JP2007087756A - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP2007087756A
JP2007087756A JP2005274735A JP2005274735A JP2007087756A JP 2007087756 A JP2007087756 A JP 2007087756A JP 2005274735 A JP2005274735 A JP 2005274735A JP 2005274735 A JP2005274735 A JP 2005274735A JP 2007087756 A JP2007087756 A JP 2007087756A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
solid oxide
chamber
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005274735A
Other languages
Japanese (ja)
Other versions
JP5002934B2 (en
Inventor
Toshiya Abe
俊哉 阿部
Takeshi Saito
健 斎藤
Kosaku Fujinaga
幸作 藤永
Motoyasu Miyao
元泰 宮尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2005274735A priority Critical patent/JP5002934B2/en
Publication of JP2007087756A publication Critical patent/JP2007087756A/en
Application granted granted Critical
Publication of JP5002934B2 publication Critical patent/JP5002934B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid oxide fuel cell in which mass flow rate to fuel cells is adjusted, deterioration of fuel cells is prevented, and high power operation is maintained. <P>SOLUTION: The solid oxide fuel cell comprises cylindrical fuel cells 1, a power generation chamber 8 equipped with a plurality of the cylindrical fuel cells, and a fuel dispersing chamber 11 which supplies fuel in the state of dispersion to the power generation chamber, and the fuel dispersing chamber comprises an adjusting part 25 with temperature distribution. The adjusting part has heat-exchanging units 24 for cooling. Air or water is used for a cooling medium sent to the heat-exchanging units. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体酸化物型燃料電池に係り、特に燃料電池セルと、複数の燃料電池セルを内包した発電室と、前記発電室の下方に位置した燃料分散室を有する固体酸化物型燃料電池に関する発明である。   The present invention relates to a solid oxide fuel cell, and in particular, a solid oxide fuel cell having a fuel cell, a power generation chamber containing a plurality of fuel cells, and a fuel dispersion chamber located below the power generation chamber. It is invention regarding.

固体酸化物型燃料電池とは、異なった成分のセラミック材料を空気極、電解質および燃料極として積層して作られた燃料電池セルから成り、約700℃から1000℃で最も効率的に発電するタイプの燃料電池で、特に燃料電池セルの形状が円筒形のものを円筒形固体酸化物型燃料電池という。
従来の代表的な円筒形固体酸化物型燃料電池の一例を図11に示す。金属壁4の内部に複数の円筒形の燃料電池セル1を、封止端を下側に向けて収納し、最外周に位置する燃料電池セル1と金属壁4の間に絶縁壁3を配している。これら複数の燃料電池セル1は集電材2により電気的に接続され所定の電気容量を発揮する。燃料電池セル1の開口部付近には仕切り板7が取付けられおり、この仕切り板7より燃料電池セル1の封止端側を発電室8、燃料電池セル1開口側を燃焼室9としている。燃料供給管14により供給された燃料ガスは燃料電池セル1の下方に位置する燃料分散室11で効果的に分散されて燃料分散板16から発電室8に入り、上方の仕切り板7に向かって流れながら各燃料電池セル1の外表面に接触する。一方、空気は空気供給管15から空気分配器6に供給され、ここで効果的に分散され、燃料電池セル1の内側に挿入された導入管5を通じて空気が導入され燃料電池セル1の内表面に接触する。このように構成された固体酸化物型燃料電池を作動温度約700℃から1000℃まで昇温すると、燃料電池セル1の内側の空気極側から燃料電池セル1の外側の燃料極側にO2-イオンが移動して電気化学的反応が起こり、発電が行われる。発電の際に生成された水蒸気および未反応燃料ガスはある適正な圧力損失と通気機能を持った仕切り板7を通り抜けて燃焼室9に入り、ここで燃料電池セル1の内側で未反応の残空気と混合され、着火燃焼後排ガスダクト10から排出される。仕切り板7は適正な圧力損失を持つため、燃焼室9内のガスが発電室8に逆流するのを防いでいる。金属壁4の外周には断熱材17が配置され、発電室8内の温度を高温に維持できるようにするとともに、放熱によるエネルギーロスを防いでいる。
A solid oxide fuel cell is a type of fuel cell that is made by laminating ceramic materials of different components as an air electrode, an electrolyte, and a fuel electrode, and generates electricity most efficiently at about 700 ° C to 1000 ° C. In particular, a fuel cell having a cylindrical shape is called a cylindrical solid oxide fuel cell.
An example of a conventional typical cylindrical solid oxide fuel cell is shown in FIG. A plurality of cylindrical fuel cells 1 are housed inside the metal wall 4 with the sealing end facing downward, and the insulating wall 3 is disposed between the fuel cell 1 located on the outermost periphery and the metal wall 4. is doing. The plurality of fuel cells 1 are electrically connected by a current collector 2 and exhibit a predetermined electric capacity. A partition plate 7 is attached in the vicinity of the opening of the fuel cell 1, and the sealing end side of the fuel cell 1 from the partition plate 7 is a power generation chamber 8, and the fuel cell 1 opening side is a combustion chamber 9. The fuel gas supplied through the fuel supply pipe 14 is effectively dispersed in the fuel dispersion chamber 11 located below the fuel cell 1, enters the power generation chamber 8 from the fuel dispersion plate 16, and moves toward the upper partition plate 7. It contacts the outer surface of each fuel cell 1 while flowing. On the other hand, air is supplied from the air supply pipe 15 to the air distributor 6, where it is effectively dispersed, and air is introduced through the introduction pipe 5 inserted inside the fuel battery cell 1, and the inner surface of the fuel battery cell 1. To touch. When the operating temperature of the solid oxide fuel cell configured as described above is raised from about 700 ° C. to 1000 ° C., O 2 flows from the air electrode inside the fuel cell 1 to the fuel electrode outside the fuel cell 1. - ions to move electrochemical reaction takes place, generating electricity. Water vapor and unreacted fuel gas generated during power generation pass through a partition plate 7 having an appropriate pressure loss and ventilation function and enter the combustion chamber 9, where unreacted residue remains inside the fuel cell 1. It is mixed with air and discharged from the exhaust gas duct 10 after ignition and combustion. Since the partition plate 7 has an appropriate pressure loss, the gas in the combustion chamber 9 is prevented from flowing back to the power generation chamber 8. A heat insulating material 17 is disposed on the outer periphery of the metal wall 4 so that the temperature in the power generation chamber 8 can be maintained at a high temperature, and energy loss due to heat dissipation is prevented.

このような従来の固体酸化物型燃料電池の構成では、燃料電池セル1および導入管5、絶縁壁3、燃料分散板16はセラミック系材料、金属壁4および燃料供給管14・排ガスダクト10などの配管類と空気分配器6はインコネルまたはステンレス、ニッケルなどの耐熱金属材料、仕切り板7はアルミナ繊維などのセラミック系材料を使用することが一般的である。   In the configuration of such a conventional solid oxide fuel cell, the fuel cell 1 and the introduction pipe 5, the insulating wall 3, and the fuel dispersion plate 16 are ceramic materials, the metal wall 4, the fuel supply pipe 14, the exhaust gas duct 10, and the like. In general, the piping and the air distributor 6 are made of heat-resistant metal material such as Inconel or stainless steel or nickel, and the partition plate 7 is made of ceramic material such as alumina fiber.

