JPS631416A - Gas adsorbing purification method - Google Patents

Gas adsorbing purification method

Info

Publication number
JPS631416A
JPS631416A JP61142854A JP14285486A JPS631416A JP S631416 A JPS631416 A JP S631416A JP 61142854 A JP61142854 A JP 61142854A JP 14285486 A JP14285486 A JP 14285486A JP S631416 A JPS631416 A JP S631416A
Authority
JP
Japan
Prior art keywords
gas
adsorption
pressure
valve
adsorption bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61142854A
Other languages
Japanese (ja)
Other versions
JPH0456648B2 (en
Inventor
Tadayoshi Tomita
冨田 忠義
Takayuki Sakamoto
隆幸 坂本
Toshihiro Ishida
石田 寿広
Atsushi Moriya
篤 森谷
Umetaro Okamo
大加茂 梅太郎
Takeji Yoneyama
米山 武次
Giichi Noguchi
義一 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Residual Oil Processing
Original Assignee
Research Association for Residual Oil Processing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Residual Oil Processing filed Critical Research Association for Residual Oil Processing
Priority to JP61142854A priority Critical patent/JPS631416A/en
Publication of JPS631416A publication Critical patent/JPS631416A/en
Publication of JPH0456648B2 publication Critical patent/JPH0456648B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To increase purging effect by storing for a while part of the gas discharged out of the parallel flow pressure reducing process in the pressure swinging method and discharging the effluent gas out, starting with the gas of higher concentration of adsorbing component, to an adsorption bed carrying out desorption process. CONSTITUTION:Raw material gas is introduced to an adsorption bed 2 to adsorb impurities, and after product gas is removed from valve 25 and adsorbed, the pressure is reduced through a valve 24 to be used for pressurizing the adsorption bed 4, and then the gas is further reduced through a valve 23 to be stored in a gas storage 5, the pressure reduced gas from the valve 23 being introduced to an adsorption bed 1 through a valve 13 to purge impurities. Then, a valve 22 is opened and the pressure is reduced to the maximum lowest, separating impurities, which are removed by the purge gas introduced from an adsorption bed 3, being pressure reduced, and the purge gas is introduced from a gas storage 5 and impurities are removed from the valve 22. Then, part of pressure reduced gas and product gas coming from the adsorption bed 4 is introduced and the pressure is raised, being pressurized up to the adsorption pressure by raw material gas.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は原料ガスを吸着によって精製するプレッシャス
イング吸着法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a pressure swing adsorption method for purifying raw material gas by adsorption.

[従来の技術] 従来、原料ガス中の除去成分を選択的に吸着除去するガ
スの精製法としてプレッシャスイング吸着法がある。こ
の方法は次のような工程、すなわち、 a)高圧の原料ガスを吸着床を通過させ、吸着床がほぼ
飽和に達したら、 b)工程a)のガス流入方向と並流に減圧し、流出ガス
は工程e)にある吸着床に、両者の圧力がほぼ平衡する
まで流入させ、 C)さらに並流に減圧して、流出したガスはバージガス
として工程d)にある吸着床に流入させ、 d)最低圧力までさらに向流に減圧して、バージガスに
よる脱着を併用して吸着床を脱着させ、e)工程b)か
らの減圧ガスおよび製品ガスを導入して再加圧する各工
程からなっている。
[Prior Art] Conventionally, there is a pressure swing adsorption method as a gas purification method for selectively adsorbing and removing components to be removed in a raw material gas. This method consists of the following steps: a) High-pressure raw material gas is passed through the adsorption bed, and when the adsorption bed reaches almost saturation, b) the pressure is reduced in parallel to the gas inflow direction in step a), and the outflow The gas is allowed to flow into the adsorption bed in step e) until the pressures of both are approximately equal to each other, C) The pressure is further reduced to cocurrent flow, and the gas that flows out is allowed to flow into the adsorption bed in step d) as a barge gas, d ) further countercurrent depressurization to the lowest pressure and desorption of the adsorption bed using barge gas desorption, and e) repressurization by introducing the depressurized gas and product gas from step b). .

この従来の技術の代表的な例として、特公昭45−20
082がある。この技術は上述の各工程のもので、プレ
ッシャスイング吸着法の基本をなすものである。
As a representative example of this conventional technology,
There is 082. This technique involves each of the above-mentioned steps and is the basis of the pressure swing adsorption method.

