JPS63143277A - Method and device for generating sodium hypochlorite - Google Patents

Method and device for generating sodium hypochlorite

Info

Publication number
JPS63143277A
JPS63143277A JP61290388A JP29038886A JPS63143277A JP S63143277 A JPS63143277 A JP S63143277A JP 61290388 A JP61290388 A JP 61290388A JP 29038886 A JP29038886 A JP 29038886A JP S63143277 A JPS63143277 A JP S63143277A
Authority
JP
Japan
Prior art keywords
anode
sodium hypochlorite
weight
current density
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61290388A
Other languages
Japanese (ja)
Inventor
Osamu Sasabe
笹部 修
Katsuyuki Murakami
村上 勝幸
Ryuichi Tago
田子 隆一
Masayoshi Ueda
植田 政良
Minato Nagai
永井 美名人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP61290388A priority Critical patent/JPS63143277A/en
Publication of JPS63143277A publication Critical patent/JPS63143277A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To produce a soln. of sodium hypochlorite in the concn. conforming to the Food Sanitation Law by using an anode coated with a mixture consisting of Pt, PdO, RuO2, and TiO2 in a specified ratio, and electrolyzing an aq. NaCl soln. under specified conditions. CONSTITUTION:The device is formed with a cooling unit 6 consisting of the cooling coil 4 provided around a vessel 1 and a cooling condenser 5, a cathode 3 connected to the timer 7 and rectifier 8 fixed to the vessel 1, and an anode 2. The anode 2 is formed by coating a ternary mixture consisting of 3-42wt% Pt, 3-34wt% PdO, and 42-92wt% RuO2 and a mixture contg. 20-40wt% TiO2, based on the ternary mixture, on Ti or a Ti alloy. In such a structure, >=10wt% aq. NaCl soln. is kept at 10-22 deg.C, and electrolysis is carried out at 10-500A/dm<2> cathode current density and 10-20A/dm<2> anode current density and in 1/1.4-1/40 ratio of the cathode current density to the anode current density. By this method, a soln. contg. >=4% sodium hypochlorite is produced.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は次亜塩素酸ソーダ発生方法及び発生装[;関
し、叉〜こ詳しくは食塩水を電解して、電解液中1こ直
接4%以上の高濃度の次亜塩素酸ソーダを容易lこ製造
することのできる方法及びそのための小型の次亜塩素酸
ソーダ発生装置t:関する。
Detailed Description of the Invention (Industrial Field of Application) This invention relates to a method and apparatus for generating sodium hypochlorite. A method for easily producing sodium hypochlorite with a high concentration of 1% or more, and a small-sized sodium hypochlorite generator for the same.

(従来の技術) 従来、食料品店、食堂、魚肉店、入−パー入りアの食品
部門などにおける洗浄滅菌、廃液の酸化処理、上下水道
の消毒などに塩素処理が広く行なわれ、この塩素源とし
て次亜塩素酸ソーダが使われてきた。これらの処理には
通常、市販の12%濃度の次亜塩素酸ソーダが使用され
ているが、貯蔵中に濃度が低下したり、広い貯蔵場所を
必要とし、取1)扱い、経済性などl二問題があった。
(Prior art) Chlorine treatment has been widely used in grocery stores, cafeterias, fish and meat stores, food departments of retail stores, etc. for cleaning sterilization, oxidation treatment of waste liquids, and disinfection of water and sewage systems. Sodium hypochlorite has been used as a Commercially available sodium hypochlorite with a concentration of 12% is usually used for these treatments, but the concentration decreases during storage, requires a large storage space, and has problems such as 1) handling, economical efficiency, etc. There were two problems.

これらの問題点を解決するため1:本出願人は小型で、
かつ、構造が間車で安価な次亜塩素酸ソーダ発生装置を
提案した(W願昭6O−161255)。この装置は3
%程度の希薄塩水を電解して有効塩素濃度として13.
O’OOppm(1,3%)を含有する次亜塩素酸ソー
ダ溶液を高電流効率で発生することのできる装置である
が、電流効率を無視して電解しても最高20,000p
pm(2%)程度の次亜塩素酸ソーダ溶液しか得られず
、食品衛生法で食添として認められる4%以上の次亜塩
素酸ソーダ溶液を得るまで1ごは至らなかっすこ。
In order to solve these problems 1: The present applicant is small,
In addition, he proposed a sodium hypochlorite generator that had a compact structure and was inexpensive (W Application 6O-161255). This device has 3
% of dilute salt water is electrolyzed to obtain an effective chlorine concentration of 13.
This is a device that can generate a sodium hypochlorite solution containing O'OOppm (1.3%) with high current efficiency, but even if the current efficiency is ignored and electrolysis is performed, the maximum yield is 20,000p.
Only a sodium hypochlorite solution of about pm (2%) can be obtained, and it is almost impossible to obtain a sodium hypochlorite solution of 4% or more, which is approved as a food additive under the Food Sanitation Act.

(発明が解決しようとする問題点) 本発明は前記装置を改良して、食品衛生法に適合する濃
度の次亜塩素酸ソーダ溶液を得ることができる小型の装
置を提供することを目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to improve the above-mentioned apparatus and provide a small-sized apparatus capable of obtaining a sodium hypochlorite solution having a concentration that complies with the Food Sanitation Law. .