固体酸化物型燃料電池の電圧は、燃料電池セル1に供給される燃料の質量流量の影響を強く受ける。燃料の質量流量が少なければ、電極における燃料の消費に対して補給が遅れることとなり、燃料の拡散にエネルギーが消費されるために電圧が下がる現象(=濃度過電圧)が生じる。
電圧が低下している状態は、燃料電池セル1に負担を掛けている状態であり、一般に燃料電池セルの劣化が進行しつつあることを表す。
よって固体酸化物型燃料電池では、燃料は全ての燃料電池セル1に同じ質量流量が供給されていることが望ましい。しかし実際は発電室8の外周に位置する金属壁4からの放熱による発電室8内の温度分布やセルの発熱量の個体差による温度分布が発生し、温度の高い所では熱膨張により燃料の密度が低下しており、相対的に温度の低いところよりも燃料の質量流量が少なくなる。また、構造上または施工上のバラツキに起因する燃料分散の偏りが起こりえる。そうなると供給される燃料の質量流量が少ない部分の燃料電池セル1の電圧が相対的に低下することとなり、その燃料電池セル1では劣化が早まり、最悪の場合は破損となる。一般に固体酸化物型燃料電池を運転する際は、燃料電池セル1の急激な劣化や破損を回避するため、最も電圧の低い燃料電池セル1に応じて全体の発電出力または発電効率を落とさざるを得ない。
The voltage of the solid oxide fuel cell is strongly influenced by the mass flow rate of the fuel supplied to the fuel cell 1. If the mass flow rate of the fuel is small, the replenishment will be delayed with respect to the consumption of the fuel at the electrode, and a phenomenon in which the voltage drops (= concentration overvoltage) occurs because energy is consumed for the diffusion of the fuel.
The state where the voltage is decreasing is a state where a burden is applied to the fuel battery cell 1, and generally indicates that the deterioration of the fuel battery cell is proceeding.
Therefore, in the solid oxide fuel cell, it is desirable that the same mass flow rate is supplied to all the fuel cells 1 as the fuel. However, in reality, a temperature distribution in the power generation chamber 8 due to heat radiation from the metal wall 4 located on the outer periphery of the power generation chamber 8 and a temperature distribution due to individual differences in the calorific value of the cell occur, and the fuel density is increased due to thermal expansion at high temperatures. And the mass flow rate of the fuel is smaller than that at a relatively low temperature. Also, uneven fuel dispersion due to structural or constructional variations can occur. In this case, the voltage of the fuel cell 1 in the portion where the mass flow rate of the supplied fuel is small is relatively lowered, and the fuel cell 1 is rapidly deteriorated, and in the worst case, it is damaged. In general, when operating a solid oxide fuel cell, in order to avoid abrupt deterioration or breakage of the fuel cell 1, the overall power generation output or power generation efficiency must be reduced according to the fuel cell 1 having the lowest voltage. I don't get it.

従来の固体酸化物型燃料電池では燃料を均一に分散させる提案が出されている。例えば、発電室8の下方に位置する燃料分散室11に燃料分散材12としてセラミックボールを充填するあるいは多孔質を配備し、圧損により燃料を分散させている。(例えば、特許文献1参照)
この手段によれば、構造上または施工上のバラツキの多くを排除し、燃料分散室11の底面などから供給した燃料を効果的に分散させ、上方の燃料電池セル1に体積流量としてはほぼ均一に供給することができる。
しかしながら、燃料分散室11の外周面からの放熱のため、燃料分散室11内に温度分布が生じ、温度の高い所では熱膨張により燃料の密度が低下しており、体積流量としてはほぼ均一に燃料を分散させていても、温度の高い所では相対的に温度の低いところよりも燃料の質量流量が少なくなる。とりわけセルの発熱量の個体差、施工上のバラツキのように運転中の発電性能を確認することにより発見されるバラツキに対しては、発電状況に応じて柔軟に対応することができず、燃料の質量流量の偏りは解消されない。よって燃料の質量流量の少ない燃料電池セル1では、濃度過電圧が強まり電圧を低下させ、劣化が進行する。
また、温度分布に関しては、相対的に高温となる燃料電池セルの近傍に空気または燃料の流路を配置し、高温部の冷却および温度調整を可能とする提案がある。(例えば、特許文献2参照)
この手段によれば、相対的に高温となる燃料電池セル1を冷却し、発電室8全体として均一な温度状態を作ることができる。
しかしながら、燃料電池セル1間に冷却用の流路を設けることは、燃料電池セル1間ピッチを広げることとなり、固体酸化物型燃料電池の設置面積を広げることになる。
特開2000−58087号公報 特開2002−289250号公報
In conventional solid oxide fuel cells, proposals have been made to uniformly disperse fuel. For example, the fuel dispersion chamber 11 located below the power generation chamber 8 is filled with ceramic balls as the fuel dispersion material 12 or is porous, and the fuel is dispersed by pressure loss. (For example, see Patent Document 1)
According to this means, most of the structural and construction variations are eliminated, the fuel supplied from the bottom surface of the fuel dispersion chamber 11 is effectively dispersed, and the volume flow rate is almost uniform in the upper fuel cell 1. Can be supplied to.
However, due to heat dissipation from the outer peripheral surface of the fuel dispersion chamber 11, a temperature distribution is generated in the fuel dispersion chamber 11, and the fuel density is reduced due to thermal expansion at a high temperature, and the volume flow rate is almost uniform. Even if the fuel is dispersed, the mass flow rate of the fuel is lower at a higher temperature than at a relatively lower temperature. In particular, variations that are discovered by checking the power generation performance during operation, such as individual differences in the calorific value of the cell and variations in construction, cannot be flexibly handled according to the power generation situation, and fuel The uneven mass flow rate is not resolved. Therefore, in the fuel battery cell 1 having a small fuel mass flow rate, the concentration overvoltage becomes stronger, the voltage is lowered, and the deterioration proceeds.
Further, regarding temperature distribution, there is a proposal that enables air or fuel flow paths to be arranged in the vicinity of a relatively high temperature fuel cell to cool a high temperature portion and adjust the temperature. (For example, see Patent Document 2)
According to this means, the fuel cell 1 that is relatively high in temperature can be cooled, and a uniform temperature state can be created in the entire power generation chamber 8.
However, providing a cooling channel between the fuel cells 1 increases the pitch between the fuel cells 1 and increases the installation area of the solid oxide fuel cell.
JP 2000-58087 A JP 2002-289250 A

本発明は、上記問題を解決するためになされたもので、本発明の課題は、燃料電池セル1に流れる燃料の質量流量を調整することであり、ひいてはは燃料電池セル1の劣化を防ぎ固体酸化物型燃料電池の高出力高効率運転を維持することである。   The present invention has been made in order to solve the above problems, and an object of the present invention is to adjust the mass flow rate of the fuel flowing through the fuel cell 1. It is to maintain high power and high efficiency operation of the oxide fuel cell.

