JPS63189208A - Manufacture of electrically conductive polyvinyl chloride resin pellet - Google Patents

Manufacture of electrically conductive polyvinyl chloride resin pellet

Info

Publication number
JPS63189208A
JPS63189208A JP62022167A JP2216787A JPS63189208A JP S63189208 A JPS63189208 A JP S63189208A JP 62022167 A JP62022167 A JP 62022167A JP 2216787 A JP2216787 A JP 2216787A JP S63189208 A JPS63189208 A JP S63189208A
Authority
JP
Japan
Prior art keywords
polyvinyl chloride
resin
chloride resin
conductive
extruder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62022167A
Other languages
Japanese (ja)
Inventor
Izumi Kosuge
小菅 泉
Kenichi Otani
健一 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62022167A priority Critical patent/JPS63189208A/en
Publication of JPS63189208A publication Critical patent/JPS63189208A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/156Coating two or more articles simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain excellent electromagnetic wave shielding material by a method wherein electrically conductive fibers impregnated in advance under pressure with resin, which is compatible with polyvinyl chloride resin and highly flowable under molten state, and bundled so as to form a composite by covering the outside with extruded polyvinyl chloride and finally cut in lengths. CONSTITUTION:The nipple holder 4 of a second extruder 2 is connected into the crosshead 3 of a first extruder 1, from which polyvinyl chloride is extruded, and is filled with resin, which is compatible with the polyvinyl chloride resin, extruded from the second extruder 2, such as EVA having M.I of 100 or more or the like. Further, stainless steel fibers 8 are introduced from the direction indicated with the arrow and, after deaerated by a vacuum device 5, impregnated with resin by 10 wt % in the nipple holder and bundled. Furthermore, polyvinyl chloride resin is extruded from the first extruder onto the outside of the bundled fibers so as to extrude a composite covered with the polyvinyl chloride resin from a die 6 in order to cut in lengths after cooling.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は導電性ポリ塩化ビニル樹脂ペレットの製造方法
に関するものであり、フィラーを導電性ファイバーとし
、マトリックスにポリ塩化ビニル樹脂を使用して導電性
ポリ塩化ビニル樹脂ペレットを製造せんとするものであ
る。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing conductive polyvinyl chloride resin pellets, in which conductive fibers are used as fillers and polyvinyl chloride resin is used as a matrix to produce conductive polyvinyl chloride resin pellets. The objective is to produce polyvinyl chloride resin pellets.

(従来の技術) 従来マトリックス樹脂例えばポリ塩化ビニルfl14脂
に導電性ファイバーを分散せしめた導電性ポリ塩化ビニ
ル樹脂にて電磁波シールド材料を製造するには次の如き
方法により行っているものである。
(Prior Art) Conventionally, an electromagnetic shielding material is manufactured using a conductive polyvinyl chloride resin in which conductive fibers are dispersed in a matrix resin such as polyvinyl chloride FL14 resin by the following method.

(1)押出機等によってマトリックス樹脂と長さ5sa
+程度にカッティングした導電性ファイバーとを混練し
、該樹脂中に導電性ファイバーを分散せしめた後、所望
の長さに切断してベレットをうる方法。
(1) Matrix resin and length 5sa by extruder etc.
A method of kneading conductive fibers that have been cut to approximately 100 mm, dispersing the conductive fibers in the resin, and then cutting the conductive fibers into desired lengths to obtain pellets.

(2)  導電性ファイバーのストランドに直接マトリ
ックス樹脂を押出機により被覆し、これを所望の長さに
切断してペレットをうる方法。
(2) A method in which a conductive fiber strand is directly coated with a matrix resin using an extruder, and the strand is cut into a desired length to obtain pellets.

(3)導電性ファイバーのストランドをホットメルト樹
脂にディップして被覆した後、これを所望の長さに切断
してペレットをつる方法。
(3) A method in which a strand of conductive fiber is coated by dipping it in hot melt resin, and then cut into a desired length to form pellets.

(4)溶媒に溶解したマ) IJソックス脂に導電性フ
ァイバーをディップして被覆した後、これを所望の長さ
に切断してペレットをうる方法。
(4) A method in which conductive fibers are dipped and coated in IJ sock fat and then cut into desired lengths to obtain pellets.

