JPS63142310A - Optical connecting method - Google Patents

Optical connecting method

Info

Publication number
JPS63142310A
JPS63142310A JP28782086A JP28782086A JPS63142310A JP S63142310 A JPS63142310 A JP S63142310A JP 28782086 A JP28782086 A JP 28782086A JP 28782086 A JP28782086 A JP 28782086A JP S63142310 A JPS63142310 A JP S63142310A
Authority
JP
Japan
Prior art keywords
optical
groove
substrate
optical fiber
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28782086A
Other languages
Japanese (ja)
Inventor
Mitsukazu Kondo
充和 近藤
Yasuhisa Tanizawa
谷澤 靖久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28782086A priority Critical patent/JPS63142310A/en
Publication of JPS63142310A publication Critical patent/JPS63142310A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the need for position adjustment by providing grooves while have center axes aligned with optical waveguides on a substrate where the optical waveguides are formed, and installing optical fibers therein. CONSTITUTION:A 1st groove 5 which has its center axis at right angles to the light transmission direction of the optical waveguides 2 and 3 formed on the substrate 1 and a 2nd groove 8 which has its center axis in the light transmission direction of the optical waveguides 2 and 3 and has its one end in the 1st groove 5 are provided in the surface of the substrate 1. Then, the optical fibers 10 and 11 are installed in the 2nd grooves 8 and 9, and the optical fibers 10 and 11 and optical waveguides 2 and 3 are coupled optically with each other. Consequently, an optical connecting method for the optical waveguides 2 and 3 and optical fibers 10 and 11 which facilitates the adjustment and is small in loss increase at the time of fixation is obtained.

Description

【発明の詳細な説明】 =産業上の利用分野〕 本発明は、光通信や光情報処理等で使われる光デバイス
の光接続方法に関し、特に光を基板上に設けた光導波路
中に閉じ込めて制御を行う導波形光デバイスと光ファイ
バとの接続方法に関する。
[Detailed Description of the Invention] = Industrial Application Field] The present invention relates to an optical connection method for optical devices used in optical communication, optical information processing, etc., and in particular to a method for confining light in an optical waveguide provided on a substrate. The present invention relates to a method of connecting a waveguide optical device for control and an optical fiber.

〔従来の技術〕[Conventional technology]

光通信技術の発展に伴って、益々高度の性能。 With the development of optical communication technology, increasingly advanced performance.

機能をもった光デバイスの実現が望まれている。The realization of functional optical devices is desired.

例えば、光伝送路網の交換機能、光データバスにおける
端末間高速切り換え機能等を実現するために高速、広帯
域の光スィッチが必要であり、光信号の多重化、端末へ
の分配等を行うためには多チャンネルの分波器、スター
カップラー等のデバイスが必要である。
For example, high-speed, wide-band optical switches are required to realize switching functions in optical transmission networks, high-speed switching functions between terminals in optical data buses, etc., and to multiplex optical signals and distribute them to terminals. requires devices such as multi-channel duplexers and star couplers.

現在実用されている上述のような機能をもつ光デバイス
は主として、従来のプリズム、レンズ等を使ったバルク
形のデバイスであり、スイッチ速度、多重度等の性能面
でも不十分であり、また形状が大きく、集積化に不向き
等の問題がある。
The optical devices currently in use with the above functions are mainly bulk-type devices using conventional prisms, lenses, etc., and are insufficient in terms of performance such as switching speed and multiplicity. There are problems such as large size and unsuitability for integration.

このような問題を解決する手段として、基板上に設置し
た光導波路を用゛いて光を制御する導波形の光デバイス
の開発が進められている。鹿波形光デバイスは、光が微
小な導波路中に閉じ込められるので小形で集積化に適し
たデバイスであり、また、非常に高効率の光制御デバイ
ス、例えば光スィッチ、光変調器が実現できる。
As a means to solve these problems, progress is being made in the development of waveguide-type optical devices that control light using optical waveguides installed on a substrate. Since the deer waveform optical device confines light in a minute waveguide, it is a small device suitable for integration, and it can also be used to realize extremely highly efficient optical control devices such as optical switches and optical modulators.

