JPS6314124A - Liquid crystal element - Google Patents

Liquid crystal element

Info

Publication number
JPS6314124A
JPS6314124A JP61157916A JP15791686A JPS6314124A JP S6314124 A JPS6314124 A JP S6314124A JP 61157916 A JP61157916 A JP 61157916A JP 15791686 A JP15791686 A JP 15791686A JP S6314124 A JPS6314124 A JP S6314124A
Authority
JP
Japan
Prior art keywords
liquid crystal
orientation
microregions
substrate
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61157916A
Other languages
Japanese (ja)
Other versions
JPH0612385B2 (en
Inventor
Yukitoshi Okubo
大久保 幸俊
Masato Yamanobe
山野辺 正人
Kazuya Ishiwatari
和也 石渡
Tomoyuki Umezawa
梅沢 知幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61157916A priority Critical patent/JPH0612385B2/en
Publication of JPS6314124A publication Critical patent/JPS6314124A/en
Publication of JPH0612385B2 publication Critical patent/JPH0612385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133765Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers without a surface treatment

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To permit a simple orientation treatment without using rubbing by dispersing microregions having at lest >=2 kinds of different liquid crystal orientabilities on the same substrate surface to form one substrate and consisting the shape of at least one kind of the microregions of the uniaxially symmetrical patterns which are the same in the axial direction. CONSTITUTION:The one substrate is formed by dispersing the microregions having >=2 kinds of the different liquid crystal orientabilities on the same substrate surface. The shape of at least one kind of the microregions is constituted of the uniaxially symmetrical patterns which are the same in the axial direction. An under coat 12 consisting of SiO2, a transparent electrode 13, a layer 14 exhibiting the 1st orientation and a layer 15 exhibiting the 2nd orientation are provided on the substrate 11 consisting of glass, plastic, etc. High-polymer films such as polyimide, polyamide, polyester are used for the layer 14 and surface active agents having a fluorocarbon chain, silicate having a hydrocarbon chain, etc., are used for the layer 15. The simple uniaxial orientation treatment is thus obtd. by only the pattern shape of the microregions having >=2 kinds of the different orientabilities to be used without using the rubbing.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液晶素子に関し、特に液晶分子の大きなプレテ
ィルト角制御が回部な液晶表示器もしくは液晶光変調器
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal device, and particularly to a liquid crystal display or a liquid crystal optical modulator in which a large pretilt angle of liquid crystal molecules can be controlled in a circular manner.

[従来の技術] 従来、液晶素子において、液晶分子の基板に対する配向
は基本的に垂直配向(ホメオトロピック配向)と水平配
向(ホモジニアス配向)がある。
[Prior Art] Conventionally, in a liquid crystal element, the orientation of liquid crystal molecules with respect to a substrate basically includes vertical orientation (homeotropic orientation) and horizontal orientation (homogeneous orientation).

完全な垂直配向と完全な水平配向をを除くと、一般に液
晶分子は基板とある角度を成し、これをプレティルト角
と云っている。また、この分子ディレクタが基板面へ投
影される方向か一定の方向を持つ一軸配向性が表示器の
応用に対して有用である。通常の応用に関しては、この
プレティルト角と一軸配向性の二つの因子を制御してい
る。
Except for perfect vertical alignment and perfect horizontal alignment, liquid crystal molecules generally form a certain angle with the substrate, which is called a pretilt angle. Furthermore, uniaxial orientation in which the molecular director is projected onto the substrate surface or in a fixed direction is useful for display applications. For typical applications, two factors are controlled: the pretilt angle and the uniaxial orientation.

この−軸配向性を付与するための手段として、一つは表
面のミクロな物理的形状によるものがある。代表的な方
法が斜方蒸着である。斜方蒸着は典型的な材料としてS
 ’+ Oを用い、菖着角度によってホメオトロピック
配向からホモジニアス配向まて任意のプレティルト角を
持つ一軸配向を得る手段である。
One of the means for imparting this -axis orientation is through the microscopic physical shape of the surface. A typical method is oblique deposition. The typical material for oblique deposition is S.
'+O is used to obtain a uniaxial orientation with an arbitrary pretilt angle from a homeotropic orientation to a homogeneous orientation depending on the angle of convergence.

