JPH03150383A - Filter press type bipolar electrolyzer - Google Patents

Filter press type bipolar electrolyzer

Info

Publication number
JPH03150383A
JPH03150383A JP1288811A JP28881189A JPH03150383A JP H03150383 A JPH03150383 A JP H03150383A JP 1288811 A JP1288811 A JP 1288811A JP 28881189 A JP28881189 A JP 28881189A JP H03150383 A JPH03150383 A JP H03150383A
Authority
JP
Japan
Prior art keywords
platinum
electrolyte
filter press
press type
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1288811A
Other languages
Japanese (ja)
Inventor
Kaoru Hirakata
平形 薫
Shinichi Shimoda
慎一 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP1288811A priority Critical patent/JPH03150383A/en
Publication of JPH03150383A publication Critical patent/JPH03150383A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To prevent active dissolution of the face of titanium opposite to the flow hole of an electrolyte and to stably operate electrolysis for a long period of time by coating a platinum-contg. film on the liquid contact part except the part coated with anodic active substance on the anodic surface of an electrode plate. CONSTITUTION:In a bipolar electrolyzer, a film contg. 10-60mol.% platinum and 40-90mol.% at least one kind of oxide of Ti, Zr, Nb, Ta and Sn is coated on the liquid contact part except the part coated by anodic active substance on the anodic surfaces of plural electrode plates. Thereby a filter press type bipolar electrolyzer is obtained which is capable of preventing active dissolution of the face of titanium and of being stably operated for a long time. A halogen- contg. soln. is utilized as an electrolyte and this electrolyzer is utilized to obtain the aimed substance such as hypohalogenite and halogenate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、フィルタープレス型複極電解槽に関し、特に
ハロゲン含有溶液の無隔膜電解による次亜ハロゲン酸塩
またはハロゲン酸塩の製造に適したフィルタープレス型
複極電解槽に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a filter press type bipolar electrolytic cell, which is particularly suitable for producing hypohalites or halogenates by non-diaphragm electrolysis of halogen-containing solutions. Regarding a filter press type bipolar electrolytic cell.

(従来の技術) 従来、ハロゲン酸塩、次亜ハロゲン酸塩等を製造するた
めの電解装置には単極式がもっばら採らにてさたが、最
近、フィルタープレス型複極式が使われ始めた。単極式
は電解槽構造としては簡単であるが、大型化し設置面積
が広くなり、かつ、大電流低電圧のため整流器が高価と
なり太いブスバーを必要とし、また、通過流量ら大にな
るなど欠点が多い。
(Prior art) Conventionally, monopolar electrolyzers have been used to produce halogenates, hypohalites, etc., but recently, filter press type bipolar electrolyzers have been used. I started. Although the single-pole type has a simple electrolytic cell structure, it is larger and requires a larger installation area, and due to the high current and low voltage, the rectifier is expensive and requires a thick busbar, and the through flow rate is also large. There are many.

これに対しフィルタープレス型複極式はコンパクシ化し
やすく、整流器も小電流高電圧となり極めて安価で電気
接続も簡略化され、また通過流量も少なくてすむほか、
電流効率が向上するなど多くの利点をもっている。
On the other hand, the filter press type bipolar type is easy to make compact, the rectifier has a small current and high voltage, it is extremely inexpensive, the electrical connection is simple, and the flow rate passing through is small.
It has many advantages such as improved current efficiency.

このフィルタープレス型複極電解槽の−具体例としては
特公昭59−24192号公報に開示されるように、電
解液流通孔を有する複数の複極電極板と額縁状のがスケ
ットを交互に積層したものの両端に電解液流通孔と電流
端子を備えた陽極板と陰極板を置き、さらにその両端に
電解液入口を持つ供給板と電解液出口を持つ排出板を置
き、これらの両側に端板を当て、通しボルトにより一括
締め合わせて複極電解槽を構成する。
As a specific example of this filter press type bipolar electrolytic cell, as disclosed in Japanese Patent Publication No. 59-24192, a plurality of bipolar electrode plates having electrolyte flow holes and a frame-shaped slot are alternately laminated. An anode plate and a cathode plate with electrolyte flow holes and current terminals are placed on both ends of the plate, and a supply plate with an electrolyte inlet and a discharge plate with an electrolyte outlet are placed on both ends, and end plates are placed on both sides. , and tighten them together with through bolts to form a bipolar electrolytic cell.