更に本発明は、4%以上の高濃度の次亜塩素酸ソーダ溶
液を発生する方法を提供することを目的とする。
A further object of the present invention is to provide a method for generating a sodium hypochlorite solution with a high concentration of 4% or more.

(問題点を解決するための手段) 本発明者らは上記問題点を解決するため1−二種々検討
した結果、上記目的を達成することのできる次亜塩素酸
ソーダ発生方法及びそれに使用する発生装置を完成する
に至った。
(Means for Solving the Problems) The present inventors have conducted various studies to solve the above problems, and have found a method for generating sodium hypochlorite that can achieve the above objects, and a generation method used therein. The device has now been completed.

すなわち本発明の装置は、容器と、この容器の周囲ある
いは内部に設けられすこ冷却コイルおよび冷却用コンデ
ンサーよりなる冷却ユニットと、前記容器に固定されタ
イマーおよび整流器よI)結線された陰極および陽極と
からなり、前記陰極と陽極との有効面積比が1:1.4
〜1;40であり、前記陽極がチタンまたはチタン合金
上lこ、白金3〜42重量%、酸化パラジウム3〜34
重量%、二酸化ルテニウム42〜94重量%の組成を有
する白金−酸化パラジウム−二酸化ルテニウムの白金族
金属三元混合物と、前記混合物に対して20〜400〜
40重量化チタニウムとからなる混合物の被覆を施した
ものである次亜塩素酸ソーダ発生装置である。更に本発
明は、前記特殊の被覆を有する陽極を使用して、塩化ナ
トリウム濃度10重i%以上の水溶液を10〜22℃に
保ち、陰極電流密度と陽極電流密度をそれぞれ10〜5
00A/dIo”及び10−20 A/c1m”とし、
かつ陽極電流密度と陰極電流密度との比を1:1.4〜
1:40にして電解する方法である。
That is, the device of the present invention comprises a container, a cooling unit provided around or inside the container and comprising a cooling coil and a cooling condenser, and a cathode and an anode fixed to the container and connected to a timer and a rectifier. and the effective area ratio of the cathode and anode is 1:1.4.
~1;40, and the anode is made of titanium or titanium alloy, 3 to 42% by weight of platinum, and 3 to 34% by weight of palladium oxide.
% by weight, a ternary mixture of platinum group metals of platinum-palladium oxide-ruthenium dioxide having a composition of 42-94% by weight of ruthenium dioxide;
This is a sodium hypochlorite generator coated with a mixture consisting of 40% titanium. Furthermore, the present invention uses an anode having the above-mentioned special coating, maintains an aqueous solution with a sodium chloride concentration of 10% by weight or more at 10 to 22°C, and maintains a cathode current density and an anode current density of 10 to 5%, respectively.
00A/dIo" and 10-20 A/c1m",
And the ratio of anode current density to cathode current density is 1:1.4 ~
This is a method of electrolysis at a ratio of 1:40.

次1こ図面によって本発明を説明する。第1図は本発明
の装置の具本例を示す概略図である。食塩水10が満た
された容器1の近傍の適当な位置に電源箱9が設けられ
、交流を直流に変換する整流器3と電解時間を設定する
タイマー7が収容されている。容器1の上部には整流器
8より結線された陰極3と陽極2とが対向して吊り下げ
固定されている。電極の取I)付けは、図面のような吊
1)下げ固定方式でなく、容器1の側面あるいは底面か
ら挿入して取り1寸けた構造でし本発明の目的を達成す
ることができる。この容器1の周囲には冷却コイル4が
巻き付けられており、冷却用コンデンサー5から送られ
る冷媒により、食塩水10が冷却されるようになってい
る。この場合、冷却コイル4が次亜塩素酸ソーダに耐え
る材質のものならば、食塩水10中に直接入れて冷却す
ることもできる。これらの容器1と、冷却コイル4及び
冷却用コンデンサー5からなる冷却ユニット6と、電源
箱9とが、外箱13に収容され次亜塩素酸ソーダ発生装
置を構成する。なお11は次亜塩素酸ソーダ取出口であ
υ、容器1の底部に接続されている。この装置1こはタ
イマー7に接続された電源フード12が備えである。
The present invention will be explained with reference to the following drawings. FIG. 1 is a schematic diagram showing a specific example of the apparatus of the present invention. A power supply box 9 is provided at an appropriate position near the container 1 filled with saline solution 10, and houses a rectifier 3 for converting alternating current into direct current and a timer 7 for setting the electrolysis time. A cathode 3 and an anode 2 connected by a rectifier 8 are suspended and fixed to the upper part of the container 1 so as to face each other. The purpose of the present invention can be achieved by attaching the electrodes by inserting them from the side or bottom of the container 1 so that they are removed one inch apart, rather than by hanging and fixing them as shown in the drawings. A cooling coil 4 is wound around the container 1, and the saline solution 10 is cooled by a refrigerant sent from a cooling condenser 5. In this case, if the cooling coil 4 is made of a material that is resistant to sodium hypochlorite, it can be placed directly into the saline solution 10 for cooling. These containers 1, a cooling unit 6 consisting of a cooling coil 4 and a cooling condenser 5, and a power supply box 9 are housed in an outer box 13 to constitute a sodium hypochlorite generator. Note that 11 is a sodium hypochlorite outlet υ, which is connected to the bottom of the container 1. This device 1 is equipped with a power supply hood 12 connected to a timer 7.

