insufficient heat dissipation, so it is best to keep the temperature within a certain range by using the heat generated and retained heat by the battery itself in order to survive in terms of energy. In addition, in large batteries, in order to maintain the temperature distribution within the furnace within a certain range, some kind of mechanism is required to equalize the temperature inside the furnace.

本発明は上記の諸点に鑑みなされたもので、保温炉内の
熱をヒートパイプを介して保温炉外に設けた放熱部に導
くことにより、一定の温度範囲に維持するようにした大
型のナトリウム−イオウ電池の提供を目的とするもので
ある。
The present invention was made in view of the above points, and is a large-sized sodium hydride that maintains a constant temperature range by guiding the heat inside the insulating furnace to a heat radiating section provided outside the insulating furnace through a heat pipe. - The purpose is to provide sulfur batteries.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のナトリウム−イオウ電池は、図面を参照して説
明すれば、ナトリウム−イオウ単電池1を収納する保温
炉2に、温度を一定範囲に保つためのヒートバイブ4.
8を配置し、該ヒートバイブと保温炉の外部に設けた放
熱部5とを熱的に接続したことを特徴としている。
The sodium-sulfur battery of the present invention will be described with reference to the drawings. A heat-retaining furnace 2 containing a sodium-sulfur cell 1 is provided with a heat vibrator 4 for maintaining the temperature within a certain range.
8 is disposed, and the heat vibrator is thermally connected to a heat radiating section 5 provided outside the heat insulating furnace.

〔作  用 〕[For production]

単電池1で発生した熱は、ヒートバイブ4.8を介して
放熱部5に導かれ放熱され、保温炉2内の温度は一定範
囲内に保たれる。このとき、電池が不均一に発熱しても
、ヒートパイプ4により、電池温度は均一に保たれる。
The heat generated by the cell 1 is guided to the heat radiating section 5 via the heat vibrator 4.8 and radiated, and the temperature inside the heat retaining furnace 2 is maintained within a certain range. At this time, even if the battery generates heat unevenly, the heat pipe 4 keeps the battery temperature uniform.

また、単に断熱材を設けただけの保温炉では、外周部の
電池のみの温度が下り気味となるが、本発明ではヒート
バイブ4により、内部の電池から熱が運ばれて、電池温
度は均一に保たれる。
In addition, in a heat-retaining furnace that is simply provided with a heat insulating material, the temperature of only the batteries on the outer periphery tends to drop, but in the present invention, heat is carried away from the internal batteries by the heat vibrator 4, and the battery temperature is uniform. is maintained.

〔実 施 例〕〔Example〕

以下、図面を参照して本発明の好適な実施例を詳細に説
明する。ただしこの実施例に記載されている構成機器の
材質、形状、その相対配置などは、とくに特定的な記載
がない限りは、本発明の範囲をそれらのみに限定する趣
旨のものではなく、単なる説明例にすぎない。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. However, unless there is a specific description, the materials, shapes, relative positions, etc. of the components described in this example are not intended to limit the scope of the present invention to these, but are merely illustrative. Just an example.

実施例1 本例のナトリウム−イオウ電池は、第1図および第2図
に示すように、ナトリウム−イオウ単電池1を収納する
保温炉2の各面の炉壁を、炉内の支配的な熱流束が一方
向に偏在するように、不均等な断熱仕様の断熱材3で形
成し、熱流束の偏在する方向に多数のヒートパイプ4.
8を配置し、該ヒートパイプ4.8と保温炉2の外部に
設けた放熱部5とを熱的に接続したものである。
Example 1 As shown in FIGS. 1 and 2, in the sodium-sulfur battery of this example, the furnace walls on each side of the heat-retaining furnace 2 that houses the sodium-sulfur cell 1 are used as the dominant area in the furnace. In order that the heat flux is unevenly distributed in one direction, it is formed of heat insulating materials 3 with non-uniform heat insulation specifications, and a large number of heat pipes 4.
8 is arranged, and the heat pipe 4.8 is thermally connected to a heat dissipation section 5 provided outside the heat retention furnace 2.