また形状による配向としては機械的に一定方向の微細な
溝を形成する機械研磨や、更には周期的な凹凸を有する
グジーテインクを写真食刻やレプリカによって得る方法
もある。
As for the orientation based on the shape, there are methods such as mechanical polishing to mechanically form fine grooves in a certain direction, and furthermore, methods of obtaining a gusset ink having periodic irregularities by photo-etching or a replica.

これに対して化学的処理ては、基板表面に高分子膜を形
成した後、綿布等で一定方向に“こする”ラビング法が
ツイストネマティック(TN)表示で広く実用化されて
いる。この配向法は基本的にはホモジニアス配向を与え
る。一方、基板表面に界面活性剤やシランカップリング
剤を処理するとホメオトロピックな配向を得ることがて
きる。これを一般に垂直配向剤と云っている。
On the other hand, as for chemical treatment, a rubbing method in which a polymer film is formed on the substrate surface and then "rubbed" in a fixed direction with cotton cloth or the like has been widely put into practical use in twisted nematic (TN) displays. This orientation method basically provides homogeneous orientation. On the other hand, homeotropic orientation can be obtained by treating the substrate surface with a surfactant or a silane coupling agent. This is generally called a vertical alignment agent.

化学処理とラビングを組合わせたものは生産性が良く実
用性が高いか、5°以下のロープレティルト角か、また
は垂直配向剤を用いたほとんど垂直に近いホメオトロピ
ック配向のいずれかしか得られない。中間のプレティル
ト角を得るためには斜方蒸着か用いられるが、生産性が
悪く、蒸着器等大型の装置を要し、しかも大面積処理に
も適していない。
Combinations of chemical treatment and rubbing are highly productive and practical, or only provide a rope pretilt angle of less than 5°, or a near-vertical homeotropic alignment using a vertical alignment agent. . Oblique evaporation is used to obtain an intermediate pretilt angle, but it has poor productivity, requires large equipment such as a evaporator, and is not suitable for large-area processing.

又、従来同一基板面に二種の相異なる配向能を有する領
域を設けた表示器として、垂直配向させた表示部背景に
対して、セグメントパターンを水平配向させた正の誘電
異方性液晶を持つゲストホスト液晶表示か知られている
。しかし、このゲストホスト液晶表示は異なる配向か視
認できる領域として用いられ、有意なパターンを形成す
るものである。
In addition, as a conventional display device in which two areas with different alignment abilities are provided on the same substrate surface, a positive dielectric anisotropic liquid crystal with a segment pattern horizontally aligned is used against a vertically aligned display background. What is known as a guest-host LCD display? However, this guest-host liquid crystal display is used as a visible area of different orientations to form a significant pattern.

[発明が解決しようとする問題点] 本発明の目的は、上述の如き欠点を解決して、液晶分子
のプレティルト角制御か可能な液晶素子を提供するもの
である。
[Problems to be Solved by the Invention] An object of the present invention is to solve the above-mentioned drawbacks and provide a liquid crystal element in which the pretilt angle of liquid crystal molecules can be controlled.

さらに本発明の目的は高生産性と同時に高信頼性を有す
るプレティ、ルト角制御が可能な液晶素子を提供するも
のである。又本発明は比較的大きなプレティルト角を利
用した表示器に好適に用いられることを目的としている
。即ち高時分割駆動のツイストネマティック(TN)表
示、スーパーツイスト複屈折効果(SUE)や強誘電性
液晶を用いることを目的とする。
A further object of the present invention is to provide a liquid crystal element that has high productivity and high reliability and is capable of controlling the tilt and tilt angles. Further, the present invention is intended to be suitably used in a display device that utilizes a relatively large pretilt angle. That is, the purpose is to use a twisted nematic (TN) display with high time division drive, a supertwist birefringence effect (SUE), and a ferroelectric liquid crystal.

又本発明は大面積処理に適し、上記利用の大面積表示を
得ることを目的とする。
Further, the present invention is suitable for large area processing and aims to obtain a large area display using the above.