ところで、前記複極電解槽においでは、陽極面と対向す
る陰極面ばかりでなく電解液流通孔を通して一つ隔てた
陰極面にも電流が流れる、いわゆる複極電解槽に特有な
リーク電流が存在するため用いる電極板の陽極面には陽
極活物質を全面にわたり施すものではなく、電解液流通
孔から離れた電極板の中央部に施すことによりリーク電
流を最少にするよう工夫がなされている。
By the way, in the bipolar electrolytic cell, current flows not only on the cathode surface facing the anode surface but also on the cathode surface that is one space apart through the electrolyte flow hole, which is a leakage current peculiar to the so-called bipolar electrolytic cell. Therefore, the anode active material is not applied over the entire surface of the anode surface of the electrode plate used, but is applied to the central part of the electrode plate away from the electrolyte flow holes, thereby minimizing leakage current.

従って、電極板の陽極面には電極板素地と電解液が接す
る部分が生じることになるが、電解液流通孔と対向する
面の電位は陽極活物質を被覆した部分に比べ極めて^く
なっており、電極板の材質であるチタンが活性溶解する
。これを防止するたoiこ、従来は次亜ハロゲン酸塩、
ハロゲン酸塩等の目的物に耐食性のある塩化ビニール樹
脂あるいはポリエチレン製のシートや薄板を接着剤によ
り貼っていたが、製作に不問を要し、また長期間使用す
ると接着剤がW潤して電解液が侵入し電極板素地にピッ
ティングを生じる場合があり、電極活物質が残存してい
るにもかかわらず電極板を交換しなけhばならないこと
があった。
Therefore, there will be a part on the anode surface of the electrode plate where the electrode plate base and the electrolyte come into contact, but the potential of the surface facing the electrolyte flow hole is extremely lower than that of the part covered with the anode active material. As a result, titanium, which is the material of the electrode plate, is actively dissolved. To prevent this, octopus is conventionally used with hypohalite,
Corrosion-resistant polyvinyl chloride resin or polyethylene sheets or thin plates were attached to objects such as halogenates using adhesives, but the manufacturing process was complicated, and when used for a long period of time, the adhesives became wet and the electrolyte solution may invade and cause pitting in the electrode plate base material, and the electrode plate may have to be replaced even though the electrode active material remains.

(発明が解決しようとする問題点) 本発明は、電解液流通孔と対向するチタン面の活性溶解
を防止し、これにより長期間電解を安定して捏縦できる
フィルタープレス型複極電解槽を提供することにある。
(Problems to be Solved by the Invention) The present invention provides a filter press type bipolar electrolytic cell that prevents active dissolution of the titanium surface facing the electrolyte flow hole, thereby stably kneading electrolysis for a long period of time. It is about providing.

(問題点を解決するための手段) 本発明者らは、電解液流通孔と対向するチタン面の活性
溶解の防止法について鋭意努力した結果、電極板の中央
部に施す電極活物質よりもはるかに電気化学的活性の低
い白金含有被覆を前記チタン面に施すことにより前記課
題を克服し本発明に至ったものである。
(Means for Solving the Problems) As a result of the inventors' earnest efforts to find a method for preventing active dissolution of the titanium surface facing the electrolyte distribution hole, the present inventors found that The present invention has been achieved by overcoming the above problems by applying a platinum-containing coating with low electrochemical activity to the titanium surface.