電極として、陽極2には本出願人か提案しtこFチタン
またチタン合金上に、白金3〜42重量%、酸化パラジ
ウム3〜34重量%、二酸化ルテニウム42〜94重量
%の組成を有する白金−酸化パラジウム−二酸化ルテニ
ウムの白金族金属三元混合物と、前記混合物に対して2
0〜40重量%の二酸化チタニウムとからなる混合物の
被覆を施した電極」(特公昭55−35473号)が使
われ、陰極3には主にチタン、ハステロイあるいはステ
ンレススチール製の板、エキスバンド板するいは丸棒な
どが利用される。
As an electrode, the anode 2 is made of platinum having a composition of 3 to 42% by weight of platinum, 3 to 34% by weight of palladium oxide, and 42 to 94% by weight of ruthenium dioxide on titanium or a titanium alloy. - a platinum group metal ternary mixture of palladium oxide and ruthenium dioxide;
An electrode coated with a mixture consisting of 0 to 40% by weight of titanium dioxide (Japanese Patent Publication No. 35473/1983) is used, and the cathode 3 is mainly made of titanium, Hastelloy or stainless steel plates, or expanded plates. A round bar is used.

本発明で使用する陽極2の被覆は次のようにして調整さ
れる。チタン表面を脱脂後、7ツ酸あるいはシュウ酸処
理し、その上に塗布液を塗布または浸漬により付着せし
める。塗布液は白金−酸化パラジウム−二酸化ルテニウ
ムの比率が本発明の範囲に入るように四塩化白金、二酸
化パラジウム、三塩化ルテニウムを採り少量の塩酸を加
えて、更にノルマルブチルアルコールを加えて完全に溶
解させる。これに、所定量のプチルチタネ−1を加えて
調整する。乾燥後、空気中450〜600℃の加熱温度
で10〜30分加熱する。塗布、加熱を複数回t&9返
し、所望の厚みの被覆を得る。
The coating of the anode 2 used in the present invention is adjusted as follows. After the titanium surface has been degreased, it is treated with hexachloric acid or oxalic acid, and a coating liquid is applied thereon by coating or dipping. For the coating solution, platinum tetrachloride, palladium dioxide, and ruthenium trichloride were selected so that the platinum-palladium oxide-ruthenium dioxide ratio was within the range of the present invention, and a small amount of hydrochloric acid was added, followed by n-butyl alcohol to completely dissolve them. let A predetermined amount of Petyl Titanium 1 is added to this for adjustment. After drying, heat in air at a heating temperature of 450 to 600°C for 10 to 30 minutes. Coating and heating are repeated several times t&9 to obtain a coating of desired thickness.

陽極2及び陰極3の極間距離は1〜7Iで、必要に応じ
電極を保護するため電極の回りに保護管が取り付けられ
、る。本発明の装置に使用する陰極3と陽極2との有効
面積比は1:1.4〜1:40として、陰極の電流密度
を陽極のそれの1.4〜40倍とする。この有効面積比
より陰極の面積を太き(すると、すなわち陰極電流密度
を陽極のそれの1.4倍より小さくすると、電解1こよ
り生成した次亜塩素酸ソーダの無効分解が生じ、高濃度
の次亜塩素酸ソーダ液を得ることができない5また、こ
の面積比より陰極の面積を小さくすると、すなわち陰極
電流密度を陽極のそれの40倍より大きくすると、断面
積当たりの電流値が高くなりすぎるので電気を通電する
ことが困難であり、通電時の発熱が大きくなり、高濃度
の次亜塩素酸ソーダ液を得ることかで外なくなる。なお
本発明で電極の有効面積とは、食塩水に浸漬され電解に
供される部分の電極面積の総和を言う。
The distance between the anode 2 and the cathode 3 is 1 to 7I, and a protective tube is attached around the electrode to protect the electrode, if necessary. The effective area ratio of the cathode 3 and anode 2 used in the device of the present invention is set to 1:1.4 to 1:40, and the current density of the cathode is set to be 1.4 to 40 times that of the anode. If the area of the cathode is made larger than this effective area ratio (that is, if the cathode current density is made smaller than 1.4 times that of the anode), ineffective decomposition of sodium hypochlorite produced in one electrolysis occurs, resulting in a high concentration of sodium hypochlorite. Unable to obtain sodium hypochlorite solution 5 Also, if the area of the cathode is made smaller than this area ratio, that is, if the cathode current density is made larger than 40 times that of the anode, the current value per cross-sectional area becomes too high. Therefore, it is difficult to apply electricity, and the heat generated when electricity is applied increases, making it impossible to obtain a highly concentrated sodium hypochlorite solution.In addition, in the present invention, the effective area of the electrode is defined as the Refers to the total area of the electrode that is immersed and subjected to electrolysis.