また、他の1例として、特開昭56−38121がある
。この例はパージに用いる減圧ガスを、いったん充填塔
に貯めた後、逆流させることによって好ましいパージガ
ス濃度プロフィルを得る点に特徴がある。
Another example is Japanese Patent Laid-Open No. 56-38121. This example is characterized in that a preferable purge gas concentration profile is obtained by once storing the reduced pressure gas used for purging in a packed column and then causing it to flow back.

[発明が解決しようとする問題点コ 前述の従来の技術のうち、前者は、工程C)から流出す
るガスをそのままバージガスとして使用するので、並流
減圧時に吸着前線が次第に吸着床出口へ進み、ついには
吸着物質の破過が起り、バージガスが漸進的に汚染され
、再生効果か減ずるという問題点がある。
[Problems to be Solved by the Invention] Among the above-mentioned conventional techniques, in the former, the gas flowing out from step C) is used as barge gas, so the adsorption front gradually advances to the adsorption bed outlet during parallel flow depressurization. Eventually, breakthrough of the adsorbed material occurs and the barge gas becomes progressively contaminated, reducing the regeneration effect.

このため吸着材の利用効率を落して派圧時にも破過が生
じない状態で運転する必要がある。これは結局非吸着成
分の製品の収得率が低いということにつながる。また、
この欠点を改善するために多くの提案がなされているが
、装置が?31E雑になりコストの上昇を招いている。
For this reason, it is necessary to reduce the utilization efficiency of the adsorbent and operate in a state where no breakthrough occurs even during pressure distribution. This ultimately leads to a low yield of products of non-adsorbed components. Also,
Many proposals have been made to improve this shortcoming, but what about the equipment? 31E has become sloppy, leading to an increase in cost.

後者の例は、前者の問題点を解決し、最高のパージ効率
を得るために、充填塔を用いてパージガスをこれに受け
入れて、次にこれを逆に流すことで不純物の破過を許容
できるようにしたもので、これによって最適のバージガ
スの濃度プロフィルを得ようとするものであり、これは
一応成功を収めているが、この方法ではパージガスの大
部分を貯えることのできる容量を持った充填塔を必要と
し、また構造的にも複雑でコスト高を招いている。
The latter example solves the problem of the former, and in order to obtain the highest purge efficiency, a packed column can be used to receive the purge gas and then flow it back to allow impurity breakthrough. This method attempts to obtain an optimal purge gas concentration profile, and has been successful to some extent, but this method requires a filler with a capacity that can store most of the purge gas. It requires a tower and is structurally complex, resulting in high costs.

[問題点を解決するための手段] 本発明は、工程C)から流出するガスの一部分をガスだ
めに一時貯え、工程d)にある吸着床に流入させるパー
ジガスは、吸着成分の濃度の高いガスを先に、吸着成分
の濃度の低いガスをその次とすることを特徴とする。
[Means for Solving the Problems] In the present invention, a part of the gas flowing out from step C) is temporarily stored in a gas reservoir, and the purge gas flowing into the adsorption bed in step d) is a gas having a high concentration of adsorbed components. It is characterized in that the gas with a low concentration of adsorbed components is placed next.

工程C)における減圧ガス中の不純物濃度は破過を起し
たところで急激に上昇したのちほぼ一定になること、特
に製品に比べて分子量のより大きい不純物が破過する場
合にはシャープな変化を起すことが見つかり、このこと
を利用するとパージ順序の完全な反転は必要ではないこ
とが我々の試験研究中に発見ざれた。つまり、バージガ
スを(1)破過する前、(2) f!通した後の2つに
分けて、(2)を流した?&(1)を流すことによって
、後者の例の従来技術とほぼ同等の効果が得られること
がわかった。
The impurity concentration in the reduced pressure gas in step C) rises rapidly at the point where breakthrough occurs, and then becomes almost constant; a sharp change occurs, especially when impurities with larger molecular weights than the product break through. During our pilot studies, we discovered that taking advantage of this fact does not require a complete reversal of the purge order. In other words, (1) before passing through the barge gas, (2) f! Did you divide it into two parts after passing through and run (2)? It has been found that by flowing &(1), almost the same effect as the latter example of the prior art can be obtained.