すなわち本発明は、電解液流通孔を有する複数の電極板
と複数の額縁状がスケットと全交互に積層して構成した
電解室に電解液を流通させて目的物を製造する複極電解
槽において、該電極板の陽極面上の陽極活物質を被覆し
た部分以外の接液部分に、白金10−60モル%とTi
、 Zr、 Nb、TaおよびSnの酸化物の中から選
ばれた少なくとも1種を40〜90モル%含む被覆が施
された電極板を用いるフィルタープレス型複極電解槽で
ある。
That is, the present invention provides a bipolar electrolytic cell in which a target product is manufactured by flowing an electrolyte through an electrolytic chamber configured by alternately stacking a plurality of electrode plates having electrolyte distribution holes and a plurality of frame shapes with a sket. , 10-60 mol % of platinum and Ti
, Zr, Nb, Ta, and Sn oxides.

以下、本発明を電解液として7%口デン含有溶液を用い
た場合について図面に基づき詳細に説明する。第1図お
よび第2図において、電解液流通孔1を片側の上、下端
部分に設けた2枚の複極電極板2、片側下端に電解液流
通孔1および電流端子14を備えた陽極板3、片側上下
端部分に電解液流通孔1および電流端子14を設けた陰
極板7と、3枚の中央部分を切り抜いた額縁状がスケッ
ト4を交互に重ねたものを、片側下端に電解液入口配管
12を取付けた供給板5と片側の上下端部に電解液出口
配管13を取付けた排出板5との間にはさみ、3室の電
解室6を構成させ、さらに通しボルト用孔10お上り片
側下端部に電解液配管用孔11を設けた端板8と、片側
上、下端部分に電解液配管用孔11および通しボルト用
孔10を有する端板8を両端に当て、通しボルト9に上
り一括締合わせて複極電解槽を構成する。
EMBODIMENT OF THE INVENTION Hereinafter, the present invention will be described in detail based on the drawings regarding the case where a solution containing 7% densities is used as an electrolytic solution. 1 and 2, two bipolar electrode plates 2 are provided with electrolyte flow holes 1 at the upper and lower ends of one side, and an anode plate is provided with electrolyte flow holes 1 and current terminals 14 at the lower end of one side. 3. A cathode plate 7 with electrolyte flow holes 1 and current terminals 14 provided at the upper and lower ends of one side, and frame-shaped sketches 4 cut out from the center of three sheets alternately stacked one on top of the other, and an electrolyte at the lower end of one side. It is sandwiched between the supply plate 5 to which the inlet piping 12 is attached and the discharge plate 5 to which the electrolyte outlet piping 13 is attached to the upper and lower ends of one side to form three electrolysis chambers 6, and furthermore, through-bolt holes 10 and 3 are formed. An end plate 8 having a hole 11 for electrolyte piping at the lower end of the upper side, and a hole 11 for electrolyte piping and a hole 10 for a through bolt at the upper and lower ends of one side are applied to both ends, and a through bolt 9 is placed on both ends. and then tighten them all together to form a bipolar electrolytic cell.

ハロゲン含有溶液は電解液出口配l12によ會)供給さ
れ、順次に各電解室6を水平蛇行して通過する間に電解
され、電解発生ガスをほとんど含まない電解液は下方の
電解液流通孔1を、電解液中を上昇分離した発生ガスを
多く含んだ電解液は上方の電解液流通孔1を通り電解液
出口配管13より次亜ハロゲン酸塩またはハロゲン酸塩
含有溶液として排出される。
The halogen-containing solution is supplied through the electrolyte outlet port 12, and is electrolyzed while sequentially passing through each electrolytic chamber 6 in a horizontal meandering manner. 1, the electrolytic solution containing a large amount of generated gas that has separated upwardly in the electrolytic solution passes through the upper electrolytic solution flow hole 1 and is discharged from the electrolytic solution outlet pipe 13 as a hypohalite- or halide-containing solution.

なお、上述の複極電解槽は本発明の主旨を平易に説明す
るための基本的な構造であり、塩の利用率を高め、また
高電流効率を実現するために特公昭59−24192号
公報にみられるような適宜〃ス抜き手段、あるいは熱交
換が行なわれる。
The above-mentioned bipolar electrolytic cell is a basic structure for explaining the gist of the present invention in a simple manner, and is described in Japanese Patent Publication No. 59-24192 in order to increase the utilization rate of salt and realize high current efficiency. Appropriate steam removal means or heat exchange as seen in .