上記目的を達成するために本発明は、円筒形燃料電池セルと、前記円筒形燃料電池セルを複数配置した発電室と、前記発電室へ分散状態で燃料を供給する燃料分散室と、を備える固体酸化物型燃料電池において、前記燃料分散室に前記燃料分散室内の温度分布を調整する調整部を備えることを特徴とする固体酸化物型燃料電池を提供する。   In order to achieve the above object, the present invention includes a cylindrical fuel cell, a power generation chamber in which a plurality of the cylindrical fuel cells are arranged, and a fuel dispersion chamber that supplies fuel in a dispersed state to the power generation chamber. In the solid oxide fuel cell, there is provided a solid oxide fuel cell characterized in that the fuel dispersion chamber is provided with an adjusting unit for adjusting a temperature distribution in the fuel dispersion chamber.

本発明の好ましい態様においては、調整部が冷却のための熱交換部を有する。   In a preferred embodiment of the present invention, the adjustment unit has a heat exchange unit for cooling.

本発明の好ましい態様においては、熱交換部へ送られる冷媒と、冷媒を熱交換部に送る駆動部とを備える。   In a preferred aspect of the present invention, a refrigerant that is sent to the heat exchange unit and a drive unit that sends the refrigerant to the heat exchange unit are provided.

本発明の好ましい態様においては、冷媒が空気である。   In a preferred embodiment of the present invention, the refrigerant is air.

本発明の好ましい態様においては、冷媒が水である。   In a preferred embodiment of the present invention, the refrigerant is water.

本発明の好ましい態様においては、熱交換部が発電室の対面にある燃料分散室の壁面に位置する。   In a preferred embodiment of the present invention, the heat exchanging portion is located on the wall surface of the fuel dispersion chamber facing the power generation chamber.

本発明の好ましい態様においては、円筒形燃料電池セルの電圧を測定する測定部と、測定部での測定値と閾値を比較して調整部の運転を制御する制御部を備えている。   In a preferred embodiment of the present invention, a measurement unit that measures the voltage of the cylindrical fuel cell and a control unit that controls the operation of the adjustment unit by comparing the measured value and the threshold value in the measurement unit are provided.

本発明によれば、燃料のバラツキに起因する前記燃料電池セルの劣化を防ぐとともに、電圧の低下した前記燃料電池セルに応じて燃料電池全体の性能を低下させる必要がなく、常に高い性能を維持することができる。
According to the present invention, it is possible to prevent deterioration of the fuel cell due to fuel variation, and to maintain high performance at all times without having to reduce the performance of the entire fuel cell according to the fuel cell having a reduced voltage. can do.

以下に図面を参照して本発明をより具体的に説明する。
図1は本発明の第一の実施例を略示する円筒形固体酸化物型燃料電池の側面断面図であり、 図2は同例の燃料分散室部分の立体図である。
Hereinafter, the present invention will be described more specifically with reference to the drawings.
FIG. 1 is a side sectional view of a cylindrical solid oxide fuel cell schematically showing a first embodiment of the present invention, and FIG. 2 is a three-dimensional view of a fuel dispersion chamber portion of the example.

図1および図2に示すように、金属壁4の内部に複数の円筒形の燃料電池セル1を、封止端を下側に向けて収納し、最外周に位置する燃料電池セル1と金属壁4の間に絶縁壁3を配している。図1に示す燃料電池には、燃料電池セル1が横方向に6列、縦方向に6列配置され、発電室の中央部に収納されている。これら複数の燃料電池セル1が集電材2により電気的に接続され所定の電気容量を発揮する。集電材2には予め必要とされる箇所に電圧測定線13が接続されており金属壁4の外部に取り出されている。燃料電池セル1の開口部付近には適正なガス導通穴または気孔率を持つ仕切り板7が取付けられおり、この仕切り板7より燃料電池セル1の封止端側を発電室8、燃料電池セル1開口側を燃焼室9としている。燃料電池セル1の下方には適正寸法のガス導通孔が明いた燃料分散板16が取付けられており、この燃料分散板16より下側を燃料分散室11としている。燃料分散室11には燃料供給管14が接続されており、燃料分散室内には必要に応じてアルミナボールや多孔質材料などの燃料分散材12が充填されている。発電室8の対面に位置する燃料分散室11壁面である底面には熱交換部24として所定の箇所・個数の分散室熱交換ボックス18が取付けられている。分散室熱交換ボックス18には冷媒管22が複数接続されており、少なくとも1本は冷媒駆動部23と接続され冷媒供給管となり、残りの冷媒管22が冷媒排出管となっている。これら熱交換部24と冷媒管22と冷媒駆動部23により調整部25が構成されている。冷媒駆動部23は、冷媒が空気のような気体の場合は、一般にファンやブロアーが使われ、冷媒が水のような液体の場合は一般にポンプが用いら入れる。燃焼室9には排ガスダクト10と繋がっており、燃焼室9内には空気分配器6が収められており、この空気分配器6に繋がった空気供給管15が金属壁4の外に伸びている。また、空気分配器6からは燃料電池セル1と同本数の導入管5が接続されており、導入管5は燃料電池セル1の内部を通って燃料電池セル1の下方に向けて吐出口を設けられている。金属壁4の外周には断熱材17が配置され発電室8内の温度を高温に維持できるようにするとともに、放熱によるエネルギーロスを防いでいる。   As shown in FIGS. 1 and 2, a plurality of cylindrical fuel cells 1 are housed inside a metal wall 4 with the sealing ends facing downward, and the fuel cells 1 and the metal located on the outermost periphery. An insulating wall 3 is arranged between the walls 4. In the fuel cell shown in FIG. 1, the fuel cell 1 is arranged in six rows in the horizontal direction and six rows in the vertical direction, and is stored in the center of the power generation chamber. The plurality of fuel cells 1 are electrically connected by the current collector 2 to exhibit a predetermined electric capacity. A voltage measurement line 13 is connected to the current collector 2 in advance at a required position, and is taken out of the metal wall 4. A partition plate 7 having an appropriate gas conduction hole or porosity is attached in the vicinity of the opening of the fuel cell 1, and the sealed end side of the fuel cell 1 is connected to the power generation chamber 8 and the fuel cell from the partition plate 7. One opening side is a combustion chamber 9. A fuel dispersion plate 16 having a gas conduction hole of an appropriate size is attached below the fuel cell 1, and a fuel dispersion chamber 11 is provided below the fuel dispersion plate 16. A fuel supply pipe 14 is connected to the fuel dispersion chamber 11, and the fuel dispersion chamber 12 is filled with a fuel dispersion material 12 such as an alumina ball or a porous material as necessary. A predetermined number and number of dispersion chamber heat exchange boxes 18 are attached as heat exchange portions 24 to the bottom surface, which is the wall surface of the fuel dispersion chamber 11 located facing the power generation chamber 8. A plurality of refrigerant pipes 22 are connected to the dispersion chamber heat exchange box 18, at least one of which is connected to the refrigerant driving unit 23 to serve as a refrigerant supply pipe, and the remaining refrigerant pipe 22 serves as a refrigerant discharge pipe. The heat exchanging unit 24, the refrigerant pipe 22, and the refrigerant driving unit 23 constitute an adjusting unit 25. When the refrigerant is a gas such as air, a fan or a blower is generally used for the refrigerant driving unit 23, and when the refrigerant is a liquid such as water, a pump is generally used. The combustion chamber 9 is connected to an exhaust gas duct 10, and an air distributor 6 is accommodated in the combustion chamber 9. An air supply pipe 15 connected to the air distributor 6 extends outside the metal wall 4. Yes. In addition, the same number of introduction pipes 5 as the fuel cells 1 are connected from the air distributor 6, and the introduction pipes 5 pass through the inside of the fuel cells 1 and have discharge ports directed downwardly of the fuel cells 1. Is provided. A heat insulating material 17 is disposed on the outer periphery of the metal wall 4 so that the temperature in the power generation chamber 8 can be maintained at a high temperature, and energy loss due to heat radiation is prevented.