また本発明では、陽極電流密度と陰極電流密度との比を
1m1.4〜1;40とすると共−二、陰極及び陽極に
通電する電流密度をそれぞれ10〜500A/dm”及
び10−20 A/dm”として運転する。陰極の電流
密度が前記範囲より低いと、電解により生成した次亜塩
素酸ソーダの無効分解が生じ、高濃度の次亜塩素酸ソー
ダ液を得ることができない。また陰極の電流密度が前記
範囲より高いと、電解電圧が10v以上となり、電極の
破壊につながり、危険である。陽極の電流密度が前記範
囲より低いと、電解による次亜塩素酸ソーダの生成能力
に欠け、高濃度の次亜塩素酸ソーダ液を得ることができ
ない。また陽極の電流密度が前記範囲より高いと、陽極
からの発熱が大きくなり、液温が上昇するため、生成し
た次亜塩素酸ソーダが分解し、高濃度の次亜塩素酸ソー
ダが得られなくなるばかりでなく、陽極寿命が短くなる
ので不利である。
Further, in the present invention, when the ratio of the anode current density to the cathode current density is 1 m1.4 to 1:40, the current density flowing through the cathode and the anode is 10 to 500 A/dm'' and 10-20 A, respectively. /dm”. If the current density of the cathode is lower than the above range, the sodium hypochlorite produced by electrolysis will be ineffectively decomposed, making it impossible to obtain a highly concentrated sodium hypochlorite solution. Moreover, if the current density of the cathode is higher than the above range, the electrolytic voltage will be 10 V or more, leading to destruction of the electrode, which is dangerous. If the current density of the anode is lower than the above range, the ability to generate sodium hypochlorite by electrolysis is lacking, and a highly concentrated sodium hypochlorite solution cannot be obtained. Furthermore, if the current density of the anode is higher than the above range, the heat generated from the anode will increase and the liquid temperature will rise, causing the generated sodium hypochlorite to decompose and making it impossible to obtain high-concentration sodium hypochlorite. Not only that, but the life of the anode is shortened, which is disadvantageous.

主にプラスチックで作られる電源箱9の内部には変圧器
と整流素子よりなる整流器8とタイマー7が内蔵され、
整流素子端子より陰極3及び陽極2tこ結線されている
。また、電源箱9の面上に電源用スイッチやランプとと
もにタイマー7の七ッYノブを取り付は操作盤とするこ
ともできる。容器1の容量は次亜塩素酸ソーダの必要量
によりきめられるが、少量使用場所向けとして通常1〜
20Nが選択され、容器1の材質としては、経済的な面
より主に市販のポリ容器が使われ、タイマー7は通常1
日以内にセットできるものが選ばれる。容器容量とタイ
マーによる電解時間が決まれば自ずと最大6%まで到達
すべき電解電流が決定され、この電解電流に合わせた容
量の整流器が設定される。次亜塩素酸ソーダ発生装置の
外箱13は主に冷却用コンデンサー5に合わせた大きさ
に、電源箱9も組み込む場合には更にその容量に合わせ
た大きさに遺られる。このように製作された装置$::
l1度襄整されず2食塩水を入れて電解を開始すれば電
解時間ととも1こ次亜塩素酸ソーダ濃度がほぼ直線的に
上昇し、12時間後に最大6%に到達する。濃度はタイ
マーにより電解時間で自由1こ選測りとった食塩(塩種
としては精製塩、食塩、並塩などが1i用できる)を、
所定量の水で溶解し、容器1内に入れるだけで上い。食
塩濃度を低濃度にすると、24時ri11電解しても4
%以上の次亜塩素酸ソーグが得られないので、本発明で
は、食塩濃度10重量%以上に調整された食塩水が使用
される。
A rectifier 8 consisting of a transformer and a rectifying element and a timer 7 are built into the power supply box 9, which is mainly made of plastic.
A cathode 3 and an anode 2t are connected to the rectifier terminal. Further, the seven Y knobs of the timer 7 can be mounted on the surface of the power supply box 9 along with a power switch and a lamp to serve as an operation panel. The capacity of container 1 is determined by the required amount of sodium hypochlorite, but it is usually 1 to 1 for places where small quantities are used.
20N is selected, the material of the container 1 is mainly a commercially available plastic container from an economical point of view, and the timer 7 is normally 1
Items that can be set within days will be selected. Once the container capacity and the electrolysis time determined by the timer are determined, the electrolysis current that should reach a maximum of 6% is automatically determined, and a rectifier with a capacity that matches this electrolysis current is set. The outer box 13 of the sodium hypochlorite generator is sized mainly to match the cooling condenser 5, and if the power supply box 9 is also incorporated, the outer box 13 is sized further to match its capacity. Device manufactured in this way $::
If the electrolysis is started by adding di-salt water without being thoroughly cleaned, the concentration of sodium hypochlorite increases almost linearly with the electrolysis time, reaching a maximum of 6% after 12 hours. For the concentration, use a timer to freely select and measure one salt according to the electrolysis time (refined salt, common salt, ordinary salt, etc. can be used for 1 hour).
All you have to do is dissolve it in a predetermined amount of water and put it into the container 1. If the salt concentration is made low, even if 24 hour ri11 electrolysis is performed, 4
Since it is not possible to obtain hypochlorous acid sorghum with a concentration of 10% or more, in the present invention, a saline solution whose salt concentration is adjusted to 10% or more by weight is used.

本発明の装置の電源としては、一般家庭用の100v電
源を使用し、整流器を経て3〜IOV、10〜25Aの
電圧、定電流に変換されたものが使用される。上記電圧
及び電流で10%以上の食塩水を電解すると、液温か上
昇し次亜塩素酸ソーダの無効分解が始まるので、本発明
の装置では冷却用コンデンサーを作動させ、液温を】0
〜22℃好ましくは13〜17℃に保ちながら電解する
As a power source for the device of the present invention, a general household 100V power source is used, which is converted to a voltage of 3 to IOV, 10 to 25 A, and a constant current through a rectifier. When a saline solution of 10% or more is electrolyzed with the above voltage and current, the temperature of the solution rises and ineffective decomposition of sodium hypochlorite begins, so in the device of the present invention, the cooling condenser is activated to reduce the temperature of the solution to 0.
Electrolysis is carried out while maintaining the temperature at ~22°C, preferably 13-17°C.