又更に本発明はラビングを用いない簡易な配向処理を施
された液晶素子を提供することを目的こしている。
A further object of the present invention is to provide a liquid crystal element that is subjected to a simple alignment treatment without using rubbing.

[問題点を解決するための手段コ 即ち、本発明は表面に透明電極を形成した二枚の基板間
に液晶を挟持してなる液晶素子において、少なくとも一
方の基板が同一基板面に少なくとも二種以上の相異なる
液晶配向能を有する微小領域を分散して形成され、かつ
少なくとも一種の微小領域の形状が軸方向が同一方向の
一輌対称パターンからなることを特徴とする液晶素子で
ある。
[Means for Solving the Problems] In other words, the present invention provides a liquid crystal element in which a liquid crystal is sandwiched between two substrates each having a transparent electrode formed on its surface, in which at least one substrate has at least two substrates on the same substrate surface. This liquid crystal element is formed by dispersing the microregions having different liquid crystal alignment abilities, and is characterized in that the shape of at least one of the microregions is a one-sided symmetrical pattern with the axial direction in the same direction.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係わる液晶素子は、少なくとも二種以上の相異
なる液晶配向鋤を有する微小領域を同一基板面に分散形
成してなるもので、該微小領域の少なくとも一方は一軸
対称パターンとなし、該パターンの軸方向が同一方向で
あることを特徴とするものである。
The liquid crystal element according to the present invention is formed by distributing micro regions having at least two or more different types of liquid crystal alignment layers on the same substrate surface, at least one of the micro regions having a uniaxially symmetrical pattern, and The axial directions of the two are in the same direction.

本発明において、二種以上の相異なる液晶配向能は典型
的には、一方かホメオトロピック配向であり、他方がホ
モシニアス配向を持つものが挙げられるか、O@〜90
°の範囲の任意のプレティルト角を持つ配向能を示す材
料を任意に選ぶことができる。
In the present invention, the two or more different liquid crystal alignment abilities typically include one in which one has homeotropic alignment and the other has homocyanic alignment;
Any material exhibiting the ability to align with any pretilt angle in the range of .degree. can be arbitrarily selected.

本発明で用いる微小領域はその配向処理によりドメイン
を形成しない範囲であれば良く、好適な例としては相異
なる配向能を示すパターンの一方の最大線[口がセルギ
ャップを越えない範囲て分散配置したものが用いられる
。但しこの最大線巾は、選択した配向処理間の配向能力
の差異か大きいか小さいかに依存する。差異が小さいも
では、この線巾は大きくとることができ、逆にほぼ完全
にホメオトロピックとホモジニアスの配向材同志の組合
せでは、両者の領域は細分化されることを要する。
The microregions used in the present invention may be within a range that does not form domains due to the orientation treatment, and a preferred example is one of the maximum lines of patterns showing different orientation abilities [distributed arrangement within a range where the opening does not exceed the cell gap]. is used. However, this maximum line width depends on whether the difference in orientation ability between the selected orientation treatments is large or small. If the difference is small, this line width can be made large; conversely, in the case of a combination of almost completely homeotropic and homogeneous alignment materials, the regions of both need to be subdivided.

本発明においては、この相異なる配向悌の微小領域の形
状としては、少なくとも一方の配向能の微小領域のパタ
ーンを一軸対称性とし、この対称軸を同一方向に揃えて
配置したことを特徴とするものである。
In the present invention, the shape of the microregions with different orientations is characterized in that the pattern of the microregions with at least one orientation ability is uniaxially symmetrical, and the axes of symmetry are aligned in the same direction. It is something.

本発明においては、軸方向を揃えることにより、液晶の
一軸配向性を出すことを特徴としている。従って、微小
領域の形状は比較的単純な形状て、しかも設計、製造し
やすい形状か好適に用いられる。例えば、一方の配向膜
を持つ層を下地として、この表面にあらかじめ所定の形
状に設計したパターンを他の配向能の材料て被膜形成す
るものである。
The present invention is characterized in that uniaxial alignment of the liquid crystal is achieved by aligning the axial directions. Therefore, it is preferable that the shape of the micro region be relatively simple and easy to design and manufacture. For example, one layer with an alignment film is used as a base, and a pattern designed in advance in a predetermined shape is formed on the surface of the layer using another material having alignment ability.