導波形光デバイスを光通信システムに適用する場合、入
出力部に光ファイバを接続する必要があるが、従来、そ
の接続には光ファイバを個々に調整して、光導波路端面
に固着する方法がとられている。
When applying a waveguide optical device to an optical communication system, it is necessary to connect optical fibers to the input and output sections. Conventionally, the method for this connection was to adjust the optical fibers individually and fix them to the end face of the optical waveguide. It is taken.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の光接続方法によれば、光導波路と光ファイバの端
面とを接続する場合、光ファイバ、光導波路ともその光
フィールド分布の広がりは通常10μm程度かそれ以下
であるので、非常に高精度の調整を必要とし、多大の調
整工数を必要とする。
According to the conventional optical connection method, when connecting an optical waveguide and an end face of an optical fiber, the spread of the optical field distribution for both the optical fiber and the optical waveguide is usually about 10 μm or less, so it is possible to connect the end face of an optical waveguide and an optical fiber with very high precision. It requires adjustment and requires a large amount of adjustment man-hours.

また、光ファイバ、光導波路両者を固着する場合には、
接着剤や金属融着が使われるが、完全に固着されるまで
に位置ずれを生じやすく結合損失の増加を生じやすいと
いう欠点があった。特に多チャンネルの光導波路と光フ
アイバアレイとを接続する場合には、調整工数や固着時
の損失増加も大きくなり、安価で高性能な光フアイバ入
出力端子をもった光デバイスは得られないという問題が
あった。
In addition, when fixing both optical fiber and optical waveguide,
Adhesives and metal fusion are used, but they have the disadvantage that they tend to shift in position before they are completely fixed, resulting in an increase in bonding loss. In particular, when connecting multi-channel optical waveguides and optical fiber arrays, the number of adjustment steps and the increase in loss during fixation become large, making it impossible to obtain optical devices with inexpensive and high-performance optical fiber input/output terminals. There was a problem.

本発明の目的は、上述の従来の光接続方法の欠点を除き
、調整が容易で固着時の損失増加が小さい光導波路と光
ファイバの光接続方法を提供することにある。
An object of the present invention is to provide an optical connection method for optical waveguides and optical fibers that eliminates the drawbacks of the conventional optical connection methods described above, is easy to adjust, and has a small increase in loss when fixed.

〔問題点を解決するための手段〕[Means for solving problems]

第1の本発明は、基板上に設置した光導波路の光透過方
向に垂直な方向に中心軸をもつ第1の溝と、前記光導波
路の光透過方向に一致した中心軸をもち、前記第1の溝
に一端をもつ第2の溝を前記基板表面に設け、前記第2
の溝中に光ファイバを設置して、この光ファイバと前記
光導波路とを光学的に結合することを特徴としている。
A first aspect of the present invention includes a first groove having a central axis in a direction perpendicular to the light transmission direction of the optical waveguide installed on a substrate, and a central axis coinciding with the light transmission direction of the optical waveguide; a second groove having one end in the first groove is provided on the substrate surface;
It is characterized in that an optical fiber is installed in the groove, and the optical fiber and the optical waveguide are optically coupled.

第2の本発明は、基板上に設置した光導波路の光透過方
向に垂直な方向に中心軸をもつ第1の溝と、前記光導波
路の光透過方向に一致した中心軸をもち、前記第1の溝
に一端をもつ第2の溝を前記基板表面に機械的な切削手
段によって形成し、前記第2の溝中に光ファイバを設置
して、この光ファイバと前記光導波路とを光学的に結合
する光接続方法であって、前記第1の溝が形成される基
板表面に板を接着し、その上から前記第1の溝を形成す
ることを特徴としている。
A second aspect of the present invention has a first groove having a central axis in a direction perpendicular to the light transmission direction of the optical waveguide installed on a substrate, and a first groove having a central axis coincident with the light transmission direction of the optical waveguide, and A second groove having one end in the first groove is formed on the surface of the substrate by mechanical cutting means, an optical fiber is installed in the second groove, and the optical fiber and the optical waveguide are optically connected. This optical connection method is characterized in that a plate is adhered to the surface of the substrate on which the first groove is formed, and the first groove is formed thereon.