然しなから上記(1)の方法は押出機等で導電性ファイ
バーと樹脂とを混練する際に、導電性ファイバーをスク
リューによる直接切断や樹脂の剪断による切断によりて
導電性ファイバーを混練する当初より短尺化されると共
にこの両者による混和物を使用して押出成形、射出成形
等で電磁波シールド材料とする場合に、導電性ファイバ
ーは一1短′□ 尺化となる。このように短尺状の導電
性ファイバ(1,01以下)を樹脂中に分散せしめたと
しても導電性ファイバー相互の接触回数が多くなるため
抵抗値が増大し実用的なシールド効果をうろことが出来
ないものであった。従ってシールド効果を向上せしめる
ために樹脂中に混入する導電性ファイバーを多量にしな
ければならずコスト高にならざるをえなかった。又(2
)の方法は導電性ファイバーの切断は防止しうるも成形
時に導電性ファイバーが樹脂中に分散し難いという問題
を生ずる。即ち導電性ファイバーとマトリックス樹脂と
の濡れ性が劣るために導電性ファイバーが樹脂中に均一
に混入しないためである。従って抵抗値が増大しシール
ド効果をうろことが出来ないものである。
However, in the method (1) above, when kneading conductive fibers and resin in an extruder or the like, the conductive fibers are directly cut with a screw or cut by shearing the resin. When the length of the conductive fiber is shortened and when a mixture of the two is used to make an electromagnetic shielding material by extrusion molding, injection molding, etc., the length of the conductive fiber is shortened by 11'. Even if short conductive fibers (1.01 or less) are dispersed in resin in this way, the number of times the conductive fibers come into contact with each other increases, increasing the resistance value and making it impossible to obtain a practical shielding effect. It was something that didn't exist. Therefore, in order to improve the shielding effect, a large amount of conductive fiber must be mixed into the resin, resulting in an increase in cost. Also (2
Although the method (2) can prevent the conductive fibers from being cut, it poses a problem in that the conductive fibers are difficult to disperse in the resin during molding. That is, this is because the conductive fibers are not uniformly mixed into the resin due to poor wettability between the conductive fibers and the matrix resin. Therefore, the resistance value increases and the shielding effect cannot be improved.

又(3)の方法は加工性に劣ると共に経済的でない。Furthermore, method (3) has poor processability and is not economical.

更に(4)の方法は表面形状に劣り且つ溶媒を使用する
ためコスト高になるという欠点があった。
Furthermore, method (4) has the drawbacks of poor surface shape and high cost due to the use of a solvent.

(発明が解決しようとする問題点) 本発明はかかる現状に鑑み鋭意研究を行った結果、導電
性ファイバーの集束(表面処理)とマトリックス樹脂の
被覆とを押出機により同時に行うことKよって成形時に
分散性がよく且つファイバー繊維の長さを長く混入させ
ることにより電磁波シールドの効果に優れた電磁波シー
ルド材料をうることが出来る方法を開発したものである
(Problems to be Solved by the Invention) As a result of extensive research in view of the current situation, the present invention has been developed by performing convergence (surface treatment) of conductive fibers and coating with matrix resin at the same time using an extruder. A method has been developed that can produce an electromagnetic shielding material with excellent electromagnetic shielding effect by incorporating fibers with good dispersibility and long fiber lengths.

(問題点を解決するための手段) 本発明方法は多数本の導電性ファイバー上に、ポリ塩化
ビニル樹脂を被覆して導電性ポリ塩化ビニル樹脂を製造
するにあたシ導電性ファイバー上に予め該ポリ塩化ビニ
ル樹脂と相容性を有し且つ溶融時高流動性を有する樹脂
を加圧含浸して集束せしめた後、該樹脂が流動性を喪失
しない状態にて、その外側にポリ塩化ビニル樹脂を押出
し被覆して複合体した後、該複1合体を所望の長さに切
断しペレット化するものである。
(Means for Solving the Problems) The method of the present invention involves coating a large number of conductive fibers with polyvinyl chloride resin to produce conductive polyvinyl chloride resin. After pressure-impregnating and converging a resin that is compatible with the polyvinyl chloride resin and has high fluidity when melted, polyvinyl chloride is added to the outside of the resin without losing fluidity. After the resin is extruded and coated to form a composite, the composite is cut into desired lengths and pelletized.

而して本発明方法において導電性ファイバーとしては、
例えば4〜50μmφ、のカーゲンブラック、ステンレ
ススチール、銅、鉄、アルミニウム等のファイバーを1
000〜20000本集束してストランドにしたもので
ある。
In the method of the present invention, the conductive fibers include:
For example, fibers such as Kagen black, stainless steel, copper, iron, aluminum, etc. with a diameter of 4 to 50 μm are
000 to 20,000 fibers are bundled into a strand.