液温をこれより低くした場合、4%以上の次亜塩素酸ソ
ーダ液は得られるが、陽極の寿命が低下する。ますこ液
温を高くしすぎると、次亜塩素酸ソーダの分解が速くな
り、高濃度の次亜塩素酸ソーダ液が得られなくなる。
If the liquid temperature is lower than this, a sodium hypochlorite solution of 4% or more can be obtained, but the life of the anode will be shortened. If the liquid temperature is made too high, the decomposition of sodium hypochlorite will be accelerated, making it impossible to obtain a highly concentrated sodium hypochlorite solution.

(実施例) 次1こ未発月を実施例により更1こ詳細に説明する。(Example) Next, the unreleased month will be explained in more detail using an example.

実施例1 外径寸法が中160m+++、奥行160mm、高さ2
20mmの硬質塩ビ製容器の上部開口部のほぼ中央部分
に電極が鉛直になるように挿入固定した。
Example 1 Outer diameter is medium 160m+++, depth 160mm, height 2
The electrode was inserted and fixed vertically into approximately the center of the upper opening of a 20 mm hard PVC container.

この容器の周囲に冷却コイルを巻き付け、冷却用コンデ
ンサー(電源100■、出力40W、冷媒:フロンR−
12)と接続した。陽極には、白金25重i%、酸化パ
ラジウム20重量%、二酸化ルテニウム55重量%の混
合物に対し、3()重量%の二酸化チタニウムを加えた
混合物の被覆を両側に施した1枚の陽極板(縦i 40
 +nm、 !、50 +nl*。
A cooling coil is wrapped around this container, and a cooling condenser (power supply 100 mm, output 40 W, refrigerant: Freon R-
12) was connected. The anode is a single anode plate coated on both sides with a mixture of 25% by weight of platinum, 20% by weight of palladium oxide, and 55% by weight of ruthenium dioxide, to which 3% by weight of titanium dioxide is added. (vertical i 40
+nm, ! , 50 +nl*.

厚さ2 mll1)を使用し、この陽極をはさむように
して被覆を施こさない2枚のチタン板(縦140I、1
1jsmm、厚さ2 mm)を極vI距115n+mで
取り付は陰極とした。なお陰極と陽極との有効面積比は
約1−3.5であった。約15Aの直流が流せる整流器
とタイマーを硬質塩ビ製の電源箱に収納し、整流器と陽
極及び陰極とを接続し、タイマーからヒユーズを介して
交流100V用電源コードを引き出させた。これらの容
器、冷却用コンデンサー、電源箱等を外箱内に一括収納
し次亜塩素酸ソーダ発生装置とした。
Two uncoated titanium plates (length: 140 mm, 1 mm) are used to sandwich this anode.
1jsmm, thickness 2mm) with a pole vI distance of 115n+m, and the cathode was attached. Note that the effective area ratio between the cathode and the anode was about 1-3.5. A rectifier and a timer capable of passing approximately 15 A of direct current were housed in a hard PVC power supply box, the rectifier was connected to the anode and cathode, and a 100 V AC power cord was drawn out from the timer via a fuse. These containers, cooling condenser, power supply box, etc. were all housed in an outer box to form a sodium hypochlorite generator.

容器内に別に調合溶解した20%食塩水3.51を入れ
、電源フードを交流100V電源に接続し、タイマーを
12時間にセットしてから電源スィッチを入れた。液温
め弓3〜17℃になるように容器の回りを冷却しなから
15Aの直流を通電した。
A separately prepared and dissolved 20% saline solution (3.51 g) was placed in a container, the power hood was connected to an AC 100 V power source, the timer was set for 12 hours, and the power switch was turned on. While cooling the area around the container to a temperature of 3 to 17° C., a direct current of 15 A was applied.

同一の条件で数回実験したところ、12時間後1こは有
効塩素濃度4.08〜4.5%、液温13〜17℃の次
亜塩素酸ソーダ液が得られた。この際の陽極の電流密度
は10 、3 A/di2、陰極の電流密度は38.3
 A/d+n′−で、電流濃度は4.3A/1であった
。また液pHはスタート時8.1、終了時9.3であっ
た。
When experiments were conducted several times under the same conditions, a sodium hypochlorite solution with an effective chlorine concentration of 4.08 to 4.5% and a liquid temperature of 13 to 17°C was obtained in one case after 12 hours. At this time, the current density of the anode is 10.3 A/di2, and the current density of the cathode is 38.3
At A/d+n'-, the current concentration was 4.3 A/1. The pH of the solution was 8.1 at the start and 9.3 at the end.

実施例2 容器1こ入れる食塩水濃度を10%とした以外は、実施
例1と同様に運転したところ、13時f’Jl f&に
は有効塩素濃度4.0%、液温13〜17℃の次亜塩素
酸ソーダfi(p)49.4)が得られた。
Example 2 The operation was carried out in the same manner as in Example 1 except that the saline solution concentration in one container was 10%. At 13:00 f'Jl f&, the effective chlorine concentration was 4.0% and the liquid temperature was 13 to 17°C. Sodium hypochlorite fi(p) 49.4) was obtained.