第3の本発明は、基板上に設置した光導波路の光透過方
向に垂直な方向に中心軸をもつ第1の溝と、前記光導波
路の光透過方向に一致した中心軸をもち、前記第1の溝
に一端をもつ第2の溝を前記基板表面に機械的な切削手
段によって形成し、前記第2の溝中に光ファイバを設置
してこの光ファイバと前記光導波路とを光学的に結合す
る光接続方法であって、前記第1及び第2の溝が形成さ
れる基板表面に、溝形成前に薄膜状の物質をコーティン
グすることを特徴としている。
A third aspect of the present invention provides a first groove having a central axis in a direction perpendicular to the light transmission direction of the optical waveguide installed on the substrate, and a central axis coinciding with the light transmission direction of the optical waveguide; A second groove having one end in the first groove is formed on the surface of the substrate by mechanical cutting means, an optical fiber is installed in the second groove, and the optical fiber and the optical waveguide are optically connected. The optical connection method is characterized in that the surface of the substrate on which the first and second grooves are formed is coated with a thin film-like substance before forming the grooves.

〔作用〕[Effect]

本発明では、光導波路が設置された基板上に、その光導
波路と中心軸が一致した溝を設けてその中に光ファイバ
を設置することによって位置調整を不要にしている。但
し、上記溝は、通常光ファイバの半径程度の深さを必要
とし、かつ光導波路端面が露出する面が垂直であること
が要求されるのでそのままでは実現が難しい。例えばイ
オンビームエツチングや反応性プラズマエツチング等の
ドライエツチングを用いて溝を加工する場合には、光導
波路端面の垂直性は得られるが深い溝の形成は困難であ
る。一方、グイシングツ−等を使った機械的切削により
溝を加工する場合には、ドライエツチングよりも簡便に
加工でき、深い溝も容易に得られるという特長があるが
、光導波路端面の垂直性は得られない。
In the present invention, a groove whose center axis coincides with that of the optical waveguide is provided on the substrate on which the optical waveguide is installed, and the optical fiber is installed in the groove, thereby eliminating the need for position adjustment. However, the groove normally requires a depth approximately equal to the radius of the optical fiber, and the surface on which the end face of the optical waveguide is exposed is required to be vertical, so it is difficult to realize it as is. For example, when a groove is processed using dry etching such as ion beam etching or reactive plasma etching, verticality of the end face of the optical waveguide can be obtained, but it is difficult to form a deep groove. On the other hand, when forming grooves by mechanical cutting using a cutting tool, etc., it is easier to process than dry etching, and deep grooves can be easily obtained, but the perpendicularity of the optical waveguide end face is not achieved. I can't.

そこで本発明では、さらに上記溝に直交してもう1本の
溝を機械的切削により設け、その側壁に光導波路端面を
露出させることによって垂直な光導波路端面を得ている
。このように直交する溝を設けることによって、上記の
条件を満たす溝、即ち深さが光ファイバの半径程度で光
導波路端が垂直な溝が得られる。この溝中に光ファイバ
を埋め込み、上部から圧力を加えて固着することによっ
て固着時の光ファイバの位置ずれも従来より大幅に減少
できる。
Therefore, in the present invention, another groove is provided by mechanical cutting perpendicular to the above-mentioned groove, and the end face of the optical waveguide is exposed on the side wall of the groove, thereby obtaining a vertical end face of the optical waveguide. By providing orthogonal grooves in this manner, it is possible to obtain a groove that satisfies the above conditions, that is, a groove whose depth is approximately the radius of the optical fiber and whose optical waveguide end is perpendicular. By embedding the optical fiber in this groove and fixing it by applying pressure from above, the displacement of the optical fiber during fixing can be significantly reduced compared to the conventional method.

また本発明によれば、溝形成前に基板表面に板あるいは
薄膜を形成しておくことにより、機械的切削によって溝
エツジ部分にクランクが入るのを防止することができる
Further, according to the present invention, by forming a plate or a thin film on the substrate surface before forming the groove, it is possible to prevent a crank from entering the groove edge portion due to mechanical cutting.

