JPS63143707A - Anisotropic conducting material and manufacture thereof - Google Patents

Anisotropic conducting material and manufacture thereof

Info

Publication number
JPS63143707A
JPS63143707A JP28994286A JP28994286A JPS63143707A JP S63143707 A JPS63143707 A JP S63143707A JP 28994286 A JP28994286 A JP 28994286A JP 28994286 A JP28994286 A JP 28994286A JP S63143707 A JPS63143707 A JP S63143707A
Authority
JP
Japan
Prior art keywords
conductive particles
spinning
conductive
insulating resin
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28994286A
Other languages
Japanese (ja)
Inventor
裕紀 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP28994286A priority Critical patent/JPS63143707A/en
Publication of JPS63143707A publication Critical patent/JPS63143707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、横方向には絶縁体であるが縦方向には導電
性体となるような異方導電材料と、その製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an anisotropic conductive material that is an insulator in the horizontal direction but conductive in the vertical direction, and a method for producing the same.

〔従来の技術〕[Conventional technology]

多数の接続用バンドが形成されたrc等の電子部品を、
基板等にPA続するための方法として、最近、異方導電
材料を利用した接続方法が注目されている。(例えば特
開昭58−15243号公報、特開昭60−19335
3号公報、特開昭60−140791号公報参照)。
Electronic components such as RC that have a large number of connection bands,
Recently, a connection method using an anisotropic conductive material has been attracting attention as a method for connecting a PA to a substrate or the like. (For example, JP-A-58-15243, JP-A-60-19335)
(See Publication No. 3 and Japanese Unexamined Patent Publication No. 140791/1982).

これは、導電性粒子と熱可塑性の絶縁性樹脂の混合分散
液を圧延法等により直接フィルム化した異方導電性フィ
ルムを用いるものである。この異方導電性フィルムを接
続すべき部材間に挟み、加熱圧着して、絶縁材を融かし
、横方向には絶縁性を保ちながら圧着方向(縦方向)を
導電性的に接続するものである。
This uses an anisotropically conductive film obtained by directly forming a mixed dispersion of conductive particles and a thermoplastic insulating resin into a film by a rolling method or the like. This anisotropic conductive film is sandwiched between the members to be connected, and they are heat-pressed to melt the insulating material and connect conductively in the crimp direction (vertical direction) while maintaining insulation in the horizontal direction. It is.

第6図は、この従来例による接続状態を示している。第
6図の(d)部分において、基板63.63上に形成さ
れた電極或いは電極パッド64.64間に、導電性粒子
61がはさみ込まれ、電極パッド64.64間を短絡す
る。
FIG. 6 shows the connection state according to this conventional example. In part (d) of FIG. 6, conductive particles 61 are sandwiched between electrodes or electrode pads 64.64 formed on a substrate 63.63 to short-circuit the electrode pads 64.64.

導電性粒子61を、絶縁性樹脂62中に分散させること
によって、横方向には絶縁性を保ち乍ら、縦(圧着)方
向のみをうまく短絡することができる。
By dispersing the conductive particles 61 in the insulating resin 62, it is possible to successfully short-circuit only the vertical (crimping) direction while maintaining insulation in the horizontal direction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述のような異方導電材料を用いることにより、多数の
電極或いはバンドを有する電子部品を基板等に、きわめ
て容易に接続することが可能になった。
By using the above-mentioned anisotropic conductive material, it has become possible to connect electronic components having a large number of electrodes or bands to a substrate etc. with great ease.

しかしながら、絶縁性樹脂と導電性粒子の混合分散液を
圧延法等により直接フィルム化した異方導電材料は、導
電性粒子を均一に分散することが困難なこと、或いは、
導電性粒子中に大径の粒子が混在していること等のため
信頼性の点で従来法による接続方法を上まわるものでは
ないという問題点を有していた。
However, anisotropically conductive materials in which a mixed dispersion of an insulating resin and conductive particles is directly formed into a film by a rolling method or the like have difficulties in uniformly dispersing the conductive particles, or
This method has a problem in that it is not superior to conventional connection methods in terms of reliability due to the presence of large-diameter particles among the conductive particles.