実施例3 容器に入れる食塩水;農度を30%とした以外は、実施
例1と同様1こして運転したところ、10時間後には4
.1%、20時間後には約5.0%、液温13〜17℃
の次亜塩素酸ソーダ液(p)19.;2)が得られた。
Example 3 Salt solution put in a container: Operation was carried out in the same manner as in Example 1, except that the agricultural degree was 30%, and after 10 hours, 4
.. 1%, approximately 5.0% after 20 hours, liquid temperature 13-17℃
Sodium hypochlorite solution (p)19. ;2) was obtained.

実施例4 陰極としてチタン棒(縦140+nm、直径2In+I
l)を陽極の両側に2本ずっ極l1illl距離3+o
mで取り(寸けた以外は実施例1と同様1こ運転しrこ
ところ、11時間後には濃度4.01%、液温15.5
℃の次亜塩素酸ソーダ液(pH9,2>が得られた。な
お陰極と陽極の有効面積比は1:4.1であり、陰極と
陽極の電流密度は、それぞれ42 、9 A/dm”お
よ乙r10、3 A/c1m2であった。
Example 4 A titanium rod (length 140+nm, diameter 2In+I) was used as a cathode.
l) on both sides of the anode, with two poles l1 illll distance 3 + o
After 11 hours, the concentration was 4.01% and the liquid temperature was 15.5.
A sodium hypochlorite solution (pH 9.2>) was obtained at ℃.The effective area ratio of the cathode and anode was 1:4.1, and the current density of the cathode and anode was 42 and 9 A/dm, respectively. ``It was approximately 10,3 A/c1m2.

実施例5〜13及び比較例1〜2 17.8Aの直流を通電し、また陰極と陽極の面積比を
変えた以外は、実施例1と同様(こ運転し、12時間後
に得られる次亜塩素酸ソーダの濃度を測定した。その結
果を第1表に示す。比較のために陽極の電流密度を本発
明の範囲外にして運転しtこところ、第1表の比較例に
示すごとく高濃度の次亜塩素酸ソーダ液を得ることがで
きなかった。
Examples 5 to 13 and Comparative Examples 1 to 2 Same as Example 1 except that a direct current of 17.8 A was applied and the area ratio of the cathode and anode was changed. The concentration of sodium chlorate was measured.The results are shown in Table 1.For comparison, the current density of the anode was operated outside the range of the present invention. It was not possible to obtain a concentrated sodium hypochlorite solution.

比較例3 冷却ユニットを除いた以外は、構造、寸法、材質及び電
極材質がすべて実施例1と同一の装置を使用した。容器
内に別に悄合溶解した20%食塩水3.51!を入れ、
電源フードを交流10θV電源に接続し、タイマーを1
2時間にセラ)してから電源スィッチを入れ15Aの直
流を通電した。液温はスタート時には16℃であったが
、12時間後には39℃に上昇し、有効塩素濃度2.5
%の次亜塩素酸ソーダしか得られなかった。
Comparative Example 3 An apparatus having the same structure, dimensions, materials, and electrode materials as in Example 1 was used except for the cooling unit. 20% saline solution mixed and dissolved separately in a container 3.51! It was placed,
Connect the power hood to an AC 10θV power source and set the timer to 1.
After waiting for 2 hours, the power switch was turned on to supply 15 A of direct current. The liquid temperature was 16℃ at the start, but after 12 hours it rose to 39℃, and the effective chlorine concentration was 2.5℃.
% of sodium hypochlorite was obtained.

比較例4 実施例1の装置において、陰極として使用する2枚のチ
タン板の寸法を、縦140■、槙20nn+。
Comparative Example 4 In the apparatus of Example 1, the dimensions of the two titanium plates used as cathodes were 140cm long and 20nn+ wide.

厚さ2fflInにして運転した。12時間後に得られ
た次亜塩素酸ソーダの液温は15℃であり、有効塩素濃
度は2.9%であった。なお陰極と陽極の有効面積比は
1:1.2であった。
It was operated with a thickness of 2fflIn. The liquid temperature of the sodium hypochlorite obtained after 12 hours was 15°C, and the effective chlorine concentration was 2.9%. Note that the effective area ratio of the cathode and anode was 1:1.2.

比較例5 陰極として2本のチタン桿(縦15n++n、直径3I
IIm)を使用し、極間距離を3111mと干る以外は
実施例1と同様に運転することを試みたが、ISAの電
流を流すためlこはIIV以上の電圧を要し、チタン電
極の破壊−二つながるおそれがあるため、電解を中断し
た。なお陰極として陽極の有効面積比は1:51.Sで
あった。
Comparative Example 5 Two titanium rods (length 15n++n, diameter 3I) were used as cathodes.
An attempt was made to operate in the same manner as in Example 1 except that the distance between the electrodes was 3111 m, using a titanium electrode. Electrolysis was interrupted because there was a risk of damage. The effective area ratio of the anode to the cathode is 1:51. It was S.