この形状として大きさは前記した通り、一方の配向膜に
対して他方の配向婆領域が明確なドメイン形成をしない
大きさとして、通常のTN表示のセル厚では、円形の領
域として10pm程度、好ましくは6JLm程度が上限
となる。
As mentioned above, the size of this shape is such that the alignment region of one alignment film does not form a clear domain with respect to the other alignment film, and with the cell thickness of a normal TN display, the circular area is preferably about 10 pm. The upper limit is about 6JLm.

一方下限値は特に無く、むしろ加工上、生産上管理可使
な数値範囲てあれば良く、0.1μ履程度までか有効に
用いられる。細線状や網目状のパターンて構成する時も
各々の最大線巾か6〜10ルIを越えないことか望まし
い。
On the other hand, there is no particular lower limit; rather, any numerical value range that can be used for processing and production control is sufficient, and values up to about 0.1 μm are effectively used. Even when configuring thin line or mesh patterns, it is desirable that the maximum line width of each line does not exceed 6 to 10 I.

相異なる配向膜の例としては、水平配向処理には高分子
膜か用いられ、例えばポリイミド、ポリアミド、ポリエ
ステル、ポリカーボネート、ポリスチレン、ポリ塩化ビ
ニル、ポリビニルアルコール等かある。一方、垂直配向
処理としてはフッ化炭索鎖を有する界面活性剤(ダイキ
ンFS 150 )やフッ化炭索鎖な有するケイ素酸エ
ステル(ダイキンFS 116 ) 、 4級アンモニ
ウム塩界面活性剤(DMOAP)、レシチン、ヘキサデ
シルアミン等がある。この地表面状態や使用する液晶に
よって、水平、垂直のいずれかの配向をとるものに無機
被膜、例えばSin□、Tie、、2r203、In2
O,、チッ化シリコン等がある。又全屈被膜もこの部類
に近い材料として使用できる。
Examples of different alignment films include polymer films used for horizontal alignment treatment, such as polyimide, polyamide, polyester, polycarbonate, polystyrene, polyvinyl chloride, polyvinyl alcohol, and the like. On the other hand, for vertical alignment treatment, surfactants with fluorocarbon chains (Daikin FS 150), silicate esters with fluorocarbon chains (Daikin FS 116), quaternary ammonium salt surfactants (DMOAP), Examples include lecithin and hexadecylamine. Depending on the ground surface condition and the liquid crystal used, inorganic coatings such as Sin□, Tie, 2r203, In2
O, silicon nitride, etc. A fully flexible coating can also be used as a material close to this category.

次に、本発明において用いられる配向処理形成方法の一
例を示す。
Next, an example of the alignment treatment forming method used in the present invention will be described.

通常の光変調器、表示器に使用する目的ては透明基板が
使用される。特に透明ガラス、透明プラスチックスな基
板とし、電気光学的変調を行う目的で透明電極の形成さ
れた基板か使用てきる。該基板の透明電極の下地側にア
ルカリイオンの溶出を防止する目的のアンダーコートや
電極上の保護を目的としたオーバーコートを必要に応し
て設けることかてきる。これはSiO□やAi’20:
+その他の通常用いられる透明絶縁材か使用できる。
Transparent substrates are used for ordinary light modulators and displays. In particular, a transparent glass or transparent plastic substrate can be used, and a substrate on which a transparent electrode is formed for the purpose of electro-optical modulation can be used. An undercoat for the purpose of preventing elution of alkali ions and an overcoat for the purpose of protecting the electrodes may be provided on the base side of the transparent electrode of the substrate, if necessary. This is SiO□ and Ai'20:
+Other commonly used transparent insulation materials can be used.

本発明に用いる最も典型的構成では、上記のような基板
表面にホモシニアスな配向を示す高分子フィルムを形成
し、次にこの表面に垂直配向剤を所定形状にて印刷やフ
ォトリソグラフィー等のパターン形成手段によって得る
ものが挙げられる。
In the most typical configuration used in the present invention, a polymer film exhibiting homocyanic orientation is formed on the surface of the substrate as described above, and then a vertical alignment agent is patterned on this surface in a predetermined shape by printing or photolithography. Examples include things that can be obtained by means.