すなわち、ガスだめを利用して、 (a)(1)をガスだめにためて、(2)の後に流す、 (b)<2)をガスだめにためて、(1)を流す前に(
2)を流す、という2種類の方法があり、これによって
簡単にパージガスの濃度プロフィルを好ましい形にかえ
ることができ、パージ効率を上昇させることができる。
In other words, using a gas reservoir, (a) store (1) in the gas reservoir and flow it after (2), (b) store <2) in the gas reservoir, and before flushing (1), (
There are two methods: 2), which allows the concentration profile of the purge gas to be easily changed to a preferable shape, thereby increasing the purge efficiency.

[実BE例コ 次に本発明を図面を参照して説明する。[Actual BE example Next, the present invention will be explained with reference to the drawings.

′f.1図は本発明の方法を実施するに適した4個の吸
着床と、1個のガスだめを有する装置のフローシ一トで
ある。
'f. FIG. 1 is a flowchart of an apparatus having four adsorption beds and one gas reservoir suitable for carrying out the method of the invention.

主要構成要素は次の通ってある。The main components are as follows.

1〜4・・・・・吸着床、 5・・・・・・・ガスだめ、 11,21,31.41・・原料ガス人口弁、12,2
2,32.42・・オフガス出口弁、13,23,33
.43・・パージ弁、14,24,34.44・・昇圧
弁、 15,25.35.45・・製品ガス出口弁53・・・
・・・ガスだめ人出口弁、 55・・・・・・昇圧用製品ガス弁。
1-4...Adsorption bed, 5...Gas reservoir, 11,21,31.41...Material gas population valve, 12,2
2, 32. 42...Off gas outlet valve, 13, 23, 33
.. 43... Purge valve, 14, 24, 34. 44... Boosting valve, 15, 25. 35. 45... Product gas outlet valve 53...
...Gas reservoir outlet valve, 55...Product gas valve for boosting pressure.

実施例1、 第2図は破過以前のガスをガスだめ5にためる場合の時
間圧力線図、第3図はその弁切替プログラムである。
Embodiment 1, FIG. 2 is a time pressure diagram when gas before breakthrough is stored in the gas reservoir 5, and FIG. 3 is a valve switching program.

吸着床2に注目してステップ毎に説明する。Each step will be explained focusing on the adsorption bed 2.

ステップ 1〜4 高圧下で弁21を介して原料ガスを導入、不純
物を吸着して製品ガスを弁25から取出す。
Steps 1 to 4 Raw material gas is introduced through valve 21 under high pressure, impurities are adsorbed, and product gas is taken out from valve 25.

5   吸着を終了し、弁24を介して減圧しそのガス
を吸着床4の昇圧に用いる。
5. End the adsorption, reduce the pressure via the valve 24, and use the gas to increase the pressure of the adsorption bed 4.

6   弁23を介してさらに減圧しそのガスをガスだ
め5にためる。(この時ガスの一部を吸着床1のパーシ
に用いることもできる。)減圧ガス中に不純物の破過が
生じはじめたら次へ進む。
6. The pressure is further reduced through the valve 23 and the gas is stored in the gas reservoir 5. (At this time, a part of the gas can also be used for persiping the adsorption bed 1.) When impurities begin to break through in the reduced pressure gas, proceed to the next step.

弁23を介して減圧したガスを弁13を介して吸着床1
に導入して不純物のパージを行う。
The gas whose pressure is reduced through the valve 23 is transferred to the adsorption bed 1 through the valve 13.
to purge impurities.

弁23を閉じて弁22を開け、最低圧力まで落して不純
物を脱離する。
The valve 23 is closed and the valve 22 is opened to reduce the pressure to the lowest level and remove impurities.

ホールト(ガスだめ中のガスの一部を用いてパージを受
けることもできる。) ホールド(減圧中の吸若床3からガスだめ5に送られて
いるガスの一部を用いてパージを受けることもできる。
Halt (Purge can be performed using part of the gas in the gas reservoir.) Hold (Purge can be performed using part of the gas being sent from the suction bed 3 to the gas reservoir 5 during depressurization. You can also do it.