保温炉2は、前後(第1図における左右方向)、上下、
左右各面を断熱材3で構成する。この場合、断熱材の熱
伝導率/厚味(k/d)の値を、前後面で大きく、上下
面で小さくとっている。たとえば前後のに/dを(上下
のに/d) X 4.3程度とする。左右方向(第1図
における上下方向)には、隣接する他の炉6があるので
、熱流束は無視できるほど小さい。
The heat insulating furnace 2 has front and back (left and right directions in Figure 1), top and bottom,
Each of the left and right sides is composed of a heat insulating material 3. In this case, the value of thermal conductivity/thickness (k/d) of the heat insulating material is set to be large on the front and rear surfaces and small on the top and bottom surfaces. For example, let the front and rear /d be approximately (top and bottom /d) x 4.3. Since there are other adjacent furnaces 6 in the left-right direction (vertical direction in FIG. 1), the heat flux is negligibly small.

第4図は、本例における!サイクル中の電池温度の変化
の模式図である0条件としては、電池の発熱量Qi=6
900kcal/H1炉表面からの放熱量Qs−140
0kcal/H,排熱量Qe = 2800kcal/
Hである。
Figure 4 shows the example in this example! The 0 condition, which is a schematic diagram of the change in battery temperature during the cycle, is the calorific value of the battery Qi = 6.
900kcal/H1 Heat radiation amount from the furnace surface Qs-140
0kcal/H, exhaust heat amount Qe = 2800kcal/
It is H.

第4図に示すような運転のモードにより、炉内で発生す
る過剰熱を排出する場合もあるため、本例では、輻射受
熱板7を炉内の前後面に設ける。
Depending on the mode of operation as shown in FIG. 4, excess heat generated within the furnace may be discharged, so in this example, radiant heat receiving plates 7 are provided on the front and rear surfaces of the inside of the furnace.

この輻射受熱板7は複数のヒートパイプ8で炉外の排熱
フィンなどの放熱部5と接続する。各ヒートバイブ8は
異なる排熱フィンに接続され、また各々の接続ラインの
中間に弁10を持つものとする。 (この弁のON、O
FFにより、存効な排熱フィンの総面積を段階的に変え
て、排熱量を調節するものとする)。
This radiant heat receiving plate 7 is connected to a heat radiating part 5 such as a heat exhaust fin outside the furnace through a plurality of heat pipes 8. Each heat vibe 8 is connected to a different heat exhaust fin, and each connection line has a valve 10 in the middle. (This valve is ON, O
The amount of heat exhaust is adjusted by changing the total area of the effective heat exhaust fins in stages using FF).

またナトリウム−イオウ単電池1の側面に接するように
、前後方向に内部均熱板11およびヒートパイプ4を配
する。内部均熱板11は単電池1からの輻射を受熱する
面積を増大させるためのものであり、ヒートパイプ4と
は溶接されている。
Further, an internal heat equalizing plate 11 and a heat pipe 4 are arranged in the front-rear direction so as to be in contact with the side surface of the sodium-sulfur cell 1. The internal heat equalizing plate 11 is for increasing the area for receiving radiation from the cell 1, and is welded to the heat pipe 4.

またサブモジュールケース12の前端部(または後端部
)で、各ヒートパイプ4は外部均熱板13に溶接されて
いる。外部均熱板13と端部の単電池1との間には断熱
材14を配している。なお15は配線である。
Further, each heat pipe 4 is welded to an external heat equalizing plate 13 at the front end (or rear end) of the sub-module case 12. A heat insulating material 14 is arranged between the external heat soaking plate 13 and the cell 1 at the end. Note that 15 is wiring.

つぎに上記のように構成されたナトリウム−イオウ電池
の動作について説明する。
Next, the operation of the sodium-sulfur battery configured as described above will be explained.

過剰熱を排熱するモードでは、輻射受熱板7が前・後面
にあるため、熱流は主に水平・前後方向に向かう、他の
モードでも、前・後面のに/dが大きいため、放熱は主
に前・後面より生じ、やはり熱流は、水平・前後方向に
向かう、この方向にヒートパイプが配されているため、
この方向の温度差は小さい(試算ではヒートパイプの両
端の温度差は1℃以内)。
In the mode that dissipates excess heat, the radiation heat receiving plate 7 is located on the front and rear surfaces, so the heat flow mainly goes in the horizontal and front-back directions.In other modes, the heat flow is also large because the /d is large on the front and rear surfaces. The heat flow mainly occurs from the front and rear surfaces, and as expected, the heat flow is directed horizontally and in the front-rear direction.As the heat pipes are arranged in this direction,
The temperature difference in this direction is small (according to a trial calculation, the temperature difference between both ends of the heat pipe is within 1°C).