このように構成された固体酸化物型燃料電池を運転する際は、燃料ガスを燃料供給管14から供給し、燃料分散室11で効果的に分散されて燃料分散板16から発電室8に入り、上方の仕切り板7に向かって流れながら各燃料電池セル1の外表面に接触する。一方、空気は空気供給管15から空気分配器6に供給され、ここで効果的に分散され、導入管5を通じて空気が燃料電池セル1の内表面に接触する。燃料電池セル1が作動温度である約700℃から1000℃にまで昇温されると、燃料電池セル1の内側の空気極側から燃料電池セル1の外側の燃料極側にO2-イオンが移動して電気化学的反応が起こり、発電が行われる。発電の際に生成された水蒸気および未反応燃料ガスはある適正な圧力損失と通気機能を持った仕切り板7を通り抜けて燃焼室9に入り、ここで燃料電池セル1の内側で未反応の残空気と混合され、着火燃焼後排ガスダクト10から排出される。仕切り板7は適正な圧力損失を持つため、燃焼室9内のガスが発電室8に逆流するのを防いでいる。 When operating the solid oxide fuel cell configured as described above, the fuel gas is supplied from the fuel supply pipe 14, is effectively dispersed in the fuel dispersion chamber 11, and enters the power generation chamber 8 from the fuel dispersion plate 16. The fuel cell 1 contacts the outer surface of the fuel cell 1 while flowing toward the upper partition plate 7. On the other hand, air is supplied from the air supply pipe 15 to the air distributor 6, where it is effectively dispersed, and the air contacts the inner surface of the fuel cell 1 through the introduction pipe 5. When the temperature of the fuel cell 1 is raised from the operating temperature of about 700 ° C. to 1000 ° C., O 2− ions are generated from the air electrode inside the fuel cell 1 to the fuel electrode outside the fuel cell 1. It moves and causes an electrochemical reaction, generating electricity. Water vapor and unreacted fuel gas generated during power generation pass through a partition plate 7 having an appropriate pressure loss and ventilation function and enter the combustion chamber 9, where unreacted residue remains inside the fuel cell 1. It is mixed with air and discharged from the exhaust gas duct 10 after ignition and combustion. Since the partition plate 7 has an appropriate pressure loss, the gas in the combustion chamber 9 is prevented from flowing back to the power generation chamber 8.

固体酸化物型燃料電池の運転中は、金属壁4からの放熱による発電室8内や燃料分散室11内の温度分布やセルの発熱量の個体差による温度分布が発生し、温度の高い所では熱膨張により燃料の密度が低下している。そのため温度の高い所では相対的に温度の低いところよりも燃料の質量流量が少なくなりそこに位置する燃料電池セル1の電位が低下してしまう。
ここで燃料の質量流量が少なくなっている場所の真下に位置する調整部25により燃料分散室11内の熱を部分的に奪うこととする。つまり、図1の例では分散室熱交換ボックス18に、冷媒駆動部23から冷媒管22に冷媒となる流体を流し、冷媒が熱交換部24である分散室熱交換ボックス18を介して効果的に燃料分散室11内の熱を部分的に奪う。そうすることで、燃料分散室11内の冷却された部分では燃料の密度が相対的に大きくなるため、そこから上方に流れる燃料の質量流量を意図的に多くすることができ、そこに位置する燃料電池セル1の電位を上昇させることができる。
During operation of the solid oxide fuel cell, a temperature distribution in the power generation chamber 8 and the fuel dispersion chamber 11 due to heat radiation from the metal wall 4 and a temperature distribution due to individual differences in the calorific value of the cell occur, and the temperature is high. Then, the density of the fuel is reduced due to thermal expansion. Therefore, the mass flow rate of the fuel is smaller in the place where the temperature is higher than the place where the temperature is relatively low, and the potential of the fuel cell 1 located there is lowered.
Here, it is assumed that the heat in the fuel dispersion chamber 11 is partially taken away by the adjusting unit 25 located immediately below the place where the mass flow rate of the fuel is low. In other words, in the example of FIG. 1, a fluid serving as a refrigerant is caused to flow from the refrigerant driving unit 23 to the refrigerant pipe 22 through the dispersion chamber heat exchange box 18, and the refrigerant is effective through the dispersion chamber heat exchange box 18 that is the heat exchange unit 24. The heat in the fuel dispersion chamber 11 is partially taken away. By doing so, since the density of the fuel becomes relatively large in the cooled portion in the fuel dispersion chamber 11, the mass flow rate of the fuel flowing upward from there can be intentionally increased, and the fuel is located there. The potential of the fuel cell 1 can be raised.

また、構造上または施工上のバラツキに起因する燃料分散の偏りに対しても同様に、燃料の質量流量が少なくなっている場所の真下に位置する分散室熱交換ボックス18に流体を供給し、燃料分散室11内の熱を部分的に奪うことでそこから上方に流れる燃料の質量流量を意図的に多くすることができる。   Further, similarly to the deviation of fuel dispersion due to structural or constructional variations, the fluid is supplied to the dispersion chamber heat exchange box 18 located just below the place where the mass flow rate of the fuel is reduced, By partially depriving the heat in the fuel dispersion chamber 11, the mass flow rate of the fuel flowing upward from there can be increased intentionally.