例えば、導電性粒子が均一に分散していないと、第6図
部分(alに示すように、導電性粒子の部分的な凝集に
よって隣接するパッド間をショートしてしまう場合があ
り、逆に第6図部分(C)に示すように、導電性粒子の
不存在な個所ができることによって、上下電極間がオー
プンとなる場合がある。
For example, if the conductive particles are not uniformly dispersed, the partial agglomeration of the conductive particles may cause a short circuit between adjacent pads, as shown in Figure 6 (al); As shown in part (C) of FIG. 6, the gap between the upper and lower electrodes may become open due to the formation of areas where conductive particles are not present.

また、第6図部分(blに示すように大径の導電性粒子
が混在していると、隣接電極間を短絡する場合がある。
Furthermore, if large-diameter conductive particles are mixed as shown in FIG. 6 (bl), adjacent electrodes may be short-circuited.

このため、(1)パッド当たり(電極光たり)の接続抵
抗、電流容量等の電気特性がバラつ< 、(2)接続分
解能が低い(5本/rnm以下) 、(3)低接続信頼
性、(4)歩留りが低い等の問題点を有している。
For this reason, (1) electrical characteristics such as connection resistance and current capacity per pad (electrode light) vary, (2) connection resolution is low (5 lines/rnm or less), and (3) low connection reliability. , (4) There are problems such as low yield.

この発明は、このような点に鑑みてなされたものであり
、導電性粒子が均一に分散した異方導電材料と、その製
造方法を提供することを目的とする。
The present invention has been made in view of these points, and aims to provide an anisotropically conductive material in which conductive particles are uniformly dispersed, and a method for manufacturing the same.

〔問題点を解決するための手段およびその作用〕上述の
問題点を解決するため、この発明においては、長さ方向
に導電性粒子が一様で単層、かつ単分散した、異方導電
性の繊維を構成し、これを異方導電材料とする。この異
方導電性の繊維を、分解能等目的に応じ所定のメソシュ
に織り込むか、或いは、この繊維を平行かつ単層に配置
した後、ホットプレス等によりフィルム化して用いる。
[Means for Solving the Problems and Their Effects] In order to solve the above-mentioned problems, the present invention provides an anisotropic conductive material in which conductive particles are uniform, monolayered, and monodispersed in the length direction. This fiber is used as an anisotropically conductive material. These anisotropically conductive fibers are woven into a predetermined mesh depending on the purpose such as resolution, or the fibers are arranged in parallel in a single layer and then formed into a film by hot pressing or the like.

さらに、この発明においては、中心部に導電性粒子と絶
縁性樹脂の分散熔融液を、それをかこんで外側に絶縁性
樹脂のみの熔融液をそれぞれ導くように構成した同心2
重構造の2重紡糸口金を用いてこれを高圧N2ガスによ
り押し出し、導電性粒子を単層に分散した異方導電性繊
維を得る。
Furthermore, in this invention, a concentric 2-layer structure is constructed so as to guide a dispersion melt of conductive particles and an insulating resin to the center, and a melt of only the insulating resin to the outside surrounding it.
This is extruded using a double-layered spinneret with high pressure N2 gas to obtain an anisotropic conductive fiber in which conductive particles are dispersed in a single layer.

これにより、導電性粒子が均一に分散した異方導電性の
繊維を得ることができ、この異方導電性の繊維によれば
、きわめて容易かつ確実に、しかも高分解能で、電極パ
ッド間の接続を行うことができる。
This makes it possible to obtain an anisotropically conductive fiber in which conductive particles are uniformly dispersed, and this anisotropically conductive fiber allows for extremely easy and reliable connection between electrode pads with high resolution. It can be performed.

〔実施例〕〔Example〕

以下、図面を参照して、この発明の詳細な説明する。第
1図は、この発明の異方導電材料の構成を示す図であり
、繊維状の絶縁性樹脂2中に、球状の導電性粒子lを単
層で均一にかつ単分散(横方向で隣接する粒子に接触し
ない)させている。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing the structure of the anisotropic conductive material of the present invention, in which spherical conductive particles l are uniformly and monodispersed in a single layer (adjacent in the lateral direction) in a fibrous insulating resin 2. (do not come into contact with any particles).