各単電池1と内部均熱板110間の熱伝達は輻射により
行われるため、両者の温度差は若干大きい(試算では最
大の熱流束に対し6℃程度)、シかし、それは全ての単
電池に均等に生じるため、単電池間の温度差は小さい、
端部の単電池は外部均熱板7に近いため、少し他より温
度が下がるが、2〜3℃の低下と予想される゛。
Since the heat transfer between each cell 1 and the internal heat equalizing plate 110 is carried out by radiation, the temperature difference between the two is slightly large (according to the trial calculation, it is about 6 degrees Celsius for the maximum heat flux). The temperature difference between single cells is small because it occurs evenly in the battery.
Since the cells at the ends are close to the external heat soaking plate 7, the temperature will drop a little more than the others, but it is expected that the temperature will drop by 2 to 3 degrees Celsius.

上下方向には、単電池自身の熱伝導、および内・外部均
熱板の熱伝導により伝熱しなければならないが、炉の上
下面からの放熱量は小さいので、炉内面の温度を維持す
るための熱量も少量でよく、この熱流により生じる温度
差は小さい(試算では単電池の上下端の温度差は3℃程
度)。
In the vertical direction, heat must be transferred by the heat conduction of the cells themselves and the heat conduction of the internal and external heat equalizing plates, but since the amount of heat radiated from the top and bottom surfaces of the furnace is small, in order to maintain the temperature of the inner surface of the furnace. Only a small amount of heat is required, and the temperature difference caused by this heat flow is small (according to a trial calculation, the temperature difference between the top and bottom ends of a single cell is about 3°C).

本例におけるナトリウム−イオウ電池は、上記以外につ
ぎのような、特徴、利点を有している。
The sodium-sulfur battery in this example has the following features and advantages in addition to the above.

(1)  ヒートパイプを単電池の側面に添わせている
ので、電池の上・下面に添わせるより伝熱面積が増える
(1) Since the heat pipe is attached to the side of the cell, the heat transfer area increases compared to placing it on the top or bottom of the battery.

(2)  ヒートパイプと単電池との間の伝熱面積を増
やすため、内部均熱板を設けている。
(2) An internal heat equalizing plate is provided to increase the heat transfer area between the heat pipe and the cell.

(3)  ヒートパイプと単電池との間の輻射伝導を良
くするため、塗料により輻射率を上昇させるのが好まし
い。
(3) In order to improve radiation conduction between the heat pipe and the cell, it is preferable to increase the emissivity with paint.

(4)前・後端の単電池が他の単電池より低温にならな
いように、この単電池と外部均熱板との間に断熱材を設
けている。
(4) A heat insulating material is provided between the front and rear cells and the external heat equalizing plate so that the cells at the front and rear ends do not become colder than the other cells.

(5)  ヒートパイプをサブモジュールケースごとに
まとめているので、サブモジュールケースのハンドリン
グが容易である。
(5) Since the heat pipes are grouped in each sub-module case, handling of the sub-module cases is easy.

(6)  炉本体とサブモジュールケースとの間は、輻
射で伝熱しており、機械的な接続はないので、炉天井(
蓋)の開閉、サブモジエールケースのハンドリングが容
易である。
(6) Heat is transferred between the furnace body and the sub-module case by radiation, and there is no mechanical connection between the furnace ceiling (
It is easy to open and close the lid (lid) and handle the submodiere case.

実施例2 本例は、第3図に示すように、外部均熱板13に鉛など
の蓄熱物’Jj16を封入した箱17を取り付けたもの
である。炉壁の断熱材のに/d値は、実施例1の約1.
5倍(同材質で厚味は60%)程度とする。
Embodiment 2 In this embodiment, as shown in FIG. 3, a box 17 containing a heat storage material 'Jj16 such as lead is attached to an external heat soaking plate 13. The /d value of the heat insulating material of the furnace wall was about 1.
It should be about 5 times as thick (60% thicker with the same material).