熱交換部24に流す流体としては、空気を使うことが有効である。空気であれば、外気から常に十分な量を調達することができ、素材自体のコストが掛からない。また、燃料電池セル1に供給する空気を熱交換部24に送られる冷媒として利用後、予熱された状態で燃料電池セル1に供給すれば、燃料分散室11から回収した熱を有効に活用でき、固体酸化物型燃料電池の総合効率を高めることができる。
熱交換部24に流す流体として、水を使うことも有効である。水は体積当りの熱容量が大きいため、非常に少ない流量で冷却効果を得ることが出来る。これにより、熱交換部24をより小型化することができ、冷媒管22の配管径も小さくすることが出来る。また固体酸化物型燃料電池が燃料として都市ガスのような炭化水素系燃料を使用するシステムの場合は、改質用の水蒸気が必要となり、多くの場合水を気化させるために蒸気発生器を備えている。そこで、改質用水蒸気に用いる水を熱交換部24に送られる冷媒として利用後、予熱された状態で蒸気発生器に供給すれば、燃料分散室11から回収した熱を有効に活用でき、固体酸化物型燃料電池の総合効率を高めることができる。
尚ここで言う総合効率とは、投入した燃料熱量に対する、発電電力と利用される熱エネルギーの合計値の比率である。
It is effective to use air as the fluid flowing through the heat exchanging section 24. If it is air, a sufficient amount can always be procured from outside air, and the cost of the material itself is not required. Further, if the air supplied to the fuel cell 1 is used as a refrigerant sent to the heat exchanging unit 24 and then supplied to the fuel cell 1 in a preheated state, the heat recovered from the fuel dispersion chamber 11 can be used effectively. The overall efficiency of the solid oxide fuel cell can be increased.
It is also effective to use water as the fluid that flows to the heat exchange unit 24. Since water has a large heat capacity per volume, a cooling effect can be obtained with a very small flow rate. Thereby, the heat exchange part 24 can be reduced more in size and the piping diameter of the refrigerant | coolant pipe | tube 22 can also be made small. In addition, when the solid oxide fuel cell uses a hydrocarbon-based fuel such as city gas as a fuel, steam for reforming is required, and in many cases, a steam generator is provided to vaporize the water. ing. Therefore, if the water used for the reforming steam is used as a refrigerant sent to the heat exchanging section 24 and then supplied to the steam generator in a preheated state, the heat recovered from the fuel dispersion chamber 11 can be effectively utilized, The overall efficiency of the oxide fuel cell can be increased.
The overall efficiency referred to here is the ratio of the total value of the generated power and the thermal energy used to the amount of fuel heat input.

燃料の質量流量に偏りが生じる最も大きな要因は、金属壁4からの放熱による発電室8内や燃料分散室11内の温度分布である。これに関しては、平面的に中央部の温度が相対的に高温となる。よって熱交換部24は燃料分散室11の平面的な中央部に配置することが有効である。ここで言う中央部への配置とは図3で示すように、燃料分散室11の底面を均等に16分割した際、斜線で示した分割範囲を燃料分散室中央部26とし、その他の分割範囲を燃料分散室周囲部27とすると、燃料分散室周囲部27における熱交換部24の伝熱面積より燃料分散室中央部26における熱交換部24の伝熱面積の方が大きくなっている状況を表している。
発電室8または燃料分散室11の構造に起因する燃料の分散の偏りが生じる場合はその状況に応じて最適な位置に熱交換部24は配置される。
施工上のバラツキに起因するような予め予測できない燃料分散の偏りに対応する場合は燃料分散室11の複数箇所に熱交換部24を設けてかつ、燃料分散の偏りを検出する手段を設け、燃料分散の偏りの検出結果に応じて必要箇所の熱交換部24に冷媒を流すことで効果を得ることが出来る。
The biggest factor causing the deviation in the mass flow rate of the fuel is the temperature distribution in the power generation chamber 8 and the fuel dispersion chamber 11 due to heat radiation from the metal wall 4. In this regard, the temperature of the central portion is relatively high in plan view. Therefore, it is effective to arrange the heat exchanging part 24 in the planar center part of the fuel dispersion chamber 11. As shown in FIG. 3, when the bottom surface of the fuel dispersion chamber 11 is equally divided into 16, as shown in FIG. 3, the division range indicated by hatching is defined as the fuel dispersion chamber central portion 26 and the other division ranges. Is the fuel dispersion chamber peripheral portion 27, the heat transfer area of the heat exchange portion 24 in the fuel dispersion chamber central portion 26 is larger than the heat transfer area of the heat exchange portion 24 in the fuel dispersion chamber peripheral portion 27. Represents.
In the case where deviation of fuel dispersion due to the structure of the power generation chamber 8 or the fuel dispersion chamber 11 occurs, the heat exchange unit 24 is arranged at an optimum position according to the situation.
When dealing with unpredictable deviations in fuel dispersion caused by variations in construction, heat exchange units 24 are provided at a plurality of locations in the fuel dispersion chamber 11, and means for detecting deviations in fuel dispersion are provided. The effect can be obtained by flowing the refrigerant through the heat exchanging portion 24 at a necessary location according to the detection result of the dispersion bias.

熱交換部24への冷媒の流量制御に関しては、金属壁4からの放熱による発電室8内や燃料分散室11内の温度分布に起因する燃料の質量流量の分布のように予測の立てられる要因に対しては、発電出力や燃料電池セル1に供給する燃料および空気の供給量などのパラメーターに応じて予め最適な冷媒供給量を設定しておくことができる。こうすることで非常に簡単な回路で燃料分散室11の温度分布を制御し、燃料電池セル1に供給する燃料の質量流量を最適にすることができる。
より精度良く燃料電池セル1に供給する燃料の質量流量を最適に制御する方法としては、燃料の質量流量が少なくなっている部分の燃料電池セル1は電圧が低下することを利用し、燃料電池セル1の電圧低下を観測し、その場所・電圧値に応じて冷媒の供給位置・流量を制御する方法がある。例えば、予め複数ある燃料電池セル1のうち部分的な電位を計測できるよう電圧測定線13を設置しておき、固体酸化物型燃料電池の運転中の観測された電圧値に応じて該当する箇所の熱交換部24に供給する冷媒の流量をフィードバック制御し、常に燃料電池セル1の電圧分布を均一にすることができる。フィードバック制御においては、予め電圧閾値を設定しておき、燃料電池セル1の電圧が閾値を下回った場合に、冷媒の供給流量を一定量増加させる方法や、予め電圧閾値を複数段階的に設定しておき、燃料電池セル1の電圧がこれら閾値を下回った場合に、冷媒の供給流量を電圧閾値の段階に応じた一定量を増加させる方法や、燃料電池セル1の電圧が予め設定された電圧閾値を下回った時は、電圧閾値からの電圧値の低下幅に応じて予め設定した関数式に従い冷媒の流量を増加させる方法が使える。
電圧測定線13の設置に関しては、放熱に起因する燃料の質量流量の分布のように燃料電池セル1の電圧低下の予測が立てられる箇所、例えば発電室8を平面的に見た時の中央部には電圧測定線13を設置する必要がある。この予め燃料電池セル1の電圧低下の予測が立てられる箇所にのみ電圧測定線13を設置することとすれば、燃料電池セル1に供給する燃料の質量流量を最適にすることが低コストで効果的に実現できる。あるいは予め複数ある燃料電池セル1の数本単位で分割して各所の電圧が計測できるよう電圧測定線13を設置しておけば、固体酸化物燃料電池全体を漏れなく観測することができ、放熱に起因する燃料の質量流量の分布のように予測の立てられる要因に対してだけでなく、燃料電池セル1の個体差や施工上のバラつきのように予測の立てられない要因に対しても、燃料電池セル1の電圧低下を観測でき、該当する箇所の熱交換部24に供給する冷媒の流量を制御することで燃料電池セル1に供給する燃料の質量流量を最適にすることができ、燃料電池セル1の劣化を防ぐとともに電圧の低下した前記燃料電池セルに応じて燃料電池全体の性能を低下させる必要がなく、常に高い性能を維持することができる。
Regarding the flow rate control of the refrigerant to the heat exchanging unit 24, factors that can be predicted such as the distribution of the mass flow rate of the fuel due to the temperature distribution in the power generation chamber 8 and the fuel dispersion chamber 11 due to heat radiation from the metal wall 4. On the other hand, an optimal refrigerant supply amount can be set in advance according to parameters such as the power generation output and the supply amount of fuel and air supplied to the fuel cell 1. In this way, the temperature distribution of the fuel dispersion chamber 11 can be controlled with a very simple circuit, and the mass flow rate of the fuel supplied to the fuel cell 1 can be optimized.
As a method for optimally controlling the mass flow rate of the fuel supplied to the fuel cell 1 with higher accuracy, the fuel cell 1 in the portion where the mass flow rate of the fuel is reduced is utilized to reduce the voltage. There is a method of observing the voltage drop of the cell 1 and controlling the supply position / flow rate of the refrigerant according to the location / voltage value. For example, a voltage measurement line 13 is installed in advance so that a partial potential of a plurality of fuel cells 1 can be measured, and a corresponding location according to an observed voltage value during operation of the solid oxide fuel cell. The flow rate of the refrigerant supplied to the heat exchange unit 24 is feedback-controlled, so that the voltage distribution of the fuel cell 1 can always be made uniform. In the feedback control, a voltage threshold value is set in advance, and when the voltage of the fuel cell 1 falls below the threshold value, a method of increasing the supply flow rate of the refrigerant by a certain amount or a voltage threshold value is set in a plurality of steps in advance. In addition, when the voltage of the fuel battery cell 1 falls below these thresholds, a method of increasing the supply flow rate of the refrigerant by a certain amount according to the level of the voltage threshold, or a voltage in which the voltage of the fuel battery cell 1 is set in advance. When the value falls below the threshold value, a method of increasing the flow rate of the refrigerant according to a function equation set in advance according to the decrease range of the voltage value from the voltage threshold value can be used.
With respect to the installation of the voltage measurement line 13, a location where the voltage drop of the fuel cell 1 can be predicted, such as the distribution of the mass flow rate of the fuel due to heat dissipation, for example, the central portion when the power generation chamber 8 is viewed in plan. It is necessary to install a voltage measurement line 13. If the voltage measurement line 13 is installed only in a place where the voltage drop of the fuel cell 1 can be predicted in advance, optimizing the mass flow rate of the fuel supplied to the fuel cell 1 is effective at low cost. Can be realized. Alternatively, if the voltage measurement line 13 is installed in advance so that the voltage at each location can be measured by dividing the fuel cell 1 in units of a plurality of units, the entire solid oxide fuel cell can be observed without leakage, and heat radiation Not only for factors that can be predicted, such as the distribution of the mass flow rate of fuel due to the fuel, but also for factors that cannot be predicted, such as individual differences in the fuel cells 1 and variations in construction, The voltage drop of the fuel cell 1 can be observed, and the mass flow rate of the fuel supplied to the fuel cell 1 can be optimized by controlling the flow rate of the refrigerant supplied to the heat exchanging portion 24 at the corresponding location. It is not necessary to reduce the performance of the entire fuel cell according to the fuel cell in which the voltage is reduced while preventing the battery cell 1 from deteriorating, and high performance can always be maintained.