導電性粒子の大きさは、得ようとする分解能によっても
異なるが、例えば、10.0±0.2μm程度のものが
用いられる。導電性粒子の粒径の分布は、確実な接続の
ためには、できるだけそろっていた方が良く、上述のよ
うな誤差範囲に分級されたものが好ましい。
Although the size of the conductive particles varies depending on the desired resolution, for example, particles of about 10.0±0.2 μm are used. For reliable connection, it is better for the particle size distribution of the conductive particles to be as uniform as possible, and it is preferable that the particles be classified within the above-mentioned error range.

第4図は、この導電性粒子の例であり、球形ポリマー微
粉4とその上の導電性金属メッキ層5により構成されて
いる。この実施例では球形ポリマー微粉4としてベンゾ
グアナミンからなる微粉を用い、メッキ層として、65
0±150人のニッケルメッキ層を用いている。
FIG. 4 shows an example of this conductive particle, which is composed of a spherical polymer fine powder 4 and a conductive metal plating layer 5 thereon. In this example, benzoguanamine fine powder was used as the spherical polymer fine powder 4, and the plating layer was made of 65
A nickel plating layer of 0±150 people is used.

微粉のその外の例としては、ジビニルベンゼン樹脂があ
り、これを、例えば懸濁重合した後、分級することによ
って得る。
Another example of fine powder is divinylbenzene resin, which is obtained by, for example, suspension polymerization and then classification.

絶縁性樹脂2としては、ポリ−4、メチルペンテン−1
熱可塑性樹脂を用いた。導電性粒子1、絶縁性樹脂2の
他の例は、後で述べる。
As the insulating resin 2, poly-4, methylpentene-1
Thermoplastic resin was used. Other examples of the conductive particles 1 and the insulating resin 2 will be described later.

このような繊維状の異方導電材料を、必要に応じてフィ
ルム化する。例えば、第2図に示すように、平行に並べ
て配置し、これを第3図に示すようにヒートローラーや
ホットプレス等によってフィルム化する。
Such a fibrous anisotropically conductive material is formed into a film if necessary. For example, as shown in FIG. 2, they are arranged in parallel, and as shown in FIG. 3, they are formed into a film using a heat roller, hot press, or the like.

フィルム化の他の方法としては、繊維状の異方導電材料
を用いて織り、織布を作ること、或いは、必要とする分
解能等目的に応じて、導電性粒子を含まない繊維とで、
所定のメツシュに織り込むことによっても良い。
Other methods of making a film include weaving or making a woven fabric using a fibrous anisotropic conductive material, or using fibers that do not contain conductive particles, depending on the purpose such as the required resolution.
It may also be woven into a predetermined mesh.

この発明の繊維状の異方導電材料は、シート或いはフィ
ルム状にすることで、いままでの異方導電材料と同様の
個所に使うことができる外、繊維状のままでも使用でき
る。例えば、電気的な接続を必要とする個所が円形であ
るような個所に対し、この繊維状の異方導電材料を一層
になるように巻きつけておき、後で加熱圧着すれば良い
The fibrous anisotropically conductive material of the present invention can be formed into a sheet or film and used in the same places as conventional anisotropically conductive materials, and can also be used in its fibrous form. For example, the fibrous anisotropically conductive material may be wrapped in a single layer around a circular area that requires electrical connection, and then heat-pressed.

第5図は、この繊維状の異方導電材料を製造する装置を
示している。図において14は内部にもう1つの容器1
5を有する容器であり、これら容器14.15の先端部
は、後でその詳細を説明する同心円状の2重の紡糸口金
を備えている。容器14の外壁に沿ってヒーター10が
設けられ、さらに、容器15内には、攪拌機9が設けら
れている。
FIG. 5 shows an apparatus for manufacturing this fibrous anisotropic conductive material. In the figure, 14 is another container 1 inside.
5, and the tips of these containers 14, 15 are equipped with concentric double spinnerets, the details of which will be explained later. A heater 10 is provided along the outer wall of the container 14, and a stirrer 9 is further provided inside the container 15.