本発明に用いる白金含有被覆は次のようにして調整さK
る。チタン表面を脱脂後、フッ酸あるいはシュウ酸処理
をし、その上に塗布液を刷毛等により付着せしめる。塗
布液は塩化白金酸、四塩化白金等とプチルチタネイトな
どのバルブ金属のフルコキシド、塩化スズ等をイソプロ
ピルアルコール等の有機溶媒に溶解して調整する。乾燥
後、電気炉内に置き、大気中450〜609℃の温度で
lG〜30分間加熱する。塗布、加熱を繰り返し所望の
厚みの被覆を得る。
The platinum-containing coating used in the present invention was prepared as follows.
Ru. After degreasing the titanium surface, it is treated with hydrofluoric acid or oxalic acid, and a coating solution is applied thereon with a brush or the like. The coating solution is prepared by dissolving chloroplatinic acid, platinum tetrachloride, etc., flucoxide of a valve metal such as butyl titanate, tin chloride, etc. in an organic solvent such as isopropyl alcohol. After drying, it is placed in an electric furnace and heated in the atmosphere at a temperature of 450 to 609°C for 1G to 30 minutes. Coating and heating are repeated to obtain a coating of desired thickness.

本発明の白金含有被覆を施す部分は電極板の陽極面であ
って、電解液流通孔と対向する部分であるが、陽極活物
質を被覆した部分(電極板の中央部)以外の接液面すべ
てに施せばより完全である。
The part to which the platinum-containing coating of the present invention is applied is the anode surface of the electrode plate, which is the part facing the electrolyte flow hole, but the liquid contact surface other than the part coated with the anode active material (the central part of the electrode plate) It will be more perfect if you apply it to everything.

本発明の複極電解槽に用いる陽極活物質は従来公知のも
のが用いられ、一般的には上記白金含有被覆同様に熱分
解法により白金族金属およびそれらの酸化物が施される
。例えば白金一酸化パラジウム一酸化ルテニウムから戎
る被覆は、塩素発生効率が高く、高濃度の次亜塩素酸ソ
ーダを製造することができる。また、白金−イリジウム
から成る被覆は^効率で塩素酸ナトリウムを製造するこ
とができる。
Conventionally known positive electrode active materials are used in the bipolar electrolytic cell of the present invention, and platinum group metals and their oxides are generally applied by a pyrolysis method in the same manner as the platinum-containing coating described above. For example, a coating made of platinum palladium monoxide and ruthenium monoxide has a high chlorine generation efficiency and can produce highly concentrated sodium hypochlorite. Also, a platinum-iridium coating can produce sodium chlorate efficiently.

本発明における白金含有被覆の厚みは、前記陽極活物質
被覆が電解により消耗し電極寿命となった時点で同時に
なくなるよう調整されるべきであり、通常は白金として
15〜20g/m2の被覆が好適である。
The thickness of the platinum-containing coating in the present invention should be adjusted so that the anode active material coating is consumed by electrolysis and disappears at the same time as the electrode reaches the end of its life. Usually, a coating of 15 to 20 g/m2 of platinum is preferable. It is.

(作  用) 本発明における白金10〜60モル%と、T+、・2「
、Nb%TaおよびSnの酸化物の中から選ばれた少な
くとも1種40−90モル%とからなる白金含有被覆を
チタン板上に施し、これを陽極とし、チタン、白金等を
陰極にして3重量%程度の食塩水溶液中で定電圧を負荷
した場合、負荷直後は円滑に電流が流れるが、わずか数
分の内に微弱な電流しか流れなくなる。本発明の発端は
このように白金含有被覆が電気化学的に失活するという
知見によるもので、白金含有被覆から流れる微弱な電流
が電極板であるチタン素地を保護しているものと考えら
れる。
(Function) 10 to 60 mol% of platinum in the present invention and T+,・2'
A platinum-containing coating consisting of 40-90 mol% of at least one selected from oxides of Nb%, Ta, and Sn is applied on a titanium plate, and this is used as an anode, and titanium, platinum, etc. are used as a cathode. When a constant voltage is applied in a saline solution of approximately 1% by weight, current flows smoothly immediately after loading, but only a weak current flows within just a few minutes. The origin of the present invention was the knowledge that the platinum-containing coating is electrochemically deactivated, and it is thought that the weak current flowing from the platinum-containing coating protects the titanium base that is the electrode plate.