本発明の第一の実施例に挙げた構成で、熱交換部24として分散室熱交換ボックス18を燃料分散室11の底面の中央部に設け、ここに流す流体として空気を用いた時の実験結果を図7から図10に示す。
分散室熱交換ボックス18への空気供給流量が80NL/minの時、図7に示すように燃料分散室11の端部よりも中央部の温度が8℃高く、この時図8に示すように端部に位置する燃料電池セル1の電圧より中央に位置する燃料電池セル1の電圧が55mV低かった。よって、中央部に位置する燃料電池セル1は端部に位置する燃料電池セル1よりも劣化の進行が早まっていると考えられる。そこで、分散室熱交換ボックス18への空気供給量を100NL/minに増加させると、図9に示すように燃料分散室11の温度を逆に端部よりも中央部の温度が4℃低くすることができ、これにより図10に示すように端部に位置する燃料電池セル1の電圧より中央に位置する燃料電池セル1の電圧が23mV低い状態にまで差を縮めることができ、中央に位置する燃料電池セル1の劣化を抑えることができた。
In the configuration described in the first embodiment of the present invention, a dispersion chamber heat exchange box 18 is provided at the center of the bottom surface of the fuel dispersion chamber 11 as the heat exchange portion 24, and an experiment is performed when air is used as a fluid flowing therethrough. The results are shown in FIGS.
When the air supply flow rate to the dispersion chamber heat exchange box 18 is 80 NL / min, the temperature at the center is 8 ° C. higher than the end of the fuel dispersion chamber 11 as shown in FIG. 7, and at this time, as shown in FIG. The voltage of the fuel cell 1 located at the center was 55 mV lower than the voltage of the fuel cell 1 located at the end. Therefore, it is considered that the progress of deterioration of the fuel cell 1 located in the central portion is faster than that of the fuel cell 1 located in the end portion. Therefore, when the amount of air supplied to the dispersion chamber heat exchange box 18 is increased to 100 NL / min, the temperature of the fuel dispersion chamber 11 is conversely lowered by 4 ° C. from the end as shown in FIG. Thus, as shown in FIG. 10, the difference can be reduced to a state where the voltage of the fuel cell 1 located in the center is 23 mV lower than the voltage of the fuel cell 1 located at the end. The deterioration of the fuel battery cell 1 was suppressed.

図4は本発明の第二の実施例を略示する円筒形固体酸化物型燃料電池の側面断面図である。
図4に示すように、熱交換部24は分散室熱交換ボックス18と燃料分散室11の内部に設置された熱交換フィン19で構成することができる。こうすることにより、分散室熱交換ボックス18の燃料分散室11底面への単位貼付け面積当りの伝熱面積が飛躍的に増加するため、少ない流量の冷媒で効率よく燃料分散室11内の温度を調整することができる。
FIG. 4 is a side sectional view of a cylindrical solid oxide fuel cell schematically showing the second embodiment of the present invention.
As shown in FIG. 4, the heat exchanging section 24 can be constituted by a dispersion chamber heat exchange box 18 and heat exchange fins 19 installed inside the fuel dispersion chamber 11. By doing so, the heat transfer area per unit affixed area to the bottom surface of the fuel dispersion chamber 11 of the dispersion chamber heat exchange box 18 increases dramatically, so that the temperature in the fuel dispersion chamber 11 can be efficiently reduced with a small amount of refrigerant. Can be adjusted.

図5は本発明の第三の実施例を略示する円筒形固体酸化物型燃料電池の側面断面図である。
図5に示すように、熱交換部24は、冷媒管22を直接燃料分散室11内に貫流させ熱交換パイプ19とすることができる。こうすることにより、燃料分散室11内の燃料の分散流路をほとんど妨げずに、直接燃料分散室11の内部まで熱交換することができるため、少ない流量の冷媒で効率よく燃料分散室11内の温度を調整することができる。
FIG. 5 is a side sectional view of a cylindrical solid oxide fuel cell schematically showing a third embodiment of the present invention.
As shown in FIG. 5, the heat exchanging section 24 can be used as a heat exchanging pipe 19 by allowing the refrigerant pipe 22 to flow directly into the fuel dispersion chamber 11. By doing so, heat can be directly exchanged to the inside of the fuel dispersion chamber 11 without substantially obstructing the fuel dispersion flow path in the fuel dispersion chamber 11, so that the inside of the fuel dispersion chamber 11 can be efficiently produced with a small flow rate of refrigerant. The temperature of can be adjusted.