容器15内には、絶縁性樹脂と導電性粒子の分散熔融液
よりなる紡糸原液Aが入れられており、また、外側の容
器14内には、絶縁性樹脂の熔融液よりなる紡糸原液B
が入れられている。
The container 15 contains a spinning dope A consisting of a dispersed melt of an insulating resin and conductive particles, and the outer container 14 contains a spinning dope B consisting of a melt of an insulating resin.
is included.

このような紡糸装置において、容器14の上部より高圧
のN2ガスをふき込み、前記2重の紡糸口金13より、
中心部に導電性粒子を有する絶縁性樹脂を押し出す。こ
れを所定条件の紡糸筒11を介した後、巻取りドラム1
2で巻取る。
In such a spinning apparatus, high-pressure N2 gas is blown into the upper part of the container 14, and from the double spinneret 13,
Extrude an insulating resin with conductive particles in the center. After passing this through a spinning tube 11 under predetermined conditions, the winding drum 1
Wind it up at 2.

この場合、紡糸口金13のうち、内側の口金の径を、調
整し、例えばこの径を導電性粒子の径の2倍以内とすれ
ば、導電性粒子が繊維の径方向で多数個型なるという凝
集を防くことができろ。
In this case, if the diameter of the inner spinneret of the spinneret 13 is adjusted to, for example, be within twice the diameter of the conductive particles, the conductive particles will form in large numbers in the radial direction of the fibers. Be able to prevent agglomeration.

また、紡糸原液への導電性粒子の混入舟、音拌速度等導
電性粒子の分散条件及び紡糸筒の条件や、紡糸ドラフト
(紡糸速度/吐出線速度)等の紡糸条件を調整すること
により、繊維の長さ方向で、連続するという凝集を防ぐ
ことかできる。また、繊維の単位長当たりの導電性粒子
数をも制御できる。
In addition, by adjusting the mixing of conductive particles into the spinning stock solution, the dispersion conditions of conductive particles such as the sonic agitation speed, the conditions of the spinning tube, and the spinning conditions such as the spinning draft (spinning speed/discharge linear speed), It is possible to prevent agglomeration of continuous fibers in the length direction. It is also possible to control the number of conductive particles per unit length of fiber.

これらの点を調整することにより、導電性粒子を、繊維
状の絶縁樹脂中に、単層で、かつ単分散させることがで
き、かつ単位長当たりの導電性粒子数が一定の異方導電
材料が得られることになる。
By adjusting these points, conductive particles can be monodispersed in a single layer in a fibrous insulating resin, and the anisotropic conductive material has a constant number of conductive particles per unit length. will be obtained.

この発明では、以上の実施例で説明した導電性粒子、絶
縁性樹脂に限定されることなく、各種のものが利用でき
る。
In the present invention, various materials can be used without being limited to the conductive particles and insulating resin described in the above embodiments.

例えば導電性粒子としては、金属粉末、合金粉末等の外
、導電性ポリマー等導電性を有するもので、その径が一
定範囲内であれば良い。また、中心に球形ポリマーの微
粉を用いたものの場合のメッキ層としてもNiに限られ
ることはなく、球形ポリマー微粉との接着性が良好なも
のであれば、金、白金、パラジウム、銀、銅、鉄、アル
ミニウム、クロム等いずれのものでも良い。また、この
際、相互接着する部材により、選択される金属層が選ば
れることはいうまでもない。
For example, the conductive particles may be metal powders, alloy powders, etc., or conductive polymers or other conductive particles as long as their diameters are within a certain range. In addition, the plating layer in the case of using fine spherical polymer powder in the center is not limited to Ni, but can be gold, platinum, palladium, silver, copper, etc. as long as it has good adhesion to the fine spherical polymer powder. , iron, aluminum, chromium, etc. Further, at this time, it goes without saying that the metal layers selected are selected depending on the members to be mutually bonded.