この導電性ファイバ上にタンデム押出し又はコモンヘッ
ドによってポリ塩化ビニル樹脂と相容性のある樹脂を含
浸せしめるものであるが、このポリ塩化ビニル樹脂と相
容性のある樹脂としては、160〜170℃において溶
融粘度が10000以下のものが望ましく、好ましくは
s o o o cps以下の流動性の高いものがよく
、例えばM、I 100以上のEVA 、 M、I I
 OO以上ノEEA又は−(−(0M2)5C−0+n
(n<3o o )の構造式を有するポリエステル樹脂
を使用するものである。
This conductive fiber is impregnated with a resin compatible with polyvinyl chloride resin by tandem extrusion or common head. It is desirable to have a melt viscosity of 10,000 or less, preferably a material with high fluidity of 10,000 cps or less, such as M, I, EVA of 100 or more, M, I
OO or more no EEA or -(-(0M2)5C-0+n
A polyester resin having the structural formula (n<3o o) is used.

このように導電性ファイバーに予めぼり塩化ビニル樹脂
と相客性のある樹脂を含浸せしめる理由は、導電性ファ
イバーと−り塩化ビニル樹脂との濡れ性を良好にし該フ
ァイバーがポリ塩化ビニル樹脂中に均一に分散すること
が出来るためである。
The reason why the conductive fiber is pre-impregnated with a resin that is compatible with the PVC resin is to improve the wettability between the conductive fiber and the PVC resin. This is because it can be uniformly dispersed.

又ポリ塩化ビニル樹脂としては、ポリ塩化ビニル樹脂単
独の他に、塩化ビニル−EVA共重合体、塩化ビニル−
塩素化ポリエチレン共重合体、塩化ビニル−NBR共重
合体、塩化ビニルエラストマ等をも含むものである。
In addition to polyvinyl chloride resin alone, examples of polyvinyl chloride resin include vinyl chloride-EVA copolymer and vinyl chloride-EVA copolymer.
It also includes chlorinated polyethylene copolymers, vinyl chloride-NBR copolymers, vinyl chloride elastomers, and the like.

(冥施例) 実施例(1)〜(3) 図面に示す如く、第1押出機1と第2押出機2とをタン
デムに配置し、Iり塩化ビニルを押出す第1押出機1の
クロスヘッド3内に第2押出機2のニップルホルダー4
を接続’L、該ニップルホルダー4内には第2押出機2
より押出されたEVA(三井ポリケミカル社製、商品名
二)々フレックス45X)(実施例1 ) 、 EEA
 (目方化学社製商品名しクスポール)(実施例2)、
ポリエステル樹脂(ダイセル化学社製商品名、ゾラクセ
ールA−1)(実施例3)が充満している。又ステンレ
スファイバー(8μmφX5000本)8を矢印方向か
ら導入せしめ真空装置5内にて核ファイバー中の空気を
空気を除去した後、該ニップルホルダー内にて上記の樹
脂を10wt%含浸せしめて集束した後次いでその外側
に第2押出機より上記のポリ塩化ビニル樹脂を押出し被
覆せしめた複合体をダイス6より押出した後これを冷却
し、長さ6mに切断して本発明導電性ポリ塩化ビニルベ
レットをえた。
(Example) Examples (1) to (3) As shown in the drawings, a first extruder 1 and a second extruder 2 are arranged in tandem, and the first extruder 1 extrudes vinyl chloride. A nipple holder 4 of the second extruder 2 is installed in the crosshead 3.
Connect 'L, and the second extruder 2 is inside the nipple holder 4.
Extruded EVA (manufactured by Mitsui Polychemical Co., Ltd., trade name 2) Flex 45X) (Example 1), EEA
(Product name: Shiksupol manufactured by Meka Kagaku Co., Ltd.) (Example 2),
It is filled with polyester resin (product name: Zoraxel A-1, manufactured by Daicel Chemical Co., Ltd.) (Example 3). In addition, stainless steel fibers (8 μm φ x 5000 pieces) 8 were introduced from the direction of the arrow, and the air in the nuclear fibers was removed in the vacuum device 5, and then impregnated with 10 wt% of the above resin in the nipple holder and focused. Next, a composite body whose outside was extruded and coated with the above-mentioned polyvinyl chloride resin from a second extruder was extruded from die 6, cooled, and cut into lengths of 6 m to form conductive polyvinyl chloride pellets of the present invention. I got it.