(実施例) 実施例1〜4 第1図および第2図に示すftJtのように、厚さ2■
■のチタン板からなる電極板の陽極面中央部に、白金2
5重量%、酸化パラジウム20重量%、ニー 酸化ルテ
ニウム55重量%の混合物に対し、30、重量%の二酸
化チタンを加えた混合物の被覆30g/■2(金属換1
)を施した。
(Example) Examples 1 to 4 As shown in Fig. 1 and Fig. 2, the thickness is 2mm.
Platinum 2 is placed in the center of the anode surface of the titanium electrode plate shown in
A mixture of 5% by weight of palladium oxide, 20% by weight of palladium oxide, and 55% by weight of ruthenium oxide was coated with a mixture of 30% by weight of titanium dioxide (metallic oxide 1
) was applied.

第1表 1\1電極番号I 白金含有被覆ffi成 ピッティン
グの有無I険施例11〜SPt40モル%1    無
Tio−60モル%1  〃 26〜10   Pt  20モル%     
〃Tr02  goモル% #3111〜tsl  Pt  40モル%1〃1Ta
20,60モル%1 〃 416〜20   Pi  40モル%     
〃8n0=  60モル% 陽極板1枚および19枚の複極電極板にポンチで電極番
号を1〜20番まで刻印し、1〜5@(陽極板1枚と4
枚の複極電極板)までのがスヶットしろを除いた池の部
分に、白金40モル%と二酸化チタン60モル%とから
なる被膜を施し、以下同様に第1表に示したように20
番まで5枚毎に白金含有被1120g/w2を施した。
Table 1 \1 Electrode number I Platinum-containing coating ffi formation Presence or absence of pitting I Example 11 - SPt 40 mol % 1 No Tio - 60 mol % 1 〃 26 - 10 Pt 20 mol %
〃Tr02 go mol% #3111~tsl Pt 40 mol% 1〃1Ta
20,60 mol%1 416-20 Pi 40 mol%
〃8n0 = 60 mol% Mark electrode numbers 1 to 20 with a punch on one anode plate and 19 bipolar electrode plates, and
A coating consisting of 40 mol% of platinum and 60 mol% of titanium dioxide was applied to the part of the pond up to the slits (excluding the slit margin), and the following coatings were applied in the same manner as shown in Table 1.
A platinum-containing coating of 1120 g/w2 was applied to every 5 sheets up to the number.

これらの被覆を施した陽極板1枚および19枚の複極電
極板と、1枚の被覆のない陰極板、および20枚の額縁
状の軟質塩化ビニール製がスケットを交互に重ね合わせ
て20室の電極室を構成し、さらに供給板と排出板を両
側に置き、この両端を2枚の端板ではさみ、有効塩素発
生量2 、5 kg/hの海水電解槽を緩み立てた。外
形寸法は横650×中250×縦450−であった。
One coated anode plate, 19 bipolar electrode plates, one uncoated cathode plate, and 20 picture frame-shaped soft vinyl chloride plates are arranged in 20 chambers by stacking the sockets alternately. An electrode chamber was constructed, a supply plate and a discharge plate were placed on both sides, and both ends were sandwiched between two end plates, and a seawater electrolytic cell with an effective chlorine generation rate of 2.5 kg/h was loosened and erected. The external dimensions were 650 mm wide x 250 mm wide x 450 mm high.

沖縄県の臨海化学工場にこの複極電解槽を設置し、海水
を60Z/win、の液量で電解液入口配管より複極電
解槽へ供給し、整流器よQ125A、90Vの直流を通
電して電解試験を行なった。
This bipolar electrolytic cell was installed at a waterfront chemical factory in Okinawa Prefecture, and seawater was supplied to the bipolar electrolytic cell from the electrolyte inlet piping at a liquid volume of 60 Z/win, and a Q125A, 90 V DC current was applied to the rectifier. An electrolytic test was conducted.

その結果、電流効率は90〜97%、有効塩素濃度80
0〜920ppa+の高い性能が示され、電極寿命はS
年であった。試験終了後、電極にピッティングの後は見
られずすべての電極板の白金含有被覆中に白金が残存し
ていることがケイ光X線膜厚測定により確認された。
As a result, the current efficiency is 90-97%, and the effective chlorine concentration is 80%.
High performance from 0 to 920ppa+ is shown, and the electrode life is S
It was the year. After the test, it was confirmed by fluorescence X-ray film thickness measurement that no pitting was observed on the electrodes, and that platinum remained in the platinum-containing coatings of all electrode plates.

実施例5 塩素酸ナトリウム製造工場に実施例1〜4で用いたもの
と同一構造の電解槽(ただしガスヶ?)はフッ素系ガス
ケットを使用した)を設置した。
Example 5 An electrolytic cell having the same structure as that used in Examples 1 to 4 (but using a fluorine gasket) was installed in a sodium chlorate manufacturing factory.

陽極被覆は白金70重量%、酸化イリジウム30重量%
の合金を用い、白金含有被覆は実施例1で用いたPL−
TiO□被覆を用いた。
Anode coating: 70% by weight platinum, 30% by weight iridium oxide
The platinum-containing coating was the same as that used in Example 1.
A TiO□ coating was used.

塩素酸ナトリウム60g/+2、食塩280g//、重
クロム酸ナトリウムIg/lの電解液を501/分の流
量で供給した。電解電流155A、67Vを通電して電
解試験を行なった結果、3年を経てなお電解継続中であ
り、電極面にピッティングの跡は見られない。
Electrolytes containing 60 g/+2 sodium chlorate, 280 g/l sodium chloride, and Ig/l sodium dichromate were supplied at a flow rate of 501/min. As a result of conducting an electrolytic test by applying an electrolytic current of 155 A and 67 V, it was found that electrolysis was still continuing after three years, and no pitting traces were observed on the electrode surface.

実施例6 実施例1〜4で用いた電極板2枚の陽極面中央部に、塩
化白金酸と塩化イリジウム酸のフミルアルコール溶液を
刷毛塗りし、電気炉内で500℃、30分間の加熱処理
を行なった。この塗布〜焼成工程を7回繰り返して白金
70重量%、酸化イリジウム30重量%の被覆(20g
/+a2)を調製した。
Example 6 A humyl alcohol solution of chloroplatinic acid and chloroiridic acid was applied with a brush to the center of the anode surface of the two electrode plates used in Examples 1 to 4, and heated at 500°C for 30 minutes in an electric furnace. processed. This coating to firing process was repeated 7 times to coat 70% by weight of platinum and 30% by weight of iridium oxide (20g
/+a2) was prepared.

この陽極被覆を施した面のがスケットしろを除いた他の
部分に、白金40モル%と酸化二第160モル%とから
成る被覆を施こした電極板1枚と、+150モル%と酸
化ジルコニウム50モル%とから成る被覆を施こした電
極板1枚をそれぞれ製作し、実施例1と同様に3室の電
極室を有する電解槽を構成した。
One electrode plate coated with 40 mol% of platinum and 160 mol% of dichloride oxide and 150 mol% of platinum and zirconium oxide are placed on the other parts of the anode-coated surface except for the sketches. One electrode plate coated with 50 mol % was prepared, and an electrolytic cell having three electrode chambers was constructed in the same manner as in Example 1.

この電解槽に、臭化ソーダ280g/l、臭素酸ソーダ
60g/l、重クロム酸ソーダ1g/lから成る電解液
を供給し、70℃、20A/d+2で臭素酸ソーダの電
解製造を行なった。
An electrolytic solution consisting of 280 g/l of sodium bromide, 60 g/l of sodium bromate, and 1 g/l of sodium dichromate was supplied to this electrolytic cell, and sodium bromate was electrolytically produced at 70°C and 20 A/d+2. .

半年後、電解槽を分解し、電極板を点検したところ、ピ
ッティングは見られず、白金含有被覆中の白金はほとん
ど消耗していなかった。
Six months later, when the electrolytic cell was disassembled and the electrode plates were inspected, no pitting was found and the platinum in the platinum-containing coating was hardly consumed.

(発明の効果) 本発明iこよれば、白金含有被覆を施すことによりチタ
ン面の活性溶解を防止でき、従来半年毎に行なっていた
合成樹脂製シートによる活性溶解防止法の補修が必要で
なくなり、電極活物質の消耗による本来の意味での電極
寿命に至るまでの長期間安定に捏業できるフィルタープ
レス型複極電解槽が実現した。
(Effects of the Invention) According to the present invention, active dissolution of the titanium surface can be prevented by applying a platinum-containing coating, and it is no longer necessary to repair the active dissolution prevention method using a synthetic resin sheet, which was conventionally done every six months. A filter press type bipolar electrolytic cell was realized that can operate stably for a long period of time until the electrode active material reaches the end of its original life due to consumption of the electrode active material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の複極電解槽の基本的な構造を示す分解
斜視図であり、第2図は第1図のA−A線の横断面図で
ある。 1・・電解液流通孔   2・・複極電極板3・・陽極
板   4・・額縁状がスケット5・・供給板   5
・・排出板 6・・電解室   7・・陰極板 8・・端板9・・通
しボルト 10・・通しボルト用孔11・・電解液流通
孔 12・・電解液入口配管13・・電解液出口配管 
 14・・電流端子特許出願人 日本カーリット株式会
社 第2m
FIG. 1 is an exploded perspective view showing the basic structure of the bipolar electrolytic cell of the present invention, and FIG. 2 is a cross-sectional view taken along line A--A in FIG. 1. 1. Electrolyte distribution hole 2. Multipolar electrode plate 3. Anode plate 4. Frame-shaped socket 5. Supply plate 5
・・Drain plate 6・・Electrolysis chamber 7・・Cathode plate 8・・End plate 9・・Through bolt 10・・Through bolt hole 11・・Electrolyte distribution hole 12・・・Electrolyte solution inlet piping 13・・・Electrolyte solution outlet piping
14...Current terminal patent applicant Nippon Carlit Co., Ltd. No. 2m

Claims (1)

【特許請求の範囲】 1 電解液流通孔を有する複数の電極板と複数の額縁状
ガスケットとを交互に積層して構成した電解室に電解液
を流通させて目的物を電解製造するフィルタープレス型
複極電解槽において、該電極板の陽極面上の陽極活物質
を被覆した部分以外の接液部分に、白金10〜60モル
%とTi、Zr、Nb、TaおよびSnの酸化物の中か
ら選ばれた少なくとも1種を40〜90モル%含む被覆
が施されていることを特徴とするフィルタープレス型複
極電解槽。 2 電解液がハロゲン含有溶液であり、目的物が次亜ハ
ロゲン酸塩またはハロゲン酸塩である請求項1記載のフ
ィルタープレス型複極電解槽。
[Claims] 1. A filter press type that electrolytically manufactures a target product by flowing an electrolyte through an electrolytic chamber configured by alternately stacking a plurality of electrode plates having electrolyte distribution holes and a plurality of frame-shaped gaskets. In the bipolar electrolytic cell, 10 to 60 mol% of platinum and oxides of Ti, Zr, Nb, Ta, and Sn are added to the wetted parts other than the part coated with the anode active material on the anode surface of the electrode plate. A filter press type bipolar electrolytic cell characterized by being coated with a coating containing 40 to 90 mol% of at least one selected species. 2. The filter press type bipolar electrolytic cell according to claim 1, wherein the electrolytic solution is a halogen-containing solution and the target substance is a hypohalite or a halogen salt.
JP1288811A 1989-11-08 1989-11-08 Filter press type bipolar electrolyzer Pending JPH03150383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1288811A JPH03150383A (en) 1989-11-08 1989-11-08 Filter press type bipolar electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1288811A JPH03150383A (en) 1989-11-08 1989-11-08 Filter press type bipolar electrolyzer