絶縁性樹脂は、熱可塑性樹脂に限定されることな(、熱
硬化性樹脂や光硬化性樹脂等の高分子樹脂の外、ガラス
等の無機物等、絶縁性でかつ可紡性のあるものであれば
良い。
Insulating resins are not limited to thermoplastic resins (in addition to polymeric resins such as thermosetting resins and photocurable resins, inorganic materials such as glass, etc.) are insulating and spinnable. It's good to have.

また、第5図では、溶融紡糸法に準じた方法を示したが
、これに限定されることはなり、溶液紡糸法、直接紡糸
法、複合紡糸法、遠心ボット紡糸法、緊張紡糸法、混合
紡糸法等の各種紡糸法の中から、用いる可紡性絶縁材料
に応じて適宜選択することもできる。
In addition, although Fig. 5 shows a method similar to the melt spinning method, the method is not limited to this, and includes solution spinning method, direct spinning method, composite spinning method, centrifugal bot spinning method, tension spinning method, mixed spinning method, etc. Depending on the spinnable insulating material used, the method can be appropriately selected from various spinning methods such as spinning.

さらに、高圧N2ガスによる押出しを行ったが、これに
かえて、スクリュー押出し機や歯車ポンプ等による押出
し等の適宜の変更が可能である。
Further, although extrusion was performed using high-pressure N2 gas, appropriate modifications such as extrusion using a screw extruder, gear pump, etc. may be used instead.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明では、異方導電tオ料とし
て、内部に、導電性粒子を単層にかつ単分散した繊維状
としているため、導電性粒子が均一に、かつ単層に単分
散した異方導電tオ料装のフィルムが容易に得られる。
As described above, in this invention, since the anisotropically conductive material contains conductive particles in a single layer and monodispersed fibrous form, the conductive particles are uniformly distributed in a single layer. A film containing a dispersed anisotropically conductive material can be easily obtained.

また、繊維状としたので、平坦面に対するばかりでなく
、3次元的な円形面の電気的な接続も、容易、かつ確実
に行うことができる。
Furthermore, since it is in the form of a fiber, electrical connection can be easily and reliably made not only to a flat surface but also to a three-dimensional circular surface.

また、その製造方法として2重の紡糸口金を用い紡糸方
法としたため、内部に導電性粒子が単層かつ、単分散し
た均質の繊維状の異方導電材料を得ることができる。そ
して、原液A中の導電性粒子の混合比や、攪拌速度や、
紡糸条件を種々に調整することにより、単位長当たりの
導電性粒子数を調整することができ、必要に応じて、例
えば、20本/mm以上の高分解能は異方導電性の接続
が可能となる。
Furthermore, since the manufacturing method uses a spinning method using a double spinneret, it is possible to obtain a homogeneous fibrous anisotropic conductive material in which conductive particles are monolayered and monodispersed inside. Then, the mixing ratio of conductive particles in the stock solution A, the stirring speed,
By adjusting the spinning conditions in various ways, the number of conductive particles per unit length can be adjusted, and if necessary, for example, high resolution of 20 particles/mm or more allows anisotropic conductive connections. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図はこの発明による繊維状の異方
導電材料と、その使用方法を説明するための図、第4図
は導電性粒子の例を示す図、第5図は繊維状の異方導電
材料を製造する方法を説明するための図、第6図は従来
の異方導電材料の使用例を説明するための図である。 1−導電性粒子、   2−絶縁性樹脂、3一基板、 
     4−球形ポリマー微粉、5・・・導電性金属
メッキ層、 8−高圧チン素ガス、9−攪拌機、 10−・−ヒーター、   11−  紡糸管、12−
巻取ドラム、  13〜・−紡糸口金、14.15−・
容器、 A −紡糸原液(絶縁性樹脂+導電性粒子)、B−・紡
糸原液(絶縁性樹脂のみ)。 特許出願人  富士ゼロックス株式会社代理人 弁理士
 山 谷 晧 榮 第1図 第2図 第3図 第4図 第5図 第6図
Figures 1, 2, and 3 are diagrams for explaining the fibrous anisotropically conductive material according to the present invention and its method of use, Figure 4 is a diagram showing an example of conductive particles, and Figure 5 6 is a diagram for explaining a method of manufacturing a fibrous anisotropically conductive material, and FIG. 6 is a diagram for explaining an example of use of a conventional anisotropically conductive material. 1- conductive particles, 2- insulating resin, 3- substrate,
4- Spherical polymer fine powder, 5... conductive metal plating layer, 8- high pressure chlorine gas, 9- stirrer, 10-- heater, 11- spinning tube, 12-
Winding drum, 13--Spinneret, 14.15--
Container, A - Spinning stock solution (insulating resin + conductive particles), B - Spinning stock solution (insulating resin only). Patent Applicant Fuji Xerox Co., Ltd. Agent Patent Attorney Akira Yamatani Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)導電性粒子が長さ方向に単層に配置した繊維状の
異方導電材料
(1) Fibrous anisotropic conductive material in which conductive particles are arranged in a single layer in the length direction
(2)導電性粒子を分散せしめた絶縁性樹脂から紡糸し
て繊維状としたことを特徴とする異方導電材料の製造方
法。
(2) A method for producing an anisotropic conductive material, characterized in that it is made into a fiber by spinning an insulating resin in which conductive particles are dispersed.
JP28994286A 1986-12-05 1986-12-05 Anisotropic conducting material and manufacture thereof Pending JPS63143707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28994286A JPS63143707A (en) 1986-12-05 1986-12-05 Anisotropic conducting material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28994286A JPS63143707A (en) 1986-12-05 1986-12-05 Anisotropic conducting material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63143707A true JPS63143707A (en) 1988-06-16