図6は本発明の第四の実施例を略示する円筒形固体酸化物型燃料電池の側面断面図である。
図6では、発電室8の対面に位置する燃料分散室11壁面である底面に冷却ファン21を設けている。こうすることにより、冷媒となる流体を供給する配管が不要となり、コンパクトにすることができる。
FIG. 6 is a side sectional view of a cylindrical solid oxide fuel cell schematically showing a fourth embodiment of the present invention.
In FIG. 6, a cooling fan 21 is provided on the bottom surface, which is the wall surface of the fuel dispersion chamber 11 located on the opposite side of the power generation chamber 8. By doing so, a pipe for supplying a fluid as a refrigerant is not necessary, and the apparatus can be made compact.

本発明における燃料電池は、燃料電池セルが一列に配列されたものであっても良いが、好ましくは燃料電池セルが縦方向及び横方向に複数列配列されたものであるほうが良い。同一本数のセルで燃料電池を作製した場合には、後者のほうが燃料電池の外表面積を小さくすることができ、放熱による温度低下を小さくできるからである。
The fuel cell according to the present invention may be one in which the fuel cells are arranged in a row, but preferably the fuel cells are arranged in a plurality of rows in the vertical and horizontal directions. This is because when the fuel cell is manufactured with the same number of cells, the latter can reduce the outer surface area of the fuel cell and reduce the temperature drop due to heat dissipation.

本発明の第一の実施例を略示する円筒形固体酸化物型燃料電池の側面断面図である。1 is a side sectional view of a cylindrical solid oxide fuel cell schematically showing a first embodiment of the present invention. 同例を略示する燃料分散室部分の立体図である。It is a three-dimensional view of the fuel dispersion chamber portion schematically showing the same example. 同例を略示する燃料分散室部底面の平面図である。It is a top view of the fuel dispersion | distribution chamber part bottom face which shows the same example schematically. 本発明の第二の実施例を略示する円筒形固体酸化物型燃料電池の側面断面図である。It is side surface sectional drawing of the cylindrical solid oxide fuel cell which shows the 2nd Example of this invention schematically. 本発明の第三の実施例を略示する円筒形固体酸化物型燃料電池の側面断面図である。It is side surface sectional drawing of the cylindrical solid oxide fuel cell which shows the 3rd Example of this invention schematically. 本発明の第四の実施例を略示する円筒形固体酸化物型燃料電池の側面断面図である。It is side surface sectional drawing of the cylindrical solid oxide fuel cell which shows the 4th Example of this invention schematically. 本発明の第一の実施例における冷媒空気流量が80NL/minの時の実験結果を表す燃料分散室温度-燃料分散室配置のグラフである。6 is a graph of fuel dispersion chamber temperature-fuel dispersion chamber arrangement showing experimental results when the refrigerant air flow rate is 80 NL / min in the first embodiment of the present invention. 本発明の第一の実施例における冷媒空気流量が80NL/minの時の実験結果を表す電圧-燃料分散室配置のグラフである。It is a graph of the voltage-fuel dispersion | distribution chamber arrangement | positioning showing the experimental result when the refrigerant | coolant air flow rate is 80 NL / min in the 1st Example of this invention. 本発明の第一の実施例における冷媒空気流量が100NL/minの時の実験結果を表す燃料分散室温度-燃料分散室配置のグラフである。6 is a graph of fuel dispersion chamber temperature-fuel dispersion chamber arrangement showing experimental results when the refrigerant air flow rate is 100 NL / min in the first embodiment of the present invention. 本発明の第一の実施例における冷媒空気流量が100NL/minの時の実験結果を表す電圧-燃料分散室配置のグラフである。It is a graph of voltage-fuel dispersion | distribution chamber arrangement | positioning showing the experimental result when the refrigerant | coolant air flow rate in the 1st Example of this invention is 100 NL / min. 従来の固体酸化物型燃料電池システムを示す側面断面図である。It is side surface sectional drawing which shows the conventional solid oxide fuel cell system.

符号の説明Explanation of symbols

1…燃料電池セル
2…集電材
3…絶縁壁
4…金属壁
5…導入管
6…空気分配器
7…仕切り板
8…発電室
9…燃焼室
10…排ガスダクト
11…燃料分散室
12…燃料分散材
13…電圧計測線
14…燃料供給管
15…空気供給管
16…燃料分散板
17…断熱材
18…分散室熱交換ボックス
19…熱交換フィン
20…分散室熱交換パイプ
21…冷却ファン
22…冷媒管
23…冷媒駆動部
24…熱交換部
25…調整部
26…燃料分散室中央部
27…燃料分散室周囲部
DESCRIPTION OF SYMBOLS 1 ... Fuel cell 2 ... Current collector 3 ... Insulating wall 4 ... Metal wall 5 ... Introducing pipe 6 ... Air distributor 7 ... Partition plate
DESCRIPTION OF SYMBOLS 8 ... Power generation chamber 9 ... Combustion chamber 10 ... Exhaust gas duct 11 ... Fuel dispersion chamber 12 ... Fuel dispersion material 13 ... Voltage measurement line 14 ... Fuel supply pipe 15 ... Air supply pipe 16 ... Fuel dispersion plate 17 ... Heat insulation material 18 ... Dispersion chamber Heat exchange box 19 ... Heat exchange fin 20 ... Dispersion chamber heat exchange pipe 21 ... Cooling fan 22 ... Refrigerant pipe 23 ... Refrigerant drive unit 24 ... Heat exchange unit 25 ... Adjustment unit 26 ... Fuel dispersion chamber central portion 27 ... Around fuel dispersion chamber Part

Claims (7)