排熱機構は実施例1と11位の機構とするが、熱負荷(
ヒートパイプの伝熱量、排熱フィンの総面積)は、実施
例1の10%程度とする。またヒートパイプは1本だけ
とする。排熱量調整はON、 OFFのみで、多段階の
切替は行わない。
The heat exhaust mechanism is the same as in Example 1 and 11, but the heat load (
The heat transfer amount of the heat pipe and the total area of the heat exhaust fins are approximately 10% of those in the first embodiment. Also, only one heat pipe is used. The amount of exhaust heat is adjusted only by turning it on and off, and there is no multi-step switching.

本例による1サイクル中の電池の温度変化を第5図に示
す0条件としては、電池の発熱量Qi−6900kca
1/H,炉表面からの放熱量Qs−2300kcal/
H。
The temperature change of the battery during one cycle according to this example is shown in FIG.
1/H, heat radiation amount from the furnace surface Qs-2300kcal/
H.

排熱量Qe= Okcal/Hs蓄熱材の容量1500
0kcalである。また比較を容易にするため従来法の
場合を第6図に示す、この従来法の条件は、電池の発熱
量(li =6900kcal/L炉表面からの放熱量
Qs −1400kcal/f[、排熱量Qa=280
0kcal/H1である。
Exhaust heat amount Qe = Okcal/Hs Capacity of heat storage material 1500
It is 0 kcal. In addition, for ease of comparison, the conventional method is shown in Figure 6.The conditions for this conventional method are the heat generation amount of the battery (li = 6900 kcal/L, the heat radiation amount from the furnace surface Qs -1400 kcal/f[, the exhaust heat amount Qa=280
It is 0kcal/H1.

第5図および第6図かられかるように、蓄熱物質の働き
により、炉表面からの放熱が多いにもかかわらず、1サ
イクル中の温度変化幅は、従来法および実施例1と同程
度に保たれる。また排熱量−0なので、排熱機構は、制
御用の小容量のものでよい、他の構成、作用は実施例1
と同様である。
As can be seen from FIGS. 5 and 6, despite the large amount of heat radiated from the furnace surface due to the action of the heat storage material, the temperature change width during one cycle is the same as that of the conventional method and Example 1. It is maintained. In addition, since the amount of exhaust heat is -0, the heat exhaust mechanism may be one with a small capacity for control.Other configurations and functions are as shown in Example 1.
It is similar to

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように構成されているので、つぎのよう
な効果を有している。
Since the present invention is configured as described above, it has the following effects.

(1)  単電池間の温度差を小さく抑えることができ
る。
(1) Temperature differences between single cells can be kept small.

(2)  可動部がないので、メンテナンスが容易であ
る。
(2) Maintenance is easy because there are no moving parts.

(3)  蓄熱物質を用いる場合は、単電池と蓄熱物質
との間の熱移動が容易になるので、より効果的となる。
(3) When a heat storage material is used, heat transfer between the cell and the heat storage material becomes easier, making it more effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のナトリウム−イオウ電池の一例を示す
平断面説明図、第2図は第1図におけるA−A線断面説
明図、第3図は本発明の他の例(実施例2)における外
部均熱板まわりを示す断面図、第4図は実施例1におけ
る1サイクル中の電池温度の変化を示す模式図、第5図
は実施例2における1サイクル中の電池温度の変化を示
す模式図、第6図は従来法における1サイクル中の電池
温度の変化を示す模式図である。 1・・・ナトリウム−イオウ単電池、2・・・保温炉、
3・・・断熱材、4.8・・・ヒートパイプ、5・・・
放熱部、6・・・他の炉、7・・・輻射受熱板、10・
・・弁、11・・・内部均熱板、12・・・サブモジュ
ールケース、13・・・外部均熱板、14・・・断熱材
、15・・・配線、16・・・蓄熱物質、17・・・箱
FIG. 1 is an explanatory plan cross-sectional view showing an example of the sodium-sulfur battery of the present invention, FIG. 2 is an explanatory cross-sectional view taken along the line A-A in FIG. 1, and FIG. ), FIG. 4 is a schematic diagram showing the change in battery temperature during one cycle in Example 1, and FIG. 5 is a schematic diagram showing the change in battery temperature during one cycle in Example 2. The schematic diagram shown in FIG. 6 is a schematic diagram showing the change in battery temperature during one cycle in the conventional method. 1... Sodium-sulfur cell, 2... Heat retention furnace,
3...Insulating material, 4.8...Heat pipe, 5...
Heat dissipation section, 6... Other furnace, 7... Radiation heat receiving plate, 10.
... Valve, 11... Internal heat equalizing plate, 12... Sub module case, 13... External heat equalizing plate, 14... Insulating material, 15... Wiring, 16... Heat storage material, 17...box