(実施例〕 以下図面を参照して本発明の詳細な説明する。(Example〕 The present invention will be described in detail below with reference to the drawings.

第1図(a)、(b’lは第1の本発明による光接続方
法の一実施例を示す図であり、(a)は溝に光ファイバ
を設置した場合の斜視図、(b)は溝の加工方法を示す
断面図である。
FIGS. 1(a) and 1(b'l) are diagrams showing an embodiment of the optical connection method according to the first invention, in which (a) is a perspective view when an optical fiber is installed in a groove, and (b) FIG. 2 is a cross-sectional view showing a groove processing method.

第1図(a)において、ニオブ酸リチウム基板1の上に
Tiを拡散して形成された光導波路2及び3により光方
向性結合器4が形成されている。
In FIG. 1(a), an optical directional coupler 4 is formed by optical waveguides 2 and 3 formed on a lithium niobate substrate 1 by diffusing Ti.

ここで光導波路2及び3の幅は数〜十μm、深さは数μ
mである。先ず光導波路2及び3の光透過方向に垂直な
方向に機械的切削によって第1の溝5を形成する。これ
により、溝5の側壁には光導波路2.3の端面6及び7
が露出し、これら端面を端面6及び7の面に一致させて
光導波路2及び3に垂直な方向に移動させることによっ
て容易に得られる。さらに、本実施例においては、光導
波路2.3の光透過方向に一致した中心軸をもつ溝8及
び9を溝5の端面6及び7に相対向する位置に機械的切
削により形成する。溝8,9の深さはいずれも60μm
前後であり、幅はいずれも埋め込まれるべき光ファイバ
の直径にほぼ一致させるものとする。
Here, the width of the optical waveguides 2 and 3 is several to ten μm, and the depth is several μm.
It is m. First, the first groove 5 is formed by mechanical cutting in a direction perpendicular to the light transmission direction of the optical waveguides 2 and 3. As a result, the end faces 6 and 7 of the optical waveguide 2.3 are provided on the side wall of the groove 5.
is exposed and can be easily obtained by moving these end faces in a direction perpendicular to the optical waveguides 2 and 3 so as to match the faces of the end faces 6 and 7. Further, in this embodiment, grooves 8 and 9 having central axes that coincide with the light transmission direction of the optical waveguide 2.3 are formed by mechanical cutting at positions opposite to the end surfaces 6 and 7 of the groove 5. The depth of grooves 8 and 9 are both 60 μm
Both widths are approximately equal to the diameter of the optical fiber to be embedded.

次に、これら溝8,9の中に、それぞれ直径が125μ
mでコア径が10μm程度の光ファイバ10及び11を
、埋め込む。この場合、光ファイバ10.11を溝8.
9の底に押しつけた場合に、光ファイバ10.11の中
心軸が光導波路2.3の中心軸に一致するように設定さ
れている。また、光ファイバ10゜11は、その端面が
光導波路の端面6,7との間が数+μm程度以下の間隔
となるよう出来るだけ近接して設置されている。また、
光ファイバ10.11の上方より仮で圧力を加えて接着
剤等で光ファイバ10.11を固着することができる。
Next, in each of these grooves 8 and 9, a diameter of 125μ is inserted.
Optical fibers 10 and 11 having a diameter of about 10 μm and a core diameter of about 10 μm are embedded. In this case, the optical fiber 10.11 is inserted into the groove 8.
The center axis of the optical fiber 10.11 is set to coincide with the center axis of the optical waveguide 2.3 when pressed against the bottom of the optical fiber 10.11. Further, the optical fibers 10.degree. 11 are installed as close as possible to the end surfaces 6, 7 of the optical waveguides so that the distance between them is less than a few micrometers or less. Also,
The optical fiber 10.11 can be fixed with an adhesive or the like by temporarily applying pressure from above the optical fiber 10.11.

この場合、溝8.9の幅は光ファイバ10.11の直径
にほぼ一敗しており、グイシングツ−により溝の加工精
度は±1μm以下が容易に得られるので、固着による位
置ずれは小さく、光結合損失の増加も小さい。
In this case, the width of the groove 8.9 is almost the same as the diameter of the optical fiber 10.11, and the groove machining accuracy can easily be ±1 μm or less using the guiding tool, so the positional deviation due to sticking is small. The increase in optical coupling loss is also small.

以上の実施例では、溝5の深さを均一としたが、均一で
ある必要はなく、端面6,7の近傍でのみ他より深くし
てもよい。
In the above embodiment, the depth of the groove 5 is uniform, but it does not have to be uniform and may be deeper only in the vicinity of the end faces 6 and 7.

また、以上の実施例では、溝5,8.9はすべて機械的
切削により形成したが、溝5の形成については、溝5を
機械的切削による形成後又は形成前に光導波路の端面6
,7の表面から導波路下部の深さ、即ち数μmの深さ程
度まで他のエツチング手段、例えばドライエツチングや
レーザによる加熱を利用したウェットエツチング等によ
って削ることにより、端面6,7をより平坦化すること
ができる。
Furthermore, in the above embodiments, the grooves 5, 8, and 9 were all formed by mechanical cutting.
, 7 to the depth of the lower part of the waveguide, that is, to a depth of several μm, by other etching means, such as dry etching or wet etching using laser heating, to make the end surfaces 6 and 7 more flat. can be converted into

第2図は、第2の本発明の一実施例を示す断面図である
。本実施例によれば、ニオブ酸リチウム基板1上に設け
た光導波路21が、形成されるであろう第1の溝22に
接する部分の表面に保護用の板23、例えば基板と同じ
ニオブ酸リチウムやガラス等からなる厚さ数百μm〜1
mmの板を接着し、その上から第1の溝22をグイシン
グツ−によって形成する。
FIG. 2 is a sectional view showing an embodiment of the second invention. According to this embodiment, a protective plate 23 is provided on the surface of the portion of the optical waveguide 21 provided on the lithium niobate substrate 1 in contact with the first groove 22 that will be formed, for example, with the same niobate as the substrate. Made of lithium, glass, etc., with a thickness of several hundred μm to 1
mm plates are glued together and a first groove 22 is formed thereon using a guising tool.

通常、グイシングツ−等の機械的切削手段によって基板
表面に溝を形成した場合には、その溝のエツジ部分にク
ラックが入る場合がある。本実施例では光導波路21上
に保護板23を接着しておくことによって、溝22を形
成するときに光導波路21の端面にクラックが入るのを
防止することができる。
Normally, when grooves are formed on the surface of a substrate by mechanical cutting means such as a cutting tool, cracks may occur at the edges of the grooves. In this embodiment, by bonding the protective plate 23 onto the optical waveguide 21, it is possible to prevent cracks from forming on the end face of the optical waveguide 21 when forming the groove 22.

なお、光ファイバ24の埋め込みは、第1図の実施例と
同様に行われる。
Incidentally, the embedding of the optical fiber 24 is performed in the same manner as in the embodiment shown in FIG.

第3図は、第3の本発明の一実施例を示す断面図である
。本実施例は、第2図の実施例と同様に溝形成時に光導
波路端面に生ずるクランクを防止するために、光導波路
21上に薄膜25をコーティングする。薄膜25の材料
としては、Cr、Au+ Ti、 A/等の金属膜、S
iO□、S i3N4等の絶縁膜又はそれらの複合多層
膜等を用いることができ、厚さは数百〜敵方nmである
FIG. 3 is a sectional view showing an embodiment of the third invention. In this embodiment, like the embodiment shown in FIG. 2, a thin film 25 is coated on the optical waveguide 21 in order to prevent cranks from occurring on the end face of the optical waveguide during groove formation. Materials for the thin film 25 include metal films such as Cr, Au+Ti, A/, etc.
An insulating film such as iO□, Si3N4, or a composite multilayer film thereof can be used, and the thickness is several hundred to nanometers.

本実施例では、薄膜25を第1及び第2の溝形成前にこ
れらの溝が形成される部分のみエツチング等の方法によ
って取り除き、その薄膜パターンを基準にして溝を形成
することによって溝の位置合わせを容易にすることがで
きる。
In this embodiment, before forming the first and second grooves, only the portions of the thin film 25 where these grooves are to be formed are removed by a method such as etching, and the grooves are formed based on the thin film pattern, thereby determining the position of the grooves. It can be easily matched.

以上の各実施例においては基板としてニオブ酸リチウム
基板を用いたが、基板材料としてはガラス基板、半導体
基板等いかなる材料であっても本発明を適用することが
可能である。
Although a lithium niobate substrate was used as the substrate in each of the above embodiments, the present invention can be applied to any material such as a glass substrate or a semiconductor substrate as the substrate material.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、従来よりも調整が
容易でしかも、固着時の損失増加が小さい光導波路と光
ファイバの光接続方法が得られる。
As described above, according to the present invention, it is possible to obtain an optical connection method between an optical waveguide and an optical fiber, which is easier to adjust than the conventional method and has a small increase in loss during fixation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の本発明による光接続方法の一実施例を示
す図であり、第1図(a)は斜視図、第1図(b)は断
面図、 第2図は第2の本発明による光接続方法の一実施例を示
す断面図、 第3図は第3の本発明による光接続方法の一実施例を示
す断面図である。 1・・・・・・・ニオブ酸リチウム基板2.3.21・
・・光導波路 5.22・・・・・第1の溝 8.9・・・・・光ファイバを挿入するための第2の溝 10.11.24・・・・光ファイバ 代理人 弁理士  岩 佐  義 幸 (a) ノ    j (b) 第1図
FIG. 1 is a diagram showing an embodiment of the optical connection method according to the first invention, in which FIG. 1(a) is a perspective view, FIG. 1(b) is a sectional view, and FIG. FIG. 3 is a sectional view showing an embodiment of the optical connection method according to the present invention. FIG. 3 is a sectional view showing an embodiment of the optical connection method according to the third invention. 1... Lithium niobate substrate 2.3.21.
... Optical waveguide 5.22 ... First groove 8.9 ... Second groove for inserting optical fiber 10.11.24 ... Optical fiber agent Patent attorney Yoshiyuki Iwasa (a) no j (b) Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)基板上に設置した光導波路の光透過方向に垂直な
方向に中心軸をもつ第1の溝と、前記光導波路の光透過
方向に一致した中心軸をもち、前記第1の溝に一端をも
つ第2の溝を前記基板表面に設け、前記第2の溝中に光
ファイバを設置して、この光ファイバと前記光導波路と
を光学的に結合することを特徴とする光接続方法。
(1) A first groove having a central axis in a direction perpendicular to the light transmission direction of the optical waveguide installed on the substrate; An optical connection method characterized in that a second groove having one end is provided on the surface of the substrate, an optical fiber is installed in the second groove, and the optical fiber and the optical waveguide are optically coupled. .
(2)第1及び第2の溝を機械的な切削手段によって形
成することを特徴とする特許請求の範囲第1項記載の光
接続方法。
(2) The optical connection method according to claim 1, wherein the first and second grooves are formed by mechanical cutting means.
(3)第1の溝を機械的な切削手段と他のエッチング手
段の両方によって形成し、第2の溝を機械的な切削手段
によって形成することを特徴とする特許請求の範囲第1
項記載の光接続方法。
(3) The first groove is formed by both mechanical cutting means and other etching means, and the second groove is formed by mechanical cutting means.
Optical connection method described in section.
(4)基板上に設置した光導波路の光透過方向に垂直な
方向に中心軸をもつ第1の溝と、前記光導波路の光透過
方向に一致した中心軸をもち、前記第1の溝に一端をも
つ第2の溝を前記基板表面に機械的な切削手段によって
形成し、前記第2の溝中に光ファイバを設置して、この
光ファイバと前記光導波路とを光学的に結合する光接続
方法であって、前記第1の溝が形成される基板表面に板
を接着し、その上から前記第1の溝を形成することを特
徴とする光接続方法。
(4) a first groove having a central axis in a direction perpendicular to the light transmission direction of the optical waveguide installed on the substrate; A second groove having one end is formed on the surface of the substrate by mechanical cutting means, an optical fiber is installed in the second groove, and the optical fiber is optically coupled to the optical waveguide. 1. An optical connection method, comprising: adhering a plate to the surface of the substrate on which the first groove is to be formed, and forming the first groove thereon.
(5)基板上に設置した光導波路の光透過方向に垂直な
方向に中心軸をもつ第1の溝と、前記光導波路の光透過
方向に一致した中心軸をもち、前記第1の溝に一端をも
つ第2の溝を前記基板表面に機械的な切削手段によって
形成し、前記第2の溝中に光ファイバを設置してこの光
ファイバと前記光導波路とを光学的に結合する光接続方
法であって、前記第1及び第2の溝が形成される基板表
面に、溝形成前に薄膜状の物質をコーティングすること
を特徴とする光接続方法。
(5) a first groove having a central axis in a direction perpendicular to the light transmission direction of the optical waveguide installed on the substrate; an optical connection in which a second groove having one end is formed on the surface of the substrate by mechanical cutting means, an optical fiber is installed in the second groove, and the optical fiber and the optical waveguide are optically coupled; 1. An optical connection method, characterized in that the surface of the substrate on which the first and second grooves are formed is coated with a thin film-like substance before forming the grooves.
JP28782086A 1986-12-04 1986-12-04 Optical connecting method Pending JPS63142310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28782086A JPS63142310A (en) 1986-12-04 1986-12-04 Optical connecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28782086A JPS63142310A (en) 1986-12-04 1986-12-04 Optical connecting method

Publications (1)

Publication Number Publication Date
JPS63142310A true JPS63142310A (en) 1988-06-14

Family

ID=17722186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28782086A Pending JPS63142310A (en) 1986-12-04 1986-12-04 Optical connecting method

Country Status (1)

Country Link
JP (1) JPS63142310A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04315109A (en) * 1991-04-12 1992-11-06 Nec Corp Optical connector and working method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155616A (en) * 1984-08-24 1986-03-20 Shimadzu Corp Manufacture of light shunt
JPS63115113A (en) * 1986-10-31 1988-05-19 Brother Ind Ltd Connection structure between light guide and optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155616A (en) * 1984-08-24 1986-03-20 Shimadzu Corp Manufacture of light shunt
JPS63115113A (en) * 1986-10-31 1988-05-19 Brother Ind Ltd Connection structure between light guide and optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04315109A (en) * 1991-04-12 1992-11-06 Nec Corp Optical connector and working method thereof

Similar Documents

Publication Publication Date Title
EP0571924B1 (en) Method of connecting an optical fiber to an optical waveguide
US5812720A (en) Procedure and device for the assembly of the ends of optical fibers arranged in the form of a sheet
US5218663A (en) Optical waveguide device and method for connecting optical waveguide and optical fiber using the optical waveguide device
JPH1010362A (en) Optical integrated circuit having passively adjusted fibers
KR20010043236A (en) Coupling optical fibre to waveguide
US4317699A (en) Method for manufacture of branch element
JPH0990171A (en) Multi-conductor micro capillary, and connecting method for optical waveguide circuit using it and optical fiber
JP2550890B2 (en) Optical waveguide connection structure and manufacturing method thereof
US4402568A (en) Method and apparatus for an optical four-gate coupler
JP3116979B2 (en) Optical coupling structure between optical waveguides
JP2002277661A (en) Method for cutting out optical waveguide device
JPH05181036A (en) Optical device having optical integrated element and manufacture thereof
US20040247248A1 (en) Passive alignment between waveguides and optical components
JPS6155616A (en) Manufacture of light shunt
JPS63142310A (en) Optical connecting method
JPH059685Y2 (en)
JPS61267010A (en) Optical waveguide circuit and its manufacture
JPH10133041A (en) Waveguide with filter
JPS6360410A (en) Optical device
JP2613880B2 (en) Connection method between optical waveguide and optical fiber
JP2628682B2 (en) Optical waveguide component and its connection method
JPH09258044A (en) Optical filter-containing waveguide type optical device
JPH1020146A (en) Connection structure and method of optical waveguide and optical fiber
JPH02181709A (en) Method for coupling plane optical waveguide and optical fiber
JPH063555A (en) Optical branching device