) 減圧中の吸着床3からのバージガスを弁23を介して導
入し、弁22から脱離した不純物を取り出す。
) Purge gas from the adsorption bed 3 under reduced pressure is introduced through the valve 23 and the desorbed impurities are taken out from the valve 22.

ガスだめ5からバージガスを弁53、弁23を介して導
入し、弁22から脱離した不純物を取り出す。
Purge gas is introduced from the gas reservoir 5 through the valves 53 and 23, and the desorbed impurities are taken out from the valve 22.

l3    吸着床4からの減圧ガスと製品ガスの一部
を弁24を介して受入れ昇圧する。
13 The depressurized gas and part of the product gas from the adsorption bed 4 are received through the valve 24 and pressurized.

14〜l6  製品ガスの一部を弁55、弁24を介し
て受入れ吸着圧力まで昇圧する。
14 to 16 Part of the product gas is received through valves 55 and 24 and the pressure is increased to the adsorption pressure.

実施例1−1 供給ガス組成(乾量.21$vol!!)H, 63.
5, N234.7, CO0.7 , CH. 1.
1供給ガスは0.9 m3のカルシウムゼオライトAを
収蔵する4つの吸着床からなり、21kg/cm 2(
絶対)および30℃において8900Nm37日の流量
で導入され、すくなくとも99.99%水素からなる生
成ガスか4450Nm37日の流]■で放出される。こ
の基準において供給ガス中の水素の約79%が生成ガス
として回収される。サイクル時間 2Eim+n 6バ
ージガス8.6Nm3のうち純度の高いガス5.0Nm
3をガスため(1.O rn3)にた〈わえて後で使用
する。(このパージガス量は1つの吸着塔から出て1回
のパーシに使用されるガス量で、1サイクルではこのf
ix塔数となる。以下同じ。) 実施例1−2 供給ガス組成(乾量基準vol主) H,57.5, N, :]0.7, CO0.7,C
H,1.1供給ガスは0.9 m3のカルシウムゼオラ
イトAを収蔵する6つの吸着床からなり、21kg/c
m 2(絶対)および30℃において15, 400N
G+ 37日の流量で導入され、すくなくとも99.9
7%水素からなる生成ガスが89008mj7日の流量
で放出される。この基準において供給ガス中の水素の約
85%が生成ガスとして回収される。サイクル時間 j
4min , オフガスは1.4 ’Ig7cm 2で放出される。
Example 1-1 Supply gas composition (dry amount: .21 $vol!!) H, 63.
5, N234.7, CO0.7, CH. 1.
1 feed gas consists of 4 adsorption beds containing 0.9 m3 of calcium zeolite A and 21 kg/cm2 (
absolute) and 30°C at a flow rate of 8900 Nm 37 days, and a product gas consisting of at least 99.99% hydrogen is discharged at a flow rate of 4450 Nm 37 days]. On this basis, approximately 79% of the hydrogen in the feed gas is recovered as product gas. Cycle time 2Eim+n 6 barge gas 8.6Nm3, high purity gas 5.0Nm
Store 3 in the gas reservoir (1.Orn3) for later use. (This amount of purge gas is the amount of gas that comes out of one adsorption tower and is used for one purge, and in one cycle, this f
ix number of towers. same as below. ) Example 1-2 Supply gas composition (dry basis vol main) H, 57.5, N, : ] 0.7, CO 0.7, C
H,1.1 Feed gas consists of 6 adsorption beds containing 0.9 m3 of calcium zeolite A, 21 kg/c
m2 (absolute) and 15,400 N at 30 °C
G+ Introduced with a flow rate of 37 days, at least 99.9
Product gas consisting of 7% hydrogen is released at a flow rate of 89008 mj7d. On this basis, approximately 85% of the hydrogen in the feed gas is recovered as product gas. cycle time j
4min, off-gas is released at 1.4'Ig7cm2.

バーシガス3.2Nm3のうち純度の高いガス2.0N
m3をガスため(0.6 rr+3)にたくわえて後で
使用する。
High purity gas 2.0N out of Versi gas 3.2Nm3
Store m3 in the gas reservoir (0.6 rr+3) for later use.