円筒形燃料電池セルと、前記円筒形燃料電池セルを複数配置した発電室と、前記発電室へ分散状態で燃料を供給する燃料分散室と、を備える固体酸化物型燃料電池において、前記燃料分散室に前記燃料分散室内の温度分布を調整する調整部を備えることを特徴とする固体酸化物型燃料電池。 A solid oxide fuel cell comprising: a cylindrical fuel cell; a power generation chamber in which a plurality of the cylindrical fuel cells are arranged; and a fuel dispersion chamber that supplies fuel in a dispersed state to the power generation chamber. A solid oxide fuel cell, wherein the chamber is provided with an adjustment unit for adjusting a temperature distribution in the fuel dispersion chamber. 前記調整部が冷却のための熱交換部を有することを特徴とする請求項1に記載の固体酸化物型燃料電池。 The solid oxide fuel cell according to claim 1, wherein the adjustment unit includes a heat exchange unit for cooling. 前記熱交換部へ送られる冷媒と、前記冷媒を前記熱交換部に送る駆動部とを備えることを特徴とする請求項2に記載の固体酸化物型燃料電池。 The solid oxide fuel cell according to claim 2, further comprising: a refrigerant sent to the heat exchange unit; and a drive unit that sends the refrigerant to the heat exchange unit. 前記冷媒が空気であることを特徴とする請求項3に記載の固体酸化物型燃料電池。 The solid oxide fuel cell according to claim 3, wherein the refrigerant is air. 前記冷媒が水であることを特徴とする請求項3に記載の固体酸化物型燃料電池。 The solid oxide fuel cell according to claim 3, wherein the refrigerant is water. 前記熱交換部が前記発電室の対面にある前記燃料分散室の壁面に位置することを特徴とする請求項2乃至5のいずれか1項に記載の固体酸化物型燃料電池。 6. The solid oxide fuel cell according to claim 2, wherein the heat exchanging portion is located on a wall surface of the fuel dispersion chamber facing the power generation chamber. 前記円筒形燃料電池セルの電圧を測定する測定部と、前記測定部での測定値と閾値を比較して前記調整部の運転を制御する制御部を備えていることを特徴とする請求項1乃至6のいずれか1項に記載の固体酸化物型燃料電池。
2. A measuring unit that measures the voltage of the cylindrical fuel cell, and a control unit that controls the operation of the adjusting unit by comparing a measured value in the measuring unit with a threshold value. 7. The solid oxide fuel cell according to any one of items 1 to 6.
JP2005274735A 2005-09-21 2005-09-21 Solid oxide fuel cell Expired - Fee Related JP5002934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005274735A JP5002934B2 (en) 2005-09-21 2005-09-21 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005274735A JP5002934B2 (en) 2005-09-21 2005-09-21 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2007087756A true JP2007087756A (en) 2007-04-05
JP5002934B2 JP5002934B2 (en) 2012-08-15

Family

ID=37974528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005274735A Expired - Fee Related JP5002934B2 (en) 2005-09-21 2005-09-21 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5002934B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010114047A1 (en) 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114049A1 (en) 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114048A1 (en) 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114046A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
JP2012204125A (en) * 2011-03-25 2012-10-22 Osaka Gas Co Ltd Solid oxide fuel cell system
US8968953B2 (en) 2009-03-31 2015-03-03 Toto Ltd. Solid oxide fuel cell
JP2016115628A (en) * 2014-12-17 2016-06-23 三菱日立パワーシステムズ株式会社 Fuel battery cartridge and manufacturing method thereof, and fuel battery module and fuel battery system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280053A (en) * 2001-03-21 2002-09-27 Toto Ltd Fuel cell power generating system
JP2002289250A (en) * 2001-03-27 2002-10-04 Toto Ltd Fuel cell system
JP2003109634A (en) * 2001-09-27 2003-04-11 Mitsubishi Heavy Ind Ltd Fuel cell system and operation method of fuel cell
JP2003297397A (en) * 2002-04-02 2003-10-17 Shinko Electric Ind Co Ltd Fuel cell
JP2004119300A (en) * 2002-09-27 2004-04-15 Toto Ltd Cylindrical solid oxide fuel cell (sofc) generator
JP2006066387A (en) * 2004-07-27 2006-03-09 Toto Ltd Fuel cell battery
JP2006260876A (en) * 2005-03-16 2006-09-28 Hitachi Ltd Fuel cell power generation system and its operation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280053A (en) * 2001-03-21 2002-09-27 Toto Ltd Fuel cell power generating system
JP2002289250A (en) * 2001-03-27 2002-10-04 Toto Ltd Fuel cell system
JP2003109634A (en) * 2001-09-27 2003-04-11 Mitsubishi Heavy Ind Ltd Fuel cell system and operation method of fuel cell
JP2003297397A (en) * 2002-04-02 2003-10-17 Shinko Electric Ind Co Ltd Fuel cell
JP2004119300A (en) * 2002-09-27 2004-04-15 Toto Ltd Cylindrical solid oxide fuel cell (sofc) generator
JP2006066387A (en) * 2004-07-27 2006-03-09 Toto Ltd Fuel cell battery
JP2006260876A (en) * 2005-03-16 2006-09-28 Hitachi Ltd Fuel cell power generation system and its operation method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102414899A (en) * 2009-03-31 2012-04-11 Toto株式会社 Solid electrolyte fuel cell
JP4622005B2 (en) * 2009-03-31 2011-02-02 Toto株式会社 Solid oxide fuel cell
WO2010114048A1 (en) 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114046A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114047A1 (en) 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
JP2010238619A (en) * 2009-03-31 2010-10-21 Toto Ltd Solid electrolyte fuel cell
WO2010114049A1 (en) 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
JP4656610B2 (en) * 2009-03-31 2011-03-23 Toto株式会社 Solid oxide fuel cell
JP2010238616A (en) * 2009-03-31 2010-10-21 Toto Ltd Solid electrolyte fuel cell
US8980496B2 (en) 2009-03-31 2015-03-17 Toto Ltd. Solid oxide fuel cell
US8426074B2 (en) 2009-03-31 2013-04-23 Toto Ltd. Solid oxide fuel cell
US8492041B2 (en) 2009-03-31 2013-07-23 Toto Ltd. Solid oxide fuel cell
US8859156B2 (en) 2009-03-31 2014-10-14 Toto Ltd. Solid oxide fuel cell
US8968953B2 (en) 2009-03-31 2015-03-03 Toto Ltd. Solid oxide fuel cell
JP2012204125A (en) * 2011-03-25 2012-10-22 Osaka Gas Co Ltd Solid oxide fuel cell system
JP2016115628A (en) * 2014-12-17 2016-06-23 三菱日立パワーシステムズ株式会社 Fuel battery cartridge and manufacturing method thereof, and fuel battery module and fuel battery system

Also Published As

Publication number Publication date
JP5002934B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5002934B2 (en) Solid oxide fuel cell
US10141586B2 (en) Fuel cell module, combined power generation system including the same, and temperature control method of fuel cell power generation section
JP2006302881A (en) Fuel cell assembly
US20110250513A1 (en) Fuel cell
EA010167B1 (en) Internal cooling of electrolytic smelting cell
US8173317B2 (en) Fuel cells power generation system
JP5122319B2 (en) Solid oxide fuel cell
JP5248829B2 (en) Fuel cell module
JP2012109256A (en) Fuel cell assembly
JP2008071511A (en) Solid oxide fuel cell module, and its operation method
CN114628725B (en) fuel cell device
JP4917295B2 (en) Solid oxide fuel cell power generation system
KR20180000448A (en) Fuel cell with heat exchage means for controlling temprature
KR102227608B1 (en) Fuel cell stack
JP5216197B2 (en) Fuel cell power generation system
KR101944152B1 (en) Fuel cell component having selected cooling capacity distribution
CN116581344B (en) Hydrogen eliminator for fuel cell system and fuel cell system
US20230411658A1 (en) Solid oxide fuel cell system and steam generator thereof
KR20130039514A (en) Solid oxide fuel cell stack
JP6398557B2 (en) Fuel cell device
JP6331970B2 (en) Fuel cell device
JP6154197B2 (en) Fuel cell module and fuel cell device
KR20100136662A (en) Temperature control apparatus for high temperature fuel cell stack
KR20090008192U (en) Fuel cell system
KR20160093211A (en) COD heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5002934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees