JPS63142839A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63142839A
JPS63142839A JP29073586A JP29073586A JPS63142839A JP S63142839 A JPS63142839 A JP S63142839A JP 29073586 A JP29073586 A JP 29073586A JP 29073586 A JP29073586 A JP 29073586A JP S63142839 A JPS63142839 A JP S63142839A
Authority
JP
Japan
Prior art keywords
epoxy resin
vinyl group
polymer
molecular weight
low molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29073586A
Other languages
Japanese (ja)
Inventor
Yoshinobu Nakamura
吉伸 中村
Tsunetaka Matsumoto
松本 恒隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP29073586A priority Critical patent/JPS63142839A/en
Publication of JPS63142839A publication Critical patent/JPS63142839A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To cope with the increase of an element in size and the miniaturization of wirings by adding an inorganic powder filler covered on the surface with a polymer of low molecules having a substance for performing internal stress reducing effect, phenol resin and vinyl group to an epoxy resin composition used for resin-sealing. CONSTITUTION:Phenol resin is operated as an epoxy resin hardener, and is adapted for preferably mixing epoxy group in the epoxy resin and hydroxide group in the phenol resin at equivalent ratio of 0.8-1.2. An inorganic powder filler covered on the surface with a polymer of low molecules having vinyl group is covered on the surface with the filler, such as silica, alumina, calcium carbonate, aluminum nitride, beryllium oxide, etc. The quantity of the polymer of the low molecules having the vinyl group is preferably 3-30% with respect to the epoxy resin composition from which the filler content is removed. The sealing of a semiconductor element using such epoxy resin composition is not limited, but formed by known molding method, such as a normal transfer molding, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、信頼性の優れた半導体装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a highly reliable semiconductor device.

〔従来の技術〕[Conventional technology]

トランジスタ、IC,LSI等の半導体素子は、従来、
セラミックパッケージ等により封止され、半導体装置化
されていたが、最近では、コスト、量産性の観点より、
プラスチックパッケージを用いた樹脂封止が主流になっ
ている。この種の樹脂封止には、従来からエポキシ樹脂
が使用されており、良好な成績を収めている。しかしな
がら、半導体分野の技術革新によって集積度の向上とと
もに素子サイズの大形化、配線の微細化が進み、パッケ
ージも小形化、薄形化する傾向にあり、これに伴って封
止材料に対してより以上の信頼性(得られる半導体装置
の耐湿信頼性、耐衝撃信頼性、耐熱信頼性等)の向上が
要望されている。特にエポキシ樹脂組成物の、硬化温度
から室温までの冷却による収縮に起因する内部応力がこ
れら信頼性を滅じているため、内部応力の低減が重要で
ある。
Conventionally, semiconductor elements such as transistors, ICs, and LSIs
It used to be sealed with a ceramic package and made into a semiconductor device, but recently, from the viewpoint of cost and mass production,
Resin sealing using plastic packages has become mainstream. Epoxy resins have conventionally been used for this type of resin sealing, and have achieved good results. However, due to technological innovation in the semiconductor field, the degree of integration has increased, element sizes have become larger, and interconnects have become finer, and packages are also becoming smaller and thinner. There is a demand for further improvement in reliability (humidity resistance reliability, shock resistance reliability, heat resistance reliability, etc. of the obtained semiconductor device). In particular, internal stress caused by shrinkage of the epoxy resin composition due to cooling from the curing temperature to room temperature reduces the reliability of the epoxy resin composition, so reducing the internal stress is important.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように、これまでの封止用エポキシ樹脂組成物は
、硬化温度から室温に冷却する過程でかなりの内部応力
を発生し、それにより半導体素子の損傷を生じたり、断
線が生じたりする等の問題を生起していた。この内部応
力低減のために、ゴム粒子の添加、液状エラストマーに
よる変性等が行われてきたが、エポキシ樹脂マトリック
ス中に、このようなゴム粒子のドメインが多量に存在す
ることによりエポキシ樹脂組成物の流動性が減じる等の
欠点も併発した。このため、緒特性がいまひとつ満足し
うるちのではなく、それを用いた半導体装置の信頼性に
も限界があり、上記技術革新による素子サイズの大形化
、配線の微細化等に対応できるように、より以上の特性
向上が強く望まれている。
As mentioned above, conventional epoxy resin compositions for sealing generate considerable internal stress during the process of cooling from the curing temperature to room temperature, which can cause damage to semiconductor elements, disconnection, etc. was causing problems. In order to reduce this internal stress, addition of rubber particles, modification with liquid elastomers, etc. have been carried out, but the presence of a large number of domains of such rubber particles in the epoxy resin matrix causes the epoxy resin composition to become There were also drawbacks such as reduced liquidity. For this reason, the optical characteristics are not entirely satisfactory, and there are limits to the reliability of semiconductor devices using them. , it is strongly desired to improve the characteristics even further.

この発明は、このような事情に鑑みなされたもので、樹
脂封止に用いるエポキシ樹脂組成物に、内部応力低減効
果を奏する物質を添加することにより、信頼性に冨んだ
半導体装置を提供することをその目的とするものである
This invention was made in view of the above circumstances, and provides a highly reliable semiconductor device by adding a substance that has an effect of reducing internal stress to an epoxy resin composition used for resin sealing. Its purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、この発明の半導体装置は、
下記の(A)、(B)および(C)成分を含有している
エポキシ樹脂組成物を用いて半導体素子を封止するとい
う構成をとる。
In order to achieve the above object, the semiconductor device of the present invention includes:
The structure is such that a semiconductor element is sealed using an epoxy resin composition containing the following components (A), (B), and (C).

(A)エポキシ樹脂。(A) Epoxy resin.

(B)フェノール樹脂。(B) Phenol resin.

(C)ビニル基を有する低分子物の重合体で表面が被覆
された無機粉体充填剤。
(C) An inorganic powder filler whose surface is coated with a low molecular weight polymer having vinyl groups.

この発明に用いるエポキシ樹脂組成物は、エポキシ樹脂
(A成分)と、フェノール樹脂(B成分)と、ビニル基
を有する低分子物の重合体で表面が被覆された無機粉体
充填剤(C成分)とを用いて得られるものであって、通
常、粉末状もしくはそれを打錠したタブレット状になっ
ている。
The epoxy resin composition used in this invention consists of an epoxy resin (component A), a phenol resin (component B), and an inorganic powder filler (component C) whose surface is coated with a low-molecular polymer having a vinyl group. ), and is usually in powder form or tablet form.

このようなエポキシ樹脂組成物は、特に、上記C成分の
使用により、低応力性に優れたプラスチックパッケージ
になりうるちのであり、信頼度の高い半導体装置を実現
しうるのである。
Such an epoxy resin composition can be used as a plastic package with excellent low stress properties, especially by using the above-mentioned component C, and a highly reliable semiconductor device can be realized.

上記A成分となるエポキシ樹脂としては、特に制限する
ものではなく、クレゾールノボラック型、フェノールノ
ボラック型やビスフェノールA型等、従来から半導体装
置の封止樹脂として用いられている各種のエポキシ樹脂
があげられる。これらの樹脂のなかでも、融点が室温を
超えており、室温下では固形状もしくは高粘度の溶液状
を呈するものを用いることが好結果をもたらす。ノボラ
ック型エポキシ樹脂としては、通常エポキシ当量160
〜250.軟化点50〜130℃のものが用いられ、特
にクレゾールノボラック型エポキシ樹脂としては、エポ
キシ当1tso〜210.軟化点60〜110℃のもの
が一般に用いられる。
The epoxy resin serving as component A is not particularly limited, and examples include various epoxy resins conventionally used as encapsulating resins for semiconductor devices, such as cresol novolac type, phenol novolac type, and bisphenol A type. . Among these resins, it is preferable to use one that has a melting point above room temperature and is in the form of a solid or highly viscous solution at room temperature. Novolac type epoxy resin usually has an epoxy equivalent of 160
~250. Those having a softening point of 50 to 130°C are used, and particularly cresol novolac type epoxy resins have a softening point of 1tso to 210°C per epoxy. Those having a softening point of 60 to 110°C are generally used.

上記エポキシ樹脂とともに用いられる、B成分のフェノ
ール樹脂は、上記エポキシ樹脂の硬化剤として作用する
ものであり、フェノールノボラック、クレゾールノボラ
ック等が好適に用いられる。これらのノボラック樹脂は
、軟化点が50〜110℃、水酸基当量がlOO〜13
0のものを用いることが好ましい。特に上記ノボラック
樹脂のなかでもタレゾールノボラックを用いることが好
結果をもたらす。
The phenolic resin of component B used together with the epoxy resin acts as a curing agent for the epoxy resin, and phenol novolak, cresol novolac, etc. are preferably used. These novolac resins have a softening point of 50 to 110°C and a hydroxyl equivalent of lOO to 13
It is preferable to use 0. Particularly, among the novolac resins mentioned above, use of Talesol novolac brings about good results.

上記エポキシ樹脂組成物中のA成分であるエポキシ樹脂
と、B成分であるフェノール樹脂との配合比は、上記エ
ポキシ樹脂中のエポキシ基と上記フェノール樹脂中の水
酸基の当量比が0.8〜1.2となるように配合するこ
とが好適である。この当量比が1に近いほど好結果が得
られる。
The blending ratio of the epoxy resin as component A and the phenol resin as component B in the epoxy resin composition is such that the equivalent ratio of the epoxy group in the epoxy resin to the hydroxyl group in the phenol resin is 0.8 to 1. .2. The closer this equivalence ratio is to 1, the better the results.

また、上記C成分はビニル基を有する低分子物の重合体
で表面が被覆された無機粉体充填剤である。すなわち、
シリカ、アルミナ、窒化ケイ素。
The C component is an inorganic powder filler whose surface is coated with a low molecular weight polymer having vinyl groups. That is,
Silica, alumina, silicon nitride.

炭化ケイ素、ジルコニア、チタン白、タルク、クレー、
炭酸カルシウム、窒化アルミニウム、酸化ベリリウム等
の無機粉体充填剤に対して、ビニル基を有する低分子物
の重合体で表面被覆を施したものである。上記ビニル基
を有する低分子物の重合体は、ビニル基を1個有する低
分子物のみを重合させた単独重合体、ビニル基を1個有
する低分子物とビニル基を2個有する低分子物との共重
合体およびビニル基を1個有する化合物とビニル基を1
個と他の官能基を有する低分子物との共重合体であり、
これらのうちの1種類の重合体が上記無機粉体充填剤の
表面被覆に使用される。場合によっては、上記2種類ま
たは3種類の重合体を併用してもよい。上記のような重
合体で無機粉体充填剤の表面被覆を行う方法は、例えば
、つぎの2種類の方法があげられる。■の方法は、シリ
カ粒子等の無機粉体充填剤粒子表面に重合開始能を有す
る触媒を付着させ、その状態で上記ビニル基を有する低
分子物を重合させることにより表面被覆を行う方法であ
る。■の方法は、予め、ビニル基を有する低分子物を重
合させて重合体にし、これを溶剤等に溶解し、その溶液
中にシリカ粒子等の無機粉体充填剤を浸漬したのち乾燥
する等により、表面被覆をする方法である。
silicon carbide, zirconia, titanium white, talc, clay,
An inorganic powder filler such as calcium carbonate, aluminum nitride, or beryllium oxide is surface-coated with a low-molecular polymer having a vinyl group. The above-mentioned polymer of a low molecular weight substance having a vinyl group is a homopolymer obtained by polymerizing only a low molecular weight substance having one vinyl group, a low molecular weight substance having one vinyl group, and a low molecular weight substance having two vinyl groups. A copolymer with a compound having one vinyl group and a copolymer with one vinyl group
It is a copolymer of a low molecular weight substance with other functional groups,
One of these polymers is used to coat the surface of the inorganic powder filler. In some cases, the above two or three types of polymers may be used in combination. Examples of methods for coating the surface of an inorganic powder filler with the above polymer include the following two methods. Method (2) is a method in which a catalyst having polymerization initiating ability is attached to the surface of inorganic powder filler particles such as silica particles, and the surface is coated by polymerizing the above-mentioned low molecular weight substance having a vinyl group in this state. . Method (2) involves first polymerizing a low-molecular substance having a vinyl group to form a polymer, dissolving this in a solvent, etc., immersing an inorganic powder filler such as silica particles in the solution, and then drying. This is a method of surface coating.

上記■の方法について、より詳しく説明すると、重合開
始能を有する触媒をトルエン等の有機溶剤に溶解し、こ
の溶液にシリカ粒子等の無機粉体充填剤を添加して混合
したのち吸引濾過し、得られた無機粉体充填剤を減圧下
において、残存有機溶剤を飛散させ、触媒が粒子表面に
付着した無機粉体充填剤をつくる。つぎに、これをビニ
ル基を有する低分子物と混合し加熱重合する。このよう
にして得られた表面被覆無機粉体充填剤は、粒子表面で
重合が行われるため、被覆状態が均一であり、内部応力
の低減効果の実現により効果的になる。■の方法は、ビ
ニル基を有する低分子物を予め、重合開始能を有する触
媒等の存在下に重合させて重合体化し、これを溶剤等に
溶解して無機粉体充填剤を被覆する方法である。例えば
、シリカ粒子をポリアクリル酸ブチルで被覆する場合、
ポリアクリル酸ブチルのトルエン溶液(1重量%程度)
にシリカ粒子を添加して分散させ、ついでメタノールを
添加してポリアクリル酸ブチルをシリカ粒子の表面に吸
着させる。この場合、メタノールは、ポリアクリル酸ブ
チルの非溶剤に相当する。また、被覆に用いるシリカ粒
子は、表面をシランカップリング剤で予め処理しておく
ほうが良好な被覆状態となるため好ましい。このような
シランカップリング剤としては、エポキシシラン、ビニ
ルシラン等の汎用のシランカップリング剤を使用するこ
とができる。
To explain the method (2) above in more detail, a catalyst having polymerization initiation ability is dissolved in an organic solvent such as toluene, and an inorganic powder filler such as silica particles is added to this solution and mixed, followed by suction filtration. The obtained inorganic powder filler is placed under reduced pressure to scatter the remaining organic solvent, thereby producing an inorganic powder filler with the catalyst attached to the particle surface. Next, this is mixed with a low molecular weight substance having a vinyl group and polymerized by heating. The surface-coated inorganic powder filler obtained in this manner undergoes polymerization on the particle surface, so that the coating state is uniform and the internal stress is more effectively reduced. Method (2) is a method in which a low-molecular substance having a vinyl group is polymerized in advance in the presence of a catalyst, etc. that has polymerization initiation ability, and this is dissolved in a solvent, etc., and coated with an inorganic powder filler. It is. For example, when coating silica particles with polybutyl acrylate,
Toluene solution of butyl polyacrylate (about 1% by weight)
Silica particles are added to and dispersed, and then methanol is added to adsorb polybutyl acrylate onto the surface of the silica particles. In this case, methanol corresponds to the non-solvent for polybutyl acrylate. Further, it is preferable to treat the surface of the silica particles used for coating with a silane coupling agent in advance, since this will result in a better coating state. As such a silane coupling agent, general-purpose silane coupling agents such as epoxy silane and vinyl silane can be used.

上記■および■の方法で用いる重合開始能を有する触媒
としては、下記のものをあげることができる。
Examples of catalysts having polymerization initiating ability used in methods (1) and (2) above include the following.

(過酸化物) ベンゾイルパーオキシド、p−クロロベンゾイルパーオ
キシド、2.4−ジクロロベンゾイルパーオキシド、オ
ブリリルバーオキシド、ラウロイルパーオキシド、アセ
チルパーオキシド、シクロヘキセンパーオキシド、ヒド
ロキシへブチルバーオキシド、tert−ブチルパーベ
ンゾエート、tert−ブチルパーアセテート、ter
t−ブチルオクトエート、tert−ブチルパーオキシ
イソブチレート、ジーtert−ブチルパーフタレート
、過硫酸カリウム、過硫酸アンモニウム。
(Peroxide) Benzoyl peroxide, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, obrylyl peroxide, lauroyl peroxide, acetyl peroxide, cyclohexene peroxide, hydroxyhebutyl peroxide, tert- Butyl perbenzoate, tert-butyl peracetate, tert
tert-butyl octoate, tert-butyl peroxyisobutyrate, di-tert-butyl perphthalate, potassium persulfate, ammonium persulfate.

(ジアゾ基を有する化合物) 2.2”−アゾビス(2,4−ジメチルバレロニトリル
)、2,2°−アゾビス(イソブチロニトリル)、4.
4’  −アゾビス−4−シアノペンタノイック酸、2
.2′−アゾビス(2−アミジノプロパン)塩酸塩、4
.4゛  −アゾビス−4−シアノバレリン酸、2.2
° −アゾビス(2−メチルバレロニトリル)、2.2
″−アゾビス(2,4−ジメチルバロニトリル)、2,
2” −アゾビス(2−メチルカプロニトリル)、2.
2’−アゾビス(2,3,3−トリメチルバレロニトリ
ル)、2−フェニルアゾ−2,4−ジメチル−4−メト
キシバレロニトリル、2−シアノ−2=プロビルアゾホ
ルアミド、1.lo −アゾビスシクロヘキサン−1−
カルボニトリル、1,1” −アゾビス(シクロヘキサ
ン−カルボニトリル)、■、ビ −アゾビス(シクロペ
ンタン−カルボニトリル)、1,1°−アゾビス(シク
ロオクタン−カルボニトリル)、2.2’−アゾビス(
2゜4−ジメチル−4−メトキシバレロニトリル)、2
.2゛−アゾビス(2,4−ジメチル−4−エトキシバ
レロニトリル)、2.2’  −アゾビス(2,4−ジ
メチル−4−n−ブトキシバレ口ニトリル)、2.2“
−アゾビス(2,4−ジメチル−4−ベンジルオキシバ
レロニトリル)、2,2゛−アゾビス(2−二トロプロ
パン)、2.2“−アゾビス(2−チオシアナート−プ
ロパン)、2.2°−アゾビス(2−チオフェニルプロ
パン)、2.2’−アゾビス(2−ベンズチアゾール−
2″−チオプロパン)、2.2”−アゾビス(2−メト
キシカルボニルプロパン)、2.2’−アゾビス(2−
フェニルプロピオニトリル)、2.2”−アゾビス(2
−メチル−3−クロロフェニルプロピオニトリル)、1
.1°−アゾビス(1,1°−ジフェニルメタン)、ト
ランス−3゜5−ジフェニル−1−ピラゾリン、1.l
” −アゾビス(1−シクロ−1−p−クロロフェニル
エタン)。
(Compound having a diazo group) 2.2''-azobis(2,4-dimethylvaleronitrile), 2,2°-azobis(isobutyronitrile), 4.
4'-azobis-4-cyanopentanoic acid, 2
.. 2'-azobis(2-amidinopropane) hydrochloride, 4
.. 4′-azobis-4-cyanovaleric acid, 2.2
° -azobis(2-methylvaleronitrile), 2.2
″-azobis(2,4-dimethylvalonitrile), 2,
2”-azobis(2-methylcapronitrile), 2.
2'-azobis(2,3,3-trimethylvaleronitrile), 2-phenylazo-2,4-dimethyl-4-methoxyvaleronitrile, 2-cyano-2=propylazoformamide, 1. lo -azobiscyclohexane-1-
Carbonitrile, 1,1"-azobis(cyclohexane-carbonitrile), ■, bi-azobis(cyclopentane-carbonitrile), 1,1°-azobis(cyclooctane-carbonitrile), 2,2'-azobis(
2゜4-dimethyl-4-methoxyvaleronitrile), 2
.. 2'-azobis(2,4-dimethyl-4-ethoxyvaleronitrile), 2,2'-azobis(2,4-dimethyl-4-n-butoxyvaleronitrile), 2.2''
-Azobis(2,4-dimethyl-4-benzyloxyvaleronitrile), 2,2゛-Azobis(2-nitropropane), 2.2"-Azobis(2-thiocyanato-propane), 2.2°- Azobis(2-thiophenylpropane), 2,2'-azobis(2-benzthiazole-
2″-thiopropane), 2.2″-azobis(2-methoxycarbonylpropane), 2.2′-azobis(2-
phenylpropionitrile), 2.2”-azobis(2
-methyl-3-chlorophenylpropionitrile), 1
.. 1°-azobis(1,1°-diphenylmethane), trans-3°5-diphenyl-1-pyrazoline, 1. l
” -azobis(1-cyclo-1-p-chlorophenylethane).

上記例示の触媒は、単独で使用してもよいし併用しても
差し支えはない。
The catalysts exemplified above may be used alone or in combination.

また、表面被覆に用いる、ビニル基を有する低分子物と
しては、■ビニル基を1個有する低分子物と、■ビニル
基を2個有する低分子物と、01個のビニル基と他の官
能基を有する低分子物との3種類のものがある。■のも
ののみを用いる場合には、無機粉体充填剤表面が単独重
合体によって表面被覆され、■と■を用いる場合には、
両者の共重合体によって無機粉体充填剤の表面が被覆さ
れる。また、■と■を併用する場合にも同様、両者の共
重合体により無機粉体充填剤が表面被覆される。
In addition, the low-molecular substances having a vinyl group used for surface coating include: (1) a low-molecular substance having one vinyl group, (2) a low-molecular substance having two vinyl groups, and (1) a low-molecular substance having one vinyl group and another functional group. There are three types of low molecular weight substances that have groups. When only ① is used, the surface of the inorganic powder filler is coated with a homopolymer, and when ① and ③ are used,
The surface of the inorganic powder filler is coated with both copolymers. Similarly, when (1) and (2) are used together, the surface of the inorganic powder filler is coated with the copolymer of both.

上記ビニル基を1個有する低分子物としては、アクリル
酸エステル類・アルキル基がメチル基。
Examples of the low molecular weight substances having one vinyl group include acrylic acid esters and alkyl groups that are methyl groups.

エチル基、n−プロピル基、直鎖ないしは分岐状のブチ
ル基、アミル、ヘキシル、オクチル、シクロヘキシル、
フェニル、2−エチルヘキシル基等からなるもの。メタ
クリル酸エステル類:アルキル基が炭素数1〜12の直
鎖状ないし分岐状である例えば、メチル基、プロピル基
、ブチル基、イソブチル基、ヘキシル基、シクロヘキシ
ル基、イソヘキシル基、オクチル基、ドデシル基、オク
タデシル基、フェニル基、ウンデシル基等からなるもの
であり、その代表例としてメタクリル酸オクタデシル、
メタクリル酸ヒドロキシエチル、メタクリル酸−2−エ
チルヘキシル等があげられる。
Ethyl group, n-propyl group, linear or branched butyl group, amyl, hexyl, octyl, cyclohexyl,
Those consisting of phenyl, 2-ethylhexyl groups, etc. Methacrylic acid esters: linear or branched alkyl groups having 1 to 12 carbon atoms, such as methyl, propyl, butyl, isobutyl, hexyl, cyclohexyl, isohexyl, octyl, dodecyl groups , octadecyl group, phenyl group, undecyl group, etc. Typical examples include octadecyl methacrylate,
Examples include hydroxyethyl methacrylate and 2-ethylhexyl methacrylate.

ビニルエステル類:酢酸ビニル、プロピオン酸ビニル、
ビニルブチラード等があげられる。ビニルエーテル類:
例えばアルキルビニルエーテルがあげられ、このアルキ
ル基としては、メチル、エチル、プロピル、ブチル、ア
ミル、ヘキシル等が好適なものとしてあげられる。ビニ
ルシアニド類:メタクリ口ニトリル、マレイックジニト
リル、ビニリデンジアニイド等があげられる。ビニルマ
レインミド類:(メタ)アクリルアミド、アクリル置換
(メタ)アクリルアミド等があげられ、代表例として、
N−メチルアクリルアミド、N、N−ジメチルアクリル
アミド等があげられる。ジエン類:イソプレン、クロロ
プレン、ブタジェン等があげられる。その他の単量体と
して、アクリロニトリル、メタクリロニトリル、ビニル
カルバゾール、ビニルホルマール、ビニルピロリドン、
0−ビニルベンジルアルコール、スチレン、o−、m−
3p−メチルスチレン、2.4−ジメチルスチレン、2
,5−ジメチルスチレン、3,4−ジメチルスチレン、
p−tert−ブチルスチレン、p−フェニルスチレン
、p−フェノキシスチレン、p−クロルスチレン、2,
5−ジクロルスチレン、α−メチルスチレン、α−ビニ
ルナフタレン等力あげられる。上記単量体は、単独で用
いてもよいし2種以上を併用してもよい。
Vinyl esters: vinyl acetate, vinyl propionate,
Examples include vinyl butyrad. Vinyl ethers:
Examples include alkyl vinyl ethers, and preferred examples of the alkyl group include methyl, ethyl, propyl, butyl, amyl, hexyl, and the like. Vinyl cyanide: Methacrylic nitrile, maleic dinitrile, vinylidene dianiide, etc. can be mentioned. Vinylmaleimides: (meth)acrylamide, acrylic-substituted (meth)acrylamide, etc., and representative examples include:
Examples include N-methylacrylamide and N,N-dimethylacrylamide. Dienes: Isoprene, chloroprene, butadiene, etc. Other monomers include acrylonitrile, methacrylonitrile, vinylcarbazole, vinyl formal, vinylpyrrolidone,
0-vinylbenzyl alcohol, styrene, o-, m-
3p-methylstyrene, 2,4-dimethylstyrene, 2
, 5-dimethylstyrene, 3,4-dimethylstyrene,
p-tert-butylstyrene, p-phenylstyrene, p-phenoxystyrene, p-chlorostyrene, 2,
Examples include 5-dichlorostyrene, α-methylstyrene, and α-vinylnaphthalene. The above monomers may be used alone or in combination of two or more.

また、ビニル基を2個有する低分子物としては、ジビニ
ルベンゼン、ジメタクリル酸モノエチレングリコール、
ジメタクリル酸テトラエチレングリコール、ジメタクリ
ル酸ネオペンチルグリコール、トリメタクリル酸トリメ
チロールプロパン、ジメタクリル酸−1,6−ヘキサン
ジオール、ジメタクリル酸ビスフェノールA1アクリル
酸ジエチレングリコール、ジアクリル酸テトラエチレン
グリコール、ジアクリル酸ネオペンチルグリコール、ジ
アクリル酸−1,5−ベンタンジオール、ジアクリル酸
−1,6−ヘキサンジオール、トリアクリル酸トリメチ
ロールプロパン等があげられる。これらも単独で使用し
てもよいし併用しても差し支えはない。
In addition, examples of low molecular weight substances having two vinyl groups include divinylbenzene, monoethylene glycol dimethacrylate,
Tetraethylene glycol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, 1,6-hexanediol dimethacrylate, bisphenol A1 dimethacrylate, diethylene glycol acrylate, tetraethylene glycol diacrylate, neo diacrylate Examples include pentyl glycol, 1,5-bentanediol diacrylate, 1,6-hexanediol diacrylate, and trimethylolpropane triacrylate. These may be used alone or in combination without any problem.

さらに、1個のビニル基と他の官能基を有する低分子物
としては、つぎのようなものがあげられる。
Further, examples of low molecular weight substances having one vinyl group and other functional groups include the following.

(エポキシ基を有する低分子物) メタクリル酸グリシジル、アクリル酸グリシジル等。(Low molecular compound with epoxy group) Glycidyl methacrylate, glycidyl acrylate, etc.

(カルボキシル基を有する低分子物) アクリル酸、メタクリル酸、α−クロロアクリル酸、α
−ブロムアクリル酸、α−シアノアクリルf11. W
、水マレイン酸、α−クロロマレイン酸。
(Low molecular weight substances with carboxyl groups) Acrylic acid, methacrylic acid, α-chloroacrylic acid, α
-bromoacrylic acid, α-cyanoacrylic f11. W
, hydromaleic acid, α-chloromaleic acid.

無水ジクロロマレイン酸、イタコン酸等。Dichloromaleic anhydride, itaconic acid, etc.

(水酸基を有する低分子物) メタクリル酸ヒドロキシエチル、アクリル酸ヒドロキシ
エチル等。
(Low molecular weight substances having hydroxyl groups) Hydroxyethyl methacrylate, hydroxyethyl acrylate, etc.

これらのものも単独でもしくは2種以上を併用してもよ
い。
These may be used alone or in combination of two or more.

なお、上記例示したビニル基を有する低分子物は、通常
、単量体から構成されるが、場合によっては、2量体を
用いてもよく、さらに、オリゴマーを用いても差し支え
はない。
Note that the above-exemplified low-molecular substances having a vinyl group are usually composed of monomers, but in some cases, dimers may be used, and oligomers may also be used.

上記のようにして得られた、ビニル基を有する低分子物
の重合体で表面被覆された無機粉体充填剤中のビニル基
を有する低分子物の重合体の量は、充填剤成分を除いた
エポキシ樹脂組成物(A+B)に対して3〜30%であ
ることが好ましい。
The amount of the low-molecular-weight polymer having vinyl groups in the inorganic powder filler whose surface is coated with the low-molecular-weight polymer having vinyl groups obtained as described above is The amount is preferably 3 to 30% based on the epoxy resin composition (A+B).

すなわち、含有量が上記の範囲をはずれると、得られる
半導体装置の信頬性が低下する傾向がみられるからであ
る。
That is, if the content is out of the above range, the reliability of the resulting semiconductor device tends to decrease.

なお、この発明に用いるエポキシ樹脂組成物には、必要
に応じて上記A成分ないしC成分以外に硬化促進剤が用
いられる。上記硬化促進剤としては、下記の三級アミン
、四級アンモニウム塩、イミダゾール類およびホウ素化
合物を好適な例としてあげることができ、これらを単独
でもしくは併せて用いることができる。
In addition, in the epoxy resin composition used in this invention, a curing accelerator may be used in addition to the above-mentioned components A to C, if necessary. Suitable examples of the curing accelerator include the following tertiary amines, quaternary ammonium salts, imidazoles, and boron compounds, which may be used alone or in combination.

三級アミン トリエタノールアミン、テトラメチルヘキサンジアミン
、トリエチレンジアミン、ジメチルアニリン、ジメチル
アミノエタノール、ジエチルアミノエタノール、2.4
.6−トリス(ジメチルアミノメチル)フェノール、N
、N′−ジメチルピペラジン、ピリジン、ピコリン、1
,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7
、ベンジルジメチルアミン、2−(ジメチルアミノ)メ
チルフェノール 四級アンモニウム塩 ドデシルトリメチルアンモニウムクロライド、セチルト
リメチルアンモニウムクロライド、ベンジルジメチルテ
トラデシルアンモニウムクロライド、ステアリルトリメ
チルアンモニウムクロライド イミダゾール類 2−メチルイミダゾール、2−ウンデシルイミダゾール
、2−エチルイミダゾール、1−ベンジル−2−メチル
イミダゾール、l−シアノエチル−2−ウンデシルイミ
ダゾールホウ素化合物 テトラフェニルボロン塩類、例えばトリエチレンアミン
テトラフェニルボレート、N−メチルモルホリンテトラ
フェニルボレートまた、必要に応じて、上記の原料以外
に、無機質充填材、三酸化アンチモン、リン系化合物等
の難燃剤や顔料を用いることができる。
Tertiary amine triethanolamine, tetramethylhexanediamine, triethylenediamine, dimethylaniline, dimethylaminoethanol, diethylaminoethanol, 2.4
.. 6-tris(dimethylaminomethyl)phenol, N
, N'-dimethylpiperazine, pyridine, picoline, 1
,8-diaza-bicyclo(5,4,0)undecene-7
, benzyldimethylamine, 2-(dimethylamino)methylphenol quaternary ammonium salt dodecyltrimethylammonium chloride, cetyltrimethylammonium chloride, benzyldimethyltetradecylammonium chloride, stearyltrimethylammonium chloride imidazoles 2-methylimidazole, 2-undecylimidazole , 2-ethylimidazole, 1-benzyl-2-methylimidazole, l-cyanoethyl-2-undecylimidazole, boron compounds, tetraphenylboron salts, such as triethyleneaminetetraphenylborate, N-methylmorpholinetetraphenylborate, and optionally Accordingly, in addition to the above raw materials, inorganic fillers, antimony trioxide, flame retardants such as phosphorus compounds, and pigments can be used.

この発明に用いられるエポキシ樹脂組成物は、例えばつ
ぎのようにして製造することができる。
The epoxy resin composition used in this invention can be produced, for example, as follows.

すなわち、上記(A)、(B)および(C)成分を、ま
た場合により顔料、カップリング剤等その他の添加量を
適宜配合し、この混合物をミキシングロール機等の混練
機にかけて加熱状態で混練して溶融混合し、これを室温
に冷却したのち公知の手段によって粉砕し、必要に応じ
て打錠するという一連の工程により目的とするエポキシ
樹脂組成物を得ることができる。
That is, the above components (A), (B), and (C) are blended together with appropriate amounts of pigments, coupling agents, etc., and the mixture is kneaded in a heated state using a kneading machine such as a mixing roll machine. The desired epoxy resin composition can be obtained through a series of steps of melt-mixing, cooling to room temperature, pulverizing by known means, and, if necessary, tableting.

このようなエポキシ樹脂組成物を用いての半導体素子の
封止は特に限定するものではなく、通常のトランスファ
ー成形等の公知のモールド方法により行うことができる
Sealing of a semiconductor element using such an epoxy resin composition is not particularly limited, and can be performed by a known molding method such as ordinary transfer molding.

このようにして得られる半導体装置は、上記工ボキシ樹
脂組成物中に、充填剤−エポキシマトリックス界面に発
生する内部応力を緩和する物質(C成分)を有しており
、耐熱衝撃性、耐湿信頼性に著しく優れたものとなる。
The semiconductor device obtained in this way has a substance (component C) that relieves internal stress generated at the filler-epoxy matrix interface in the above-mentioned engineered boxy resin composition, and has excellent thermal shock resistance and moisture resistance. It becomes extremely superior in quality.

〔発明の効果〕〔Effect of the invention〕

この発明の半導体装置は、上記ビニル基を有する低分子
物の重合体で表面被覆された無機粉体充填剤を含有する
特殊なエポキシ樹脂組成物を用いて封止されており、上
記封止樹脂中における上記表面被覆無機粉体充填剤の内
部応力緩和作用により、封止プラスチックパッケージが
従来のエポキシ樹脂組成物製のものと異なり極めて内部
応力が低くなる。したがって、耐湿信頬性、耐熱信頼性
が高く、しかも内部応力が小さく、信頼性の極めて高い
ものである。特に、上記特殊なエポキシ樹脂組成物によ
る封止により、8ピン以上、特に16ピン以上、もしく
はチップの長辺が4鶴以上の大形の半導体装置において
、上記のような高信頼度が得られるようになるのであり
、これが大きな特徴である。
The semiconductor device of the present invention is encapsulated using a special epoxy resin composition containing an inorganic powder filler whose surface is coated with the above-mentioned low-molecular-weight polymer having a vinyl group. Due to the internal stress-relaxing effect of the surface-coated inorganic powder filler inside, the sealed plastic package has extremely low internal stress, unlike those made of conventional epoxy resin compositions. Therefore, it has high moisture resistance, high heat resistance reliability, low internal stress, and extremely high reliability. In particular, by sealing with the above-mentioned special epoxy resin composition, the above-mentioned high reliability can be obtained in large semiconductor devices with 8 or more pins, especially 16 or more pins, or a chip with a long side of 4 cranes or more. This is a major feature.

つぎに、この発明を実施例に基づいて説明する。Next, the present invention will be explained based on examples.

〔実施例1〜12〕 まず、後記の第1表に示す過酸化物触媒を1%のトルエ
ン溶液にし、このトルエン溶液に無機粉体充填剤である
シリカ粒子(平均粒子径80μm)を添加混合したのち
、吸引濾過して風乾した。
[Examples 1 to 12] First, the peroxide catalyst shown in Table 1 below was made into a 1% toluene solution, and silica particles (average particle size 80 μm) as an inorganic powder filler were added and mixed to this toluene solution. After that, it was suction filtered and air-dried.

そして、得られたシリカ1 kgと、第1表に示すよう
な、アクリル酸ブチル等のビニル基を有する低分子物モ
ノマー200gを混合し、80℃で撹拌しながら2時間
重合させ、表面が重合体で被覆されたシリカ粒子をつく
った。シリカ粒子表面の重合体の被覆量は、灰分測定に
よって求めた。
Then, 1 kg of the obtained silica was mixed with 200 g of a low molecular weight monomer having a vinyl group such as butyl acrylate as shown in Table 1, and polymerized for 2 hours with stirring at 80°C until the surface became polymerized. Coalescence coated silica particles were created. The amount of polymer coating on the surface of the silica particles was determined by ash content measurement.

(以下余白) つぎに、上記のようにして得られた被覆シリカを用い、
これと、0−クレゾールノボラック型エポキシ樹脂およ
びフェノールノボラック型樹脂と第2表に示す原料とを
同表に示す割合で配合し、ミキシングロール機にかけて
100℃で10分間混練してシート状組成物を得た。つ
ぎに、このシート状組成物を粉砕し、目的とする粉末状
のエポキシ樹脂組成物を得た。
(Left below) Next, using the coated silica obtained as above,
This, an 0-cresol novolac type epoxy resin, a phenol novolac type resin, and the raw materials shown in Table 2 are blended in the proportions shown in the same table, and kneaded on a mixing roll machine at 100°C for 10 minutes to form a sheet composition. Obtained. Next, this sheet-like composition was pulverized to obtain the desired powdered epoxy resin composition.

(以下余白) C実施例13〜16〕 まず、実施例1で用いたと同様のシリカ粒子(平均粒子
径80μIII)をエポキシトリメトキシシラン(シラ
ンカップリング剤)の1%溶液に浸漬し吸引濾過したの
ち風乾した。このシリカ粒子は表面がシランカップリン
グ剤で疎水化された状態になっている。つぎに、この表
面処理シリカ粒子1 kgを第3表に示すポリアクリル
酸ブチル等の1%ポリマー溶液(トルエン溶液)3βに
浸漬して1時間攪拌し、ついでメタノール11を添加し
て吸引濾過し減圧乾燥して、3種類の被覆シリカ[相]
〜0をつくった。
(Space below) C Examples 13 to 16] First, silica particles similar to those used in Example 1 (average particle size 80 μIII) were immersed in a 1% solution of epoxytrimethoxysilane (silane coupling agent) and filtered by suction. It was then air-dried. The surfaces of these silica particles have been made hydrophobic with a silane coupling agent. Next, 1 kg of the surface-treated silica particles were immersed in a 1% polymer solution (toluene solution) 3β of butyl polyacrylate shown in Table 3, stirred for 1 hour, and then methanol 11 was added and filtered with suction. Dry under reduced pressure to obtain three types of coated silica [phases]
~0 was created.

(以下余白) つぎに、このようにして得られた被覆シリカ[相]〜@
を用い、これと各原料を第4表に示す割合で配合し、実
施例1〜12と同様にして粉末状エポキシ樹脂組成物を
得た。
(Left below) Next, the coated silica [phase] ~@
This and each raw material were blended in the proportions shown in Table 4, and powdered epoxy resin compositions were obtained in the same manner as in Examples 1 to 12.

(以下余白) 〔比較例1,2〕 両末端基がカルボキシル基になっているポリブタジェン
−アクリロニトリル共重合体として、宇部興産社製、H
YCARCTポリマー(CTBN  1300X8.粘
度;125000cps  (27℃)1分子ft13
500.アクリロニトリル含量i17%、カルボキシル
基含量; 2.37%〕を用い、第5表に示した組成に
従い、実施例1〜16と同様にして粉末状エポキシ樹脂
組成物を得た。
(Left below) [Comparative Examples 1 and 2] As a polybutadiene-acrylonitrile copolymer in which both terminal groups are carboxyl groups, H
YCARCT polymer (CTBN 1300X8. Viscosity: 125000cps (27℃) 1 molecule ft13
500. Powdered epoxy resin compositions were obtained in the same manner as Examples 1 to 16 according to the compositions shown in Table 5 using acrylonitrile content i of 17% and carboxyl group content 2.37%.

〔従来例〕[Conventional example]

後記の第5表に従って、各原料を配合し、実施例1〜1
6と同様にして粉末状エポキシ樹脂組成物を得た。
According to Table 5 below, each raw material was blended and Examples 1 to 1 were prepared.
A powdered epoxy resin composition was obtained in the same manner as in Example 6.

以上の実施例、比較例および従来例によって得られた粉
末状のエポキシ樹脂組成物を用い、半導体素子をトラン
スファー成形でモールドすることにより半導体装置を得
た。このようにして得られた半導体装置について、ピエ
ゾ抵抗による内部応力1曲げ弾性率、電圧印加状態にお
けるプレッシャー釜による1000時間の信顛性テスト
(以下rPCBTテスト」と略す)、−50℃15分−
150℃15分の2000回の温度サイクルテスト(以
下rTCTテスト」と略す)等の測定を行った。その結
果を下記の第6表に示した。なお、ガラス転移温度(T
g)は、粘弾性性質のtanδのピークを示す温度を示
した。
A semiconductor device was obtained by molding a semiconductor element by transfer molding using the powdered epoxy resin composition obtained in the above Examples, Comparative Examples, and Conventional Examples. The semiconductor device thus obtained was subjected to internal stress 1 bending elastic modulus due to piezoresistance, reliability test for 1000 hours using a pressure cooker under voltage application (hereinafter abbreviated as rPCBT test), -50°C for 15 minutes.
Measurements such as a temperature cycle test (hereinafter abbreviated as rTCT test) of 2000 times at 150° C. for 15 minutes were performed. The results are shown in Table 6 below. Note that the glass transition temperature (T
g) indicates the temperature at which the peak of tan δ of viscoelastic properties occurs.

(以下余白) 第6表の結果から、実施別品は、比較測高および従来測
高に比べてそのプラスチックパッケージの内部応力が小
さく、電気絶縁性も良好であって耐湿性、耐熱信頬性の
高いことがわかる。
(Left below) From the results in Table 6, it can be seen that the plastic package of the implemented product has lower internal stress, better electrical insulation, and better moisture resistance and heat resistance than the comparative height measurement and conventional height measurement products. It can be seen that the

Claims (3)

【特許請求の範囲】[Claims] (1)下記の(A)、(B)および(C)成分を含有し
ているエポキシ樹脂組成物を用いて半導体素子を封止し
てなる半導体装置。 (A)エポキシ樹脂。 (B)フェノール樹脂。 (C)ビニル基を有する低分子物の重合体で表面が被覆
された無機粉体充填剤。
(1) A semiconductor device in which a semiconductor element is sealed using an epoxy resin composition containing the following components (A), (B), and (C). (A) Epoxy resin. (B) Phenol resin. (C) An inorganic powder filler whose surface is coated with a low molecular weight polymer having vinyl groups.
(2)ビニル基を有する低分子物の重合体が、ビニル基
を1個有する低分子物と、ビニル基を2個有する低分子
物との共重合体である特許請求の範囲第1項記載の半導
体装置。
(2) Claim 1, wherein the polymer of a low molecular weight substance having a vinyl group is a copolymer of a low molecular weight substance having one vinyl group and a low molecular weight substance having two vinyl groups. semiconductor devices.
(3)ビニル基を有する低分子物の重合体が、ビニル基
を1個有する低分子物と、1個のビニル基と他の官能基
を有する低分子物との共重合体である特許請求の範囲第
1項記載の半導体装置。
(3) A patent claim in which the polymer of a low molecular weight substance having a vinyl group is a copolymer of a low molecular weight substance having one vinyl group and a low molecular weight substance having one vinyl group and another functional group. The semiconductor device according to item 1.
JP29073586A 1986-12-05 1986-12-05 Semiconductor device Pending JPS63142839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29073586A JPS63142839A (en) 1986-12-05 1986-12-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29073586A JPS63142839A (en) 1986-12-05 1986-12-05 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63142839A true JPS63142839A (en) 1988-06-15

Family

ID=17759841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29073586A Pending JPS63142839A (en) 1986-12-05 1986-12-05 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63142839A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496929A (en) * 1990-08-14 1992-03-30 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JP2003128956A (en) * 2001-07-12 2003-05-08 National Cheng Kung Univ Method for treating surface in order to prepare water- resistant aluminum nitride powder
JP2006328349A (en) * 2005-04-26 2006-12-07 Tokuyama Corp Filler for epoxy resin composition
JP2008056776A (en) * 2006-08-30 2008-03-13 Canon Inc Nano-oxide particle and its manufacturing method
SG141222A1 (en) * 2003-12-04 2008-04-28 Sumitomo Bakelite Singapore Pt Semiconductor devices containing epoxy moulding compositions and the compositions per se
JP2014122286A (en) * 2012-12-21 2014-07-03 Shizuokaken Koritsu Daigaku Hojin Resin composition, resin-molded product and semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496929A (en) * 1990-08-14 1992-03-30 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JP2003128956A (en) * 2001-07-12 2003-05-08 National Cheng Kung Univ Method for treating surface in order to prepare water- resistant aluminum nitride powder
SG141222A1 (en) * 2003-12-04 2008-04-28 Sumitomo Bakelite Singapore Pt Semiconductor devices containing epoxy moulding compositions and the compositions per se
JP2006328349A (en) * 2005-04-26 2006-12-07 Tokuyama Corp Filler for epoxy resin composition
JP2008056776A (en) * 2006-08-30 2008-03-13 Canon Inc Nano-oxide particle and its manufacturing method
JP2014122286A (en) * 2012-12-21 2014-07-03 Shizuokaken Koritsu Daigaku Hojin Resin composition, resin-molded product and semiconductor device

Similar Documents

Publication Publication Date Title
JP5736776B2 (en) Vinyl polymer powder, curable resin composition, and cured product
JP5349432B2 (en) Manufacturing method of electronic component device and resin composition sheet for sealing electronic component used therefor
JPH02222441A (en) Sealing resin composition and resin-sealed semiconductor device
CN104011098A (en) Polymer powder, curable resin composition, and cured product thereof
CN106833465A (en) A kind of lower glass transition temperatures use for electronic products insulating cement and its preparation method and application
JPS63142839A (en) Semiconductor device
JP2006022195A (en) Curable resin composition, adhesive epoxy resin sheet an circuit board joint product
KR20110131271A (en) (meth)acrylate polymer, resin composition, and molded article
Lungu et al. Polyhedral oligomeric silsesquioxanes nanoreinforced methacrylate/epoxy hybrids
JPS6293962A (en) Semiconductor device
JPS61208856A (en) Semiconductor device
JP2503067B2 (en) Epoxy composition
JPS6199356A (en) Semiconductor device
JPS62147749A (en) Semiconductor device
JPH093167A (en) Resin composition and resin-sealed semiconductor device made by using the same
JPS61296020A (en) Epoxy resin liquid composition for sealing electronic part
JPH0472319A (en) Epoxy resin composition and cured product thereof
Shen et al. Polysiloxane/polyacrylate composite latexes with balanced mechanical property and breathability: Effect of core/shell mass ratio
JPS6222850A (en) Epoxy resin composition and production thereof
JPS62106948A (en) Ic sealing composition
JPS61222152A (en) Semiconductor device
JPS6222849A (en) Epoxy resin composition and production thereof
JP2000072986A (en) Epoxy resin powder coating material
JPS62214650A (en) Semiconductor device
JP2005082626A (en) Heat-resistant resin composition