実施例1−3 供給ガス組成(乾量基準vol%;) H2 67.5, N2 30.7.CO0.7 , 
CH4 1.1供給ガスは0.7 m3のカルシウムセ
オライトAを収蔵する8つの吸着床からなり、21kg
/cm ’(絶対)および30℃において28,800
Nm37日の流量で導入され、すくなくとも99.’3
9%水素からなる生成ガスが17,2008m37日の
流量で放出される。この基準において供給ガス中の水素
の約88%が生成ガスとして回収される。サイクル時間
 10.5mi口 。
Example 1-3 Supply gas composition (dry basis vol%;) H2 67.5, N2 30.7. CO0.7,
The CH4 1.1 feed gas consisted of 8 adsorption beds containing 0.7 m3 of calcium theolite A and 21 kg
/cm' (absolute) and 28,800 at 30°C
Nm was introduced at a flow rate of 37 days and at least 99. '3
Product gas consisting of 9% hydrogen is released at a flow rate of 17,2008 m37 days. On this basis, approximately 88% of the hydrogen in the feed gas is recovered as product gas. Cycle time 10.5mi.

才フガスは1.4 Kg/cm 2で放田される。Saifugas is released into the field at 1.4 kg/cm2.

バージガス1.8Nm3のうち純度の高いガス1.2N
rn3をガスだめ(0.7 m3)にたくわえて後で使
用する。
1.2N of high purity gas out of 1.8Nm3 of barge gas
Store rn3 in a gas reservoir (0.7 m3) for later use.

実施例2、 第4図は破過以後のガスをガスだめ5にためる場合の時
間圧力線図、第5図は弁切替プログラムである。
Embodiment 2, FIG. 4 is a time-pressure diagram when gas after breakthrough is stored in the gas reservoir 5, and FIG. 5 is a valve switching program.

吸着床2に注目してステップ毎に説明する。Each step will be explained focusing on the adsorption bed 2.

ステップ 1〜4高圧下で弁2lを介して原料ガスを導入、不純物
を吸着して製品ガスを弁25から取出す。
Steps 1 to 4 Raw material gas is introduced through valve 2l under high pressure, impurities are adsorbed, and product gas is taken out from valve 25.

5 吸着を終了し、弁24を介して減圧しそのガスを吸
着床4の昇圧に用いる。
5. End the adsorption, reduce the pressure via the valve 24, and use the gas to increase the pressure of the adsorption bed 4.

6 弁23を介してさらに減圧しそのガスを弁13を介
して吸着床1に導入しパージを行う。減圧ガス中に不純
物の破過が起る前にパージを終了する。
6. The pressure is further reduced through the valve 23, and the resulting gas is introduced into the adsorption bed 1 through the valve 13 for purging. Purge ends before impurities break through into the vacuum gas.

7 弁23を介して減圧し、弁53を通じてガスだめ5
にガスをためる。(この間に不純物の破過が起る。) 8 弁23を閉じて弁22を開け、最低圧力まで落して
不純物を脱雌する。
7 The pressure is reduced through the valve 23, and the gas reservoir 5 is released through the valve 53.
to store gas. (During this time, impurity breakthrough occurs.) 8. Close valve 23 and open valve 22 to reduce the pressure to the lowest pressure to remove impurities.

9 ガスだめ5より弁53,弁23を介してパージガス
を受入れ説離した不純物を弁22より取り出す。
9. Purge gas is received from the gas reservoir 5 through the valves 53 and 23, and the separated impurities are taken out through the valve 22.

lO減圧中の吸着床3からのガスを弁23を介して受け
入れパージを行って脱離した不純物を弁22より取出す
Gas from the adsorption bed 3 under reduced pressure of 1O is received through the valve 23 and purged, and the desorbed impurities are taken out through the valve 22.

11〜12  ホールド 13  吸着床4からの減圧ガスと製品ガスの一部を弁
24を介して受入れ昇圧する。
11-12 Hold 13 Receives the reduced pressure gas and part of the product gas from the adsorption bed 4 via the valve 24 and increases the pressure.

14〜16  fi品ガスの一部を弁55、弁24を介
して受入れ吸着圧力まで昇圧する。
14 to 16 A part of the fi product gas is received through valves 55 and 24 and the pressure is increased to the adsorption pressure.

実施例2−1 供給ガス組成(乾量基準voH;) H265.0, N232.5, COl.2 , C
H, 1 .3供給ガスは0.9m3のカルシウムゼオ
ライト八を収蔵する4つの吸着床からなる吸着システム
に21Kg7cm 2(絶対)、30℃において850
0Nm37口の流量で導入され、すくなくとも99.9
91;の純度の水素からなる精製ガスが4300Nff
I3/日のiffiで放出された。この基準において供
給ガス中の約78tが生成ガスとして回収された。
Example 2-1 Supply gas composition (dry basis voH;) H265.0, N232.5, COI. 2, C
H, 1. 3 The feed gas was fed to an adsorption system consisting of 4 adsorption beds containing 0.9 m3 of calcium zeolite 21 Kg 7 cm2 (absolute) at 850 °C at 30 °C.
Introduced with a flow rate of 0Nm37 ports, at least 99.9
Purified gas consisting of hydrogen with a purity of 91; is 4300Nff
Released with an iffi of I3/day. On this basis, about 78 tons of the feed gas was recovered as product gas.

パージガス8.68+n 3のうち純度の低いガス4.
2[03をガス溜め(2.1+n 3)に貯えて後で使
用した。
Purge gas 8.68+n Gas with lower purity among 3 4.
2[03 was stored in a gas reservoir (2.1+n 3) for later use.

[発明の効果] 不純物を多く含むガスを先にパージに使用することで、
パージガスへの破過を許容でき、パージガス、吸着材の
有効利用が可能となる。また、この目的をはだすために
用いるガスためは単純な容器でよく、バージガスの一部
分を受入ねるだけであるので容量も小さくてすみ、コス
トが安いという効果がある。
[Effect of the invention] By first using gas containing many impurities for purging,
Breakthrough to the purge gas can be tolerated, allowing effective use of the purge gas and adsorbent. Further, the gas tank used for this purpose may be a simple container, and since it can only receive a portion of the barge gas, the capacity can be small and the cost can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するに適した4個の吸着床
と、1個のガスだめを有する装置のフローシ一ト、第2
図は破過以前のガスをガスだめ5にためる場合の時間圧
力線図、第3図はその弁切替プログラム、第4図は破過
以後のガスをガスだめ5にためる場合の時間圧力線図、
第5図はその弁切替プログラムである。 1〜4・・・・・吸着床、 5・・・・・・・ガスだめ、 特許出願人 重質油対策技術研究組合 代理人 若   林     忠 第3図 第5図
FIG. 1 is a flowchart of an apparatus having four adsorption beds and one gas reservoir suitable for carrying out the process of the invention;
The figure shows a time-pressure diagram when gas before breakthrough is stored in gas reservoir 5, Figure 3 is the valve switching program, and Figure 4 is a time-pressure diagram when gas after breakthrough is stored in gas reservoir 5. ,
FIG. 5 shows the valve switching program. 1 to 4: Adsorption bed, 5: Gas reservoir, Patent applicant Tadashi Wakabayashi, Representative of Heavy Oil Countermeasures Technology Research Association Figure 3 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)原料ガス中の除去成分を選択的に吸着する4以上
の吸着床を有し、 a)高圧の原料ガスを吸着床を通過させ、吸着床がほぼ
飽和に達したら、 b)工程a)のガス流入方向と並流に減圧し、流出ガス
は工程e)にある吸着床に、両者の圧力がほぼ平衡する
まで流入させ、 c)さらに並流に減圧して、流出したガスはパージガス
として工程d)にある吸着床に流入させ、 d)最低圧力までさらに向流に減圧して、パージガスに
よる脱着を併用して吸着床を脱着させ、 e)工程b)からの減圧ガスおよび製品ガスを導入して
再加圧する各工程よりなるプレッシャスイング吸着法に
おいて、 工程c)から流出するガスの一部分をガスだめに一時貯
え、工程d)にある吸着床に流入させるパージガスは、
吸着成分の濃度の高いガスを先に、吸着成分の濃度の低
いガスをその次とすることを特徴とするガスの吸着精製
法。
(1) It has four or more adsorption beds that selectively adsorb components to be removed in the raw material gas, a) high-pressure raw material gas is passed through the adsorption beds, and when the adsorption beds reach almost saturation, b) step a. ), and the outflow gas is allowed to flow into the adsorption bed in step e) until the pressures of both are almost balanced, and c) the pressure is further reduced in parallel flow, and the outflow gas is used as purge gas. d) further countercurrent depressurization to a minimum pressure to desorb the adsorbent bed in combination with desorption by purge gas; e) depressurized gas and product gas from step b); In the pressure swing adsorption method, which consists of each step of introducing and repressurizing, a part of the gas flowing out from step c) is temporarily stored in a gas reservoir, and the purge gas flowing into the adsorption bed in step d) is:
A gas adsorption purification method characterized in that a gas with a high concentration of adsorbed components is processed first and a gas with a low concentration of adsorbed components is processed next.
(2)工程c)から最初に流出するガスの全部あるいは
一部分をガスだめに一時貯え、その次に流出するガスを
直ちに工程d)にある吸着床に流入させ、その後前記ガ
スだめに貯えたガスを流入させる特許請求の範囲第1項
に記載のガスの吸着精製法。
(2) All or a part of the gas initially flowing out from step c) is temporarily stored in a gas reservoir, and then the gas flowing out immediately flows into the adsorption bed in step d), and then the gas stored in the gas reservoir The gas adsorption purification method according to claim 1, wherein the gas adsorption and purification method is made to flow.
(3)工程c)から最初に流出するガスを直接工程d)
にある吸着床に流入させ、その次に流出するガスはガス
だめに一時貯え、このガスは前記吸着床の次に工程d)
に入る吸着床に流入させる特許請求の範囲第1項に記載
のガスの吸着精製法。
(3) direct the gas initially flowing out from step c) to step d);
The gas flowing out is then temporarily stored in a gas reservoir, and this gas is then passed through the adsorption bed in step d).
A method for adsorption and purification of gas according to claim 1, in which the gas is introduced into an adsorption bed.
JP61142854A 1986-06-20 1986-06-20 Gas adsorbing purification method Granted JPS631416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61142854A JPS631416A (en) 1986-06-20 1986-06-20 Gas adsorbing purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61142854A JPS631416A (en) 1986-06-20 1986-06-20 Gas adsorbing purification method