比較例6 実施例1の装置において、使用する陽極を、チタン上に
40重量%の二酸化ルテニウムおよび60重i%の二酸
化チタニウムより成る被覆を施した陽極(縦140mm
5iN50mm、厚さ2n+m’)にした以外は実施例
1と同様に運転した。12時間後に得られた次亜塩素酸
ソーダの液温は19℃であ−9、有効塩素濃度は2.5
%であった。
Comparative Example 6 In the apparatus of Example 1, the anode used was an anode (length: 140 mm) in which titanium was coated with 40% by weight of ruthenium dioxide and 60% by weight of titanium dioxide.
The operation was carried out in the same manner as in Example 1 except that the thickness was 5iN50mm and the thickness was 2n+m'). The temperature of the sodium hypochlorite solution obtained after 12 hours was 19°C, -9, and the effective chlorine concentration was 2.5.
%Met.

(発明の効果) 本発明の次亜塩素酸ソーダ発生方法及び発生装置は、1
0%以上の食塩水を調合して仕込めば、あとはタイマー
をセラFして電源スィッチを入れるだけで4%以上の高
濃度の次亜塩素酸ソーダ液を生成する。本装置より得ら
れる次亜塩素酸ソーダの濃度は4%以上なので食品衛生
法に適合し食品温加物として使用することができる。生
成した次亜塩素酸ソーダは、市販の次亜塩素酸ソーダと
同等もしくはそれ以上の効果を発揮し、その安定度も良
好である。本発明の装置は構造が極めて簡単で、かつ構
r!i、部品が単純なもので組みあわされる。すなわち
、駆動部分がなく、また自動フントロールするよ)な複
雑な制御部品も必要としないすこめ故障が無い。更1こ
装置の構造が簡単なうえ電源箱などを含めて、すべて一
本化できるため非常にコンパクトで、簡単に持ち運びで
き、どこにで魁置くことができる。
(Effect of the invention) The sodium hypochlorite generation method and generation device of the present invention are as follows:
Once you have mixed and prepared saline solution with a concentration of 0% or more, all you have to do is set the timer to SeraF and turn on the power switch to generate a highly concentrated sodium hypochlorite solution of 4% or more. Since the concentration of sodium hypochlorite obtained from this device is 4% or more, it complies with the Food Sanitation Act and can be used as a food warming product. The produced sodium hypochlorite exhibits an effect equal to or greater than that of commercially available sodium hypochlorite, and its stability is also good. The device of the present invention has an extremely simple structure and is simple! i. The parts are simple and assembled. In other words, there are no moving parts, no need for complicated control parts (such as automatic foot control), and no sudden failures. Furthermore, the structure of the device is simple, and everything including the power supply box can be integrated into one, making it extremely compact, easy to carry, and can be placed anywhere.

本発明の装置は、前述しrこように単純な構成品で市販
の既製品を利用し、しかも接続配管がないので製作が容
易で、きわめて安随に製造できる。
The device of the present invention has simple components as mentioned above, and uses commercially available ready-made products, and since there are no connecting pipes, it is easy to manufacture and can be manufactured very easily.

従来経済性と性能の両面を満足して超小型化することは
極めて困難とされたが、本装置は回分式で一木化構造;
こより超小型化しても高電流効率で安いランニングフ久
Yの1主で高濃度の次亜塩素酸ソーダ液が得られる。
Conventionally, it was considered extremely difficult to achieve ultra-miniaturization that satisfies both economic efficiency and performance, but this device is a batch type and has a single-wood structure;
As a result, a high-concentration sodium hypochlorite solution can be obtained with high current efficiency and low running costs even when miniaturized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置の具体例を示す概略図である。 1・・容器  2・・陽極  3・・陰極4・・冷却コ
イル 5・・冷却用コンデンサー6・・冷却二二ツ) 
 7・・タイマー8・・整流器  9・・電源箱
FIG. 1 is a schematic diagram showing a specific example of the apparatus of the present invention. 1. Container 2. Anode 3. Cathode 4. Cooling coil 5. Cooling condenser 6. Cooling 22)
7. Timer 8. Rectifier 9. Power supply box

Claims (2)