なお、9は真空計、10は加熱体である比較例(1) 実施例(1)と同様のステンレスファイバーに直接ポリ
塩化ビニル樹脂(理研ビニル社製)を被覆した後冷却し
、長さ6■に切断して比較例導電性7Jソり塩化ビニル
ベレットをえた。
In addition, 9 is a vacuum gauge, and 10 is a heating element. Comparative Example (1) The same stainless steel fiber as in Example (1) was directly coated with polyvinyl chloride resin (manufactured by Riken Vinyl Co., Ltd.) and then cooled. (2) A comparative conductive 7J warped vinyl chloride pellet was obtained by cutting into pieces.

斯くして得た本発明導電性ポリ塩化ビニルベレットと比
較例導電性ポリ塩化ビニルベレットについてその性能を
試験した。即ち上記ベレットについて射出成形を行い6
0X60X3mのシートを作製し、体積抵抗率及び電磁
波シールド効果を測定した。その結果は第1表に示す通
9である。
The thus obtained conductive polyvinyl chloride pellets of the present invention and the comparative conductive polyvinyl chloride pellets were tested for their performance. That is, injection molding is performed on the above pellet 6
A sheet of 0 x 60 x 3 m was produced, and its volume resistivity and electromagnetic shielding effect were measured. The results are shown in Table 1.

第1表 註(1)シールド効果は300 MHz(dB)Kて測
定した上表よシ明らかな如く本発明方法によシ製造した
導電性ポリ塩化ビニルベレットによれば体積抵抗率及び
電磁波シールド効果が優れていることが確認された。
Notes to Table 1 (1) The shielding effect was measured at 300 MHz (dB) K. As is clear from the above table, the volume resistivity and electromagnetic shielding effect of the conductive polyvinyl chloride pellets manufactured by the method of the present invention were measured at 300 MHz (dB)K. was confirmed to be excellent.

(効果) 以上詳述した如く本発明方法によればアスペクト比が1
00以上と大きく、成形時の導電性ファイバーのマ) 
IJツクス拉j脂への分散が良好なため導電性ファイバ
ーの含有蓋が食散でよい。従って軽量にして安価であり
且つシールド効果に侵れているためコネクター、ケーブ
ル等に使用し極めて有用である。
(Effects) As detailed above, according to the method of the present invention, the aspect ratio is 1.
00 or more, and the conductive fiber mass during molding)
Since it is well dispersed in IJTx resin, the lid containing the conductive fibers can be used as a food dispersion. Therefore, it is lightweight, inexpensive, and has a good shielding effect, making it extremely useful for use in connectors, cables, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明方法導電性ポリ塩化ビニル樹脂の製造方法
の1例を示す概略説明図である。
The drawing is a schematic explanatory view showing one example of the method for producing conductive polyvinyl chloride resin according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)多数本の導電性ファイバ上に、ポリ塩化ビニル樹
脂を被覆して導電性ポリ塩化ビニル樹脂を製造するにあ
たり、導電性ファイバー上に予め該ポリ塩化ビニル樹脂
と相容性を有し且つ溶融時高流動性を有する樹脂を加圧
含浸して集束せしめた後、該樹脂が流動性を喪失しない
状態にし、その外側にポリ塩化ビニル樹脂を押出し被覆
して複合体とした後、該複合体を所望の長さに切断する
ことを特徴とする導電性ポリ塩化ビニル樹脂ペレットの
製造方法。
(1) When manufacturing a conductive polyvinyl chloride resin by coating a large number of conductive fibers with polyvinyl chloride resin, the conductive fibers must be coated with a polyvinyl chloride resin that is compatible with the polyvinyl chloride resin in advance and After pressurizing and impregnating a resin that has high fluidity when melted and converging it, the resin is kept in a state where it does not lose its fluidity, and then a polyvinyl chloride resin is extruded and coated on the outside to form a composite. A method for producing conductive polyvinyl chloride resin pellets, which comprises cutting the body into a desired length.
(2)ポリ塩化ビニル樹脂と相容性を有する樹脂とがM
.I.100以上のEVA、MI100以上のEEA、
▲数式、化学式、表等があります▼の構造式(ただしn
<300) を有するポリエステル樹脂の群から選らばれたいずれか
の樹脂であることを特徴とする特許請求の範囲第1項記
載の導電性ポリ塩化ビニル樹脂ペレットの製造方法。
(2) A resin compatible with polyvinyl chloride resin is M
.. I. EVA of 100 or more, EEA of MI100 or more,
▲There are mathematical formulas, chemical formulas, tables, etc. ▼'s structural formula (however, n
<300) The method for producing conductive polyvinyl chloride resin pellets according to claim 1, characterized in that the resin is any resin selected from the group of polyester resins having the following properties.
JP62022167A 1987-02-02 1987-02-02 Manufacture of electrically conductive polyvinyl chloride resin pellet Pending JPS63189208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62022167A JPS63189208A (en) 1987-02-02 1987-02-02 Manufacture of electrically conductive polyvinyl chloride resin pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62022167A JPS63189208A (en) 1987-02-02 1987-02-02 Manufacture of electrically conductive polyvinyl chloride resin pellet