Family

ID=17749734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28994286A Pending JPS63143707A (en) 1986-12-05 1986-12-05 Anisotropic conducting material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63143707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332624A (en) * 2005-04-26 2006-12-07 Asahi Kasei Electronics Co Ltd Connection material
JP2006332037A (en) * 2005-04-26 2006-12-07 Asahi Kasei Electronics Co Ltd Coupled structure of conductive particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332624A (en) * 2005-04-26 2006-12-07 Asahi Kasei Electronics Co Ltd Connection material
JP2006332037A (en) * 2005-04-26 2006-12-07 Asahi Kasei Electronics Co Ltd Coupled structure of conductive particles

Similar Documents

Publication Publication Date Title
EP0730787B1 (en) Electrical interconnects
EP1885953B1 (en) Electroconductive aramid paper
US4207376A (en) Antistatic filaments having an internal layer comprising carbon particles and process for preparation thereof
KR20180098145A (en) Electrically conductive carbon nanotube wire having a metallic coating and methods of forming same
US8846142B2 (en) Conductive particle, anisotropic conductive interconnection material that uses the conductive particle, and method for producing the conductive particle
KR880005632A (en) Conductor particles and conductive adhesive containing these particles
CN1379502A (en) Binding member electric connector and its connecting method
JPS63143707A (en) Anisotropic conducting material and manufacture thereof
US8168039B2 (en) Electroconductive aramid paper and tape made therefrom
US5744756A (en) Blown microfiber insulated cable
JPH0682947B2 (en) Method for producing conductive composite
JPH06333965A (en) Anisotropic conductive adhesive sheet
JPH03129607A (en) Anisotropic conductive film
JPS6258515A (en) Anisotropic conductor
JPH08209584A (en) Electro-conductive aramide paper and its production
US7384688B2 (en) Connecting structure used in a liquid crystal display panel
CN114990732B (en) Antistatic special-shaped polyester fiber with high and low temperature melting temperature and filtering material
JPS6014444B2 (en) Manufacturing method of polytetrafluoroethylene coated ultrafine electric wire
CN115232336B (en) Heating film material and preparation method thereof
JPS58188005A (en) Shielding wire
EP1777066A1 (en) A laminated electrically conductive polymer structure
JP4102384B2 (en) Conductive material with laminated structure
KR960003010B1 (en) The preparation of conductivity sheet
CN2750339Y (en) Conducting resin material with laminated structure
JPS63189208A (en) Manufacture of electrically conductive polyvinyl chloride resin pellet