Claims (1)

【特許請求の範囲】[Claims] 1 ナトリウム−イオウ単電池を収納する保温炉に、温
度を一定範囲に保つためのヒートパイプを配置し、該ヒ
ートパイプと保温炉の外部に設けた放熱部とを熱的に接
続したことを特徴とするナトリウム−イオウ電池。
1. A heat pipe for keeping the temperature within a certain range is placed in a heat insulating furnace that houses sodium-sulfur cells, and the heat pipe is thermally connected to a heat dissipation section provided outside the heat insulating furnace. Sodium-sulfur battery.
JP62006978A 1987-01-14 1987-01-14 Sodium-surfur cell Pending JPS63175355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62006978A JPS63175355A (en) 1987-01-14 1987-01-14 Sodium-surfur cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62006978A JPS63175355A (en) 1987-01-14 1987-01-14 Sodium-surfur cell

Publications (1)

Publication Number Publication Date
JPS63175355A true JPS63175355A (en) 1988-07-19

Family

ID=11653281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62006978A Pending JPS63175355A (en) 1987-01-14 1987-01-14 Sodium-surfur cell

Country Status (1)

Country Link
JP (1) JPS63175355A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324597A (en) * 1990-05-16 1994-06-28 Silent Power Gmbh Fur Energiespeichertechnik Thermal shunt for a battery
JPH0673864U (en) * 1993-03-29 1994-10-18 日本碍子株式会社 Single cell assembly with cooling mechanism
WO2012111231A1 (en) * 2011-02-16 2012-08-23 日産自動車株式会社 Cell case, and structure for attaching cell case
JP2012252959A (en) * 2011-06-06 2012-12-20 Mitsubishi Motors Corp Battery pack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324597A (en) * 1990-05-16 1994-06-28 Silent Power Gmbh Fur Energiespeichertechnik Thermal shunt for a battery
JPH0673864U (en) * 1993-03-29 1994-10-18 日本碍子株式会社 Single cell assembly with cooling mechanism
WO2012111231A1 (en) * 2011-02-16 2012-08-23 日産自動車株式会社 Cell case, and structure for attaching cell case
US8808899B2 (en) 2011-02-16 2014-08-19 Nissan Motor Co., Ltd. Cell case and structure for attaching cell case
JP2012252959A (en) * 2011-06-06 2012-12-20 Mitsubishi Motors Corp Battery pack

Similar Documents

Publication Publication Date Title
JP3235808B2 (en) Temperature control method for battery of electric vehicle and battery box
JPH0654688B2 (en) High temperature battery equipment
JP2002305157A (en) Honeycomb structure heat insulator and heat recycling system
US3523830A (en) Fuel cell and method of controlling the temperature of said cell
JP4534268B2 (en) Battery cooling plate and battery system
JPS63175355A (en) Sodium-surfur cell
JP2703707B2 (en) Collective battery
JP2007087756A (en) Solid oxide fuel cell
CN101808496B (en) Constant temperature cabinet
JP2020161216A (en) Battery device
CN215451537U (en) Battery tray, battery pack and vehicle
CN210268239U (en) Quick heat abstractor of industrial heat treatment furnace
CN211376741U (en) Power lithium battery thermal management box
JP4539175B2 (en) Battery device
US20230168036A1 (en) Heat treatment furnace
CN217377973U (en) Solid heat preservation device with inner loop
EP4378020A1 (en) Electrochemical energy storage device
CN217182264U (en) Cooling device and cooling equipment
WO2020125809A1 (en) Energy storage device
US20080014485A1 (en) Header for Supplying Gas in Fuel Cell and Fuel Cell Power System
KR102518949B1 (en) Thermoelectric generation apparatus
CN218769736U (en) Box temperature control heat exchange mechanism
CN216213704U (en) Lithium ion battery shell suitable for high temperature
CN220106662U (en) Liquid cooling battery pack
CN116505126B (en) Cooling plate and cooling system of energy storage device