Publications (1)

Publication Number Publication Date
JPH03150383A true JPH03150383A (en) 1991-06-26

Family

ID=17735041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1288811A Pending JPH03150383A (en) 1989-11-08 1989-11-08 Filter press type bipolar electrolyzer

Country Status (1)

Country Link
JP (1) JPH03150383A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256431A (en) * 2010-06-09 2011-12-22 Ihi Corp Apparatus for producing perchlorate
JP2015537116A (en) * 2012-10-05 2015-12-24 ミオックス コーポレーション On-site generation without transformer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952713A (en) * 1982-09-20 1984-03-27 Shimadzu Corp Measuring method of rotation angle
JPS629674A (en) * 1985-07-08 1987-01-17 Sony Corp Manufacture of insulating gate type semiconductor device
JPS6223992A (en) * 1985-07-23 1987-01-31 Japan Carlit Co Ltd:The Electrolytic sodium hypochlorite producing device
JPS63143277A (en) * 1986-12-08 1988-06-15 Japan Carlit Co Ltd:The Method and device for generating sodium hypochlorite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952713A (en) * 1982-09-20 1984-03-27 Shimadzu Corp Measuring method of rotation angle
JPS629674A (en) * 1985-07-08 1987-01-17 Sony Corp Manufacture of insulating gate type semiconductor device
JPS6223992A (en) * 1985-07-23 1987-01-31 Japan Carlit Co Ltd:The Electrolytic sodium hypochlorite producing device
JPS63143277A (en) * 1986-12-08 1988-06-15 Japan Carlit Co Ltd:The Method and device for generating sodium hypochlorite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256431A (en) * 2010-06-09 2011-12-22 Ihi Corp Apparatus for producing perchlorate
JP2015537116A (en) * 2012-10-05 2015-12-24 ミオックス コーポレーション On-site generation without transformer

Similar Documents

Publication Publication Date Title
US6309523B1 (en) Electrode and electrolytic cell containing same
US20090211918A1 (en) Electrochemical cell and method for operating the same
CN101525755B (en) Cathode for hydrogen generation
FI57132C (en) ELEKTROD AVSEDD FOER ANVAENDNING VID ELEKTROKEMISKA PROCESSER
JPS5949318B2 (en) Electrolytic production method of alkali metal hypohalite salt
CN103255434B (en) The manufacture method of electrode for electrolysis, electrolytic cell and electrode for electrolysis
RU97100560A (en) METHOD FOR ELECTROLYSIS OF AQUEOUS SOLUTIONS OF HYDROCHLORIDE ACID
JPH05148676A (en) Electrode, preparation thereof, electrolytic cell having said electrode and method of electrolysis
JPS5932548B2 (en) Electrolysis method and electrolyzer
CN110318068A (en) Ion-exchange membrane electrolyzer anodic coating
US3917518A (en) Hypochlorite production
US3948750A (en) Hollow bipolar electrode
JPS59232284A (en) Production and use of electrode
CN108265312B (en) Electrolytic tank of hypochlorite generator
WO2015108115A1 (en) Anode for ion exchange membrane electrolysis vessel, and ion exchange membrane electrolysis vessel using same
KR102091477B1 (en) Sodium Hypochlorite generation device of undivided type with function to prevent punching of the heat exchange pipe of titanium material
KR20110081251A (en) Cathode member and bipolar plate for hypochlorite cells
JPH03150383A (en) Filter press type bipolar electrolyzer
CN108193226B (en) Composite electrode assembly
KR20070117523A (en) Electrolysis cell for ozone water and hypo-chlorite water generation by top water electrolysis and mixed oxidant electrode
JPS6232277B2 (en)
KR20230125009A (en) Electrolyzer for electrochlorination process and self-cleaning electrochlorination system
US20050077068A1 (en) Structural unit for bipolar electrolysers
JPH0238669B2 (en)
JPH0413881A (en) Filter press type bipolar electrolyzer