Publications (2)

Publication Number Publication Date
JPS631416A true JPS631416A (en) 1988-01-06
JPH0456648B2 JPH0456648B2 (en) 1992-09-09

Family

ID=15325161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61142854A Granted JPS631416A (en) 1986-06-20 1986-06-20 Gas adsorbing purification method

Country Status (1)

Country Link
JP (1) JPS631416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369853A (en) * 1992-07-31 1994-12-06 Yoshida Kogyo K.K. Hook-and-loop fastener

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369853A (en) * 1992-07-31 1994-12-06 Yoshida Kogyo K.K. Hook-and-loop fastener

Also Published As

Publication number Publication date
JPH0456648B2 (en) 1992-09-09

Similar Documents

Publication Publication Date Title
CA2141254C (en) Vsa adsorption process with continuous operation
US5540758A (en) VSA adsorption process with feed/vacuum advance and provide purge
US4915711A (en) Adsorptive process for producing two gas streams from a gas mixture
JP3232003B2 (en) Reflux in pressure swing adsorption method
KR100254295B1 (en) Pressure swing adsorption process with a single adsorbent bed
JPH01148324A (en) Synthetic pressure swing adsorbing/membrane separation method
JPH0250041B2 (en)
US5620501A (en) Recovery of trace gases from gas streams
AU728643B2 (en) Pressure swing adsorption process and apparatus
JPH0257972B2 (en)
JPH11239711A (en) Psa method using simultaneous evacuation of top and bottom of adsorbent bed
JPS60176901A (en) Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption
JPS631416A (en) Gas adsorbing purification method
WO2020105242A1 (en) Gas separation device and gas separation method
JP2529929B2 (en) Method for separating and recovering carbon monoxide gas
JPH0194915A (en) Separation of gaseous nitrogen by pressure fluctuation absorption system
JP2981303B2 (en) Method for separating gaseous impurities from gas mixtures
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
KR100292555B1 (en) Pressure swing adsorption process for hydrogen purification with high productivity
KR0145787B1 (en) Process for preparing oxygen by changing pressure
JPS6238281B2 (en)
JPS62153388A (en) Concentration of methane
JP2529928B2 (en) Method for separating and recovering carbon monoxide gas
JP3561886B2 (en) Pressure fluctuation adsorption separation method
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method