Publications (1)

Publication Number Publication Date
JPS63189208A true JPS63189208A (en) 1988-08-04

Family

ID=12075255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62022167A Pending JPS63189208A (en) 1987-02-02 1987-02-02 Manufacture of electrically conductive polyvinyl chloride resin pellet

Country Status (1)

Country Link
JP (1) JPS63189208A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177629A (en) * 1991-03-08 1993-07-20 Asahi Fiber Glass Co Ltd Preparation of pellet
US7708920B2 (en) * 2001-02-15 2010-05-04 Integral Technologies, Inc. Conductively doped resin moldable capsule and method of manufacture
WO2012048097A3 (en) * 2010-10-06 2012-06-28 Inteva Products Llc. Method and apparatus for providing reinforced composite materials with emi shielding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177629A (en) * 1991-03-08 1993-07-20 Asahi Fiber Glass Co Ltd Preparation of pellet
US7708920B2 (en) * 2001-02-15 2010-05-04 Integral Technologies, Inc. Conductively doped resin moldable capsule and method of manufacture
WO2012048097A3 (en) * 2010-10-06 2012-06-28 Inteva Products Llc. Method and apparatus for providing reinforced composite materials with emi shielding

Similar Documents

Publication Publication Date Title
US4960642A (en) Pellets for making electromagnetic wave shielding material and method for manufacturing the same
DE2634931A1 (en) OBJECTS WITH PTC BEHAVIOR, PROCESS FOR THEIR MANUFACTURING AND MOLDING MATERIALS FOR MANUFACTURING THESE ITEMS
DE69108400T2 (en) COMPOSITE WIRE STRUCTURE.
JPS58150203A (en) Prastic product with conductive fiber
US4530779A (en) Conductive synthetic resin molding material
DE2652683B2 (en) Anisotropic, electrically conductive plate or film-shaped body and method for its production
US3879239A (en) Method of preparing polyvinyl chloride parts for ultrasonic welding
JPS63189208A (en) Manufacture of electrically conductive polyvinyl chloride resin pellet
DE2422914C2 (en) High or extra high voltage electrical cable
DE2009946A1 (en) Method of manufacturing cables
CA1260569A (en) Urethane-resin coated electrical wire having an intermediate layer
EP0267292B1 (en) Method for manufacturing pellets for making electromagnetic wave shielding material
JPS6054967B2 (en) Method of manufacturing conductive plastic
DE2649874A1 (en) Extrudable, moisture curable polymer compsn. for cable insulation - comprises high density olefin! (co)polymer, carbon black and crosslinking agent
JPS5922710A (en) Manufacture of electroconductive molding material
JPS63297459A (en) Electrically conductive polymer blend
DE2118135B2 (en) Conductive polymer mixture
DE2546102A1 (en) CONNECTION FOR INSULATION OF ELECTRICAL CABLES AND PROCESS FOR COVERING A CONDUCTOR WITH SUCH A CONNECTION
JPS61287962A (en) Electrically conductive composite resin composition
JPH0260200A (en) Manufacture of electromagnetic wave shielding heat shrinkable resin
JPS63262210A (en) Manufacture of conductive polyethylene pellet
JPH0319862B2 (en)
JPH0155521B2 (en)
DE2845674A1 (en) Siloxane crosslinkable thermoplastics conductive polymer mixt. - contains highly structured non-hygroscopic carbon black as conductive filler
DE102017208292A1 (en) Resin composition and insulated electrical wire using same