【特許請求の範囲】[Claims] (1)チタンまたはチタン合金上に、白金3〜42重量
%、酸化パラジウム3〜34重量%、二酸化ルテニウム
42〜94重量%の組成を有する白金−酸化パラジウム
−二酸化ルテニウムの白金族金属三元混合物と、前記混
合物に対して20〜40重量%の二酸化チタニウムとか
らなる混合物の被覆を施した陽極を使用して、塩化ナト
リウム濃度10重量%以上の水溶液を10〜22℃に保
ち、陰極電流密度と陽極電流密度をそれぞれ10〜50
0A/dm^2及び10〜20A/dm^2とし、かつ
陽極電流密度と陰極電流密度との比を1:1.4〜1:
40にして電解することを特徴とする次亜塩素酸ソーダ
発生方法。
(1) A platinum group metal ternary mixture of platinum-palladium oxide-ruthenium dioxide having a composition of 3-42% by weight of platinum, 3-34% by weight of palladium oxide, and 42-94% by weight of ruthenium dioxide on titanium or a titanium alloy. An aqueous solution with a sodium chloride concentration of 10% by weight or more is maintained at 10 to 22°C using an anode coated with a mixture of titanium dioxide and 20 to 40% by weight of the mixture, and the cathode current density is and anode current density from 10 to 50, respectively.
0A/dm^2 and 10-20A/dm^2, and the ratio of anode current density to cathode current density is 1:1.4-1:
A method for generating sodium hypochlorite, characterized by electrolyzing the sodium hypochlorite at a concentration of 40%.
(2)容器1と、前記容器1の周囲あるいは内部に設け
られた冷却コイル4および冷却用コンデンサー5よりな
る冷却ユニット6と、前記容器1に固定されタイマー7
および整流器8より結線された陰極3および陽極2とか
らなり、陰極3と陽極2との有効面積比が1:1.4〜
1:40であり、前記陽極2がチタンまたはチタン合金
上に、白金3〜42重量%、酸化パラジウム3〜34重
量%、二酸化ルテニウム42〜94重量%の組成を有す
る白金−酸化パラジウム−二酸化ルテニウムの白金族金
属三元混合物と、前記混合物に対して20〜40重量%
の二酸化チタニウムとからなる混合物の被覆を施したも
のであることを特徴とする次亜塩素酸ソーダ発生装置。
(2) a container 1, a cooling unit 6 consisting of a cooling coil 4 and a cooling condenser 5 provided around or inside the container 1, and a timer 7 fixed to the container 1;
and a cathode 3 and an anode 2 connected by a rectifier 8, and the effective area ratio of the cathode 3 and anode 2 is 1:1.4 to
1:40, and the anode 2 is made of platinum-palladium oxide-ruthenium dioxide having a composition of 3 to 42% by weight of platinum, 3 to 34% by weight of palladium oxide, and 42 to 94% by weight of ruthenium dioxide on titanium or a titanium alloy. a ternary mixture of platinum group metals, and 20 to 40% by weight of said mixture.
A sodium hypochlorite generator characterized by being coated with a mixture of titanium dioxide and titanium dioxide.
JP61290388A 1986-12-08 1986-12-08 Method and device for generating sodium hypochlorite Pending JPS63143277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61290388A JPS63143277A (en) 1986-12-08 1986-12-08 Method and device for generating sodium hypochlorite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61290388A JPS63143277A (en) 1986-12-08 1986-12-08 Method and device for generating sodium hypochlorite

Publications (1)

Publication Number Publication Date
JPS63143277A true JPS63143277A (en) 1988-06-15

Family

ID=17755367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61290388A Pending JPS63143277A (en) 1986-12-08 1986-12-08 Method and device for generating sodium hypochlorite

Country Status (1)

Country Link
JP (1) JPS63143277A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150383A (en) * 1989-11-08 1991-06-26 Japan Carlit Co Ltd:The Filter press type bipolar electrolyzer
JP2002224470A (en) * 2001-01-30 2002-08-13 Kaijirushi Hamono Kaihatsu Center:Kk Protective cap for head of safety razor
KR20230034777A (en) * 2021-09-03 2023-03-10 청정테크주식회사 Chlorine electrolysis combined with direct cooling and indirect cooling

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150383A (en) * 1989-11-08 1991-06-26 Japan Carlit Co Ltd:The Filter press type bipolar electrolyzer
JP2002224470A (en) * 2001-01-30 2002-08-13 Kaijirushi Hamono Kaihatsu Center:Kk Protective cap for head of safety razor
KR20230034777A (en) * 2021-09-03 2023-03-10 청정테크주식회사 Chlorine electrolysis combined with direct cooling and indirect cooling

Similar Documents

Publication Publication Date Title
KR101292059B1 (en) Membrane-electrode assembly, electrolytic cell employing the same, electrolytic-water sprayer, and method sterilization
KR101081447B1 (en) Membrane-electrode assembly, electrolytic unit using the same, electrolytic water ejecting apparatus, and method of sterilization
JP4365413B2 (en) Neutral electrolyzed water, neutral electrolyzed water production method, and neutral electrolyzed water production apparatus
US20030146105A1 (en) Electrolytic cell for ozone generation
CN101208270B (en) Apparatus for manufacturing sterilized water, and portable aparatus for manufacturing sterilize salt solution
JP2008539063A (en) Sterilized water production device, sterilized water spray device, and salt capsules used therefor
JP5098050B2 (en) Membrane-electrode assembly, electrolysis unit using the same, electrolyzed water ejection device, and sterilization method
JPH07501487A (en) Electrolytic cell assembly and method for producing bromine
CN110055548A (en) Electrolysis ozone electrode and preparation method thereof and electrolysis ozone water die set
CN111334815A (en) Preparation method of hypochlorous acid disinfectant and device for realizing method
JP2011157580A (en) Electrolytic synthesis method of ozone fine bubble
JP2010007131A (en) Titanium dioxide manufacturing method by ultrasonic wave irradiation anodization method
JPS6223992A (en) Electrolytic sodium hypochlorite producing device
KR100745633B1 (en) Humidifier including elctrolytic sterilizer
JPS63143277A (en) Method and device for generating sodium hypochlorite
CN110408949A (en) Anode and its preparation method and application, ozone generation system and water toothpick
JP2003033425A (en) Method for disinfecting metallic instrument and device therefor
JP6936998B2 (en) Electrolyzed water generation method, production atomizer and generation sprayer
CN1287010C (en) Ozone producing electrolyzer
CN105386079B (en) Miniature sterilization liquid generator
JPH09157173A (en) Acidic water containing hydroxy free radical
KR20080088010A (en) Electrode plate of electrolyzer and coating method
CN205420564U (en) Miniature antiseptic solution generator
JP3055073U (en) Disinfection equipment
JP2007160196A (en) Electrolytic sterilizer for water tank