第1図はこの構成を示す本発明における基板の断面を示
す模式図である。11はガラス、プラスチック等の基板
、12は例えばSiO□のアンダーコートである。これ
は必要に応じて設ければよい。次に13は透明電極で光
変調や表示を行う時に設ける。図中では設けていないか
更にこの上に保護等の目的で絶縁膜を形成しても良い。
FIG. 1 is a schematic diagram showing a cross section of a substrate in the present invention showing this configuration. 11 is a substrate made of glass, plastic, etc., and 12 is an undercoat of, for example, SiO□. This may be provided as necessary. Next, a transparent electrode 13 is provided when performing light modulation or display. Although not shown in the figure, an insulating film may be further formed thereon for purposes such as protection.

前記の11〜13は表示等て良く用いられる電極基板で
ある。14は第1の配向を示す層、すなわち本発明によ
る一方の配向1走を示す配向膜でポリイミドやポルビニ
ルアルコール等の高分子フィルムである。この被膜の形
成はスピナーコート、スプレー、ディップ、ロールコー
ト、印刷等の手段が使える。15は第2の配向を示す層
、すなわち他の配向能を示す材料で、−例としては印刷
によって形成した垂直配向剤で、前記FSISOやFS
116、DMOAP等が使用てきる。
The above-mentioned electrode substrates 11 to 13 are often used for display and the like. Reference numeral 14 denotes a layer exhibiting the first orientation, that is, an alignment film exhibiting a single run of one orientation according to the present invention, and is a polymer film made of polyimide, porvinyl alcohol, or the like. To form this film, methods such as spinner coating, spraying, dipping, roll coating, and printing can be used. 15 is a second orientation layer, i.e. another orientation material, for example a vertical orientation agent formed by printing, which is similar to the FSISO or FS
116, DMOAP, etc. can be used.

第2図はこの配向処理面の部分平面図て、流線形状の垂
直配向能を有する第2の配向を示す領域ts’ と水平
配向能を有する第1の配向を示す領域14’を示す。第
2図の流線形状の有する一軸対称軸は図中X方向に揃っ
ている。第2の配向を示す領域15’の形状は周囲と識
別できるドメインを形成しない大きさであることを要す
るが、本発明は一定の大きさ以下で、その大きさと分布
密度を適宜選択することによりプレティルト角を決定て
きる。
FIG. 2 is a partial plan view of this alignment-treated surface, showing a region ts' exhibiting a second orientation having a streamlined vertical alignment ability and a region 14' exhibiting a first orientation having a horizontal alignment ability. The uniaxial symmetry axis of the streamline shape in FIG. 2 is aligned in the X direction in the figure. The shape of the region 15' exhibiting the second orientation is required to be of a size that does not form a domain that can be distinguished from the surroundings, but the present invention is possible by appropriately selecting the size and distribution density within a certain size. Determine the pretilt angle.

一軸対称性のパターンとしては特に限定されることは無
いが、例えば、第3図(a) 、 (b) 、 (c)
に示す如く、対称軸方向の一方で面積が広くなった比較
的単純な形て設計の容易なパターンを用いるのが好まし
い。前述における独立ドメインを形成する大きさとして
は、図中の巾ω0.ω2.ω3て示される微小領域の巾
かセル厚に比して小さいことか要求され、一方f!、、
 !!2. i’、で示される微小領域の長さは比較的
大きな数値が許容される。
Patterns with uniaxial symmetry are not particularly limited, but for example, Fig. 3 (a), (b), (c)
It is preferable to use a pattern that is relatively simple and easy to design, as shown in FIG. The size forming the independent domain mentioned above is the width ω0 in the figure. ω2. It is required that the width of the minute region indicated by ω3 be smaller than the cell thickness, while f! ,,
! ! 2. A relatively large value is allowed for the length of the minute region indicated by i'.

第4図(a)は、本発明に係わる液晶素子の配向状態の
一例を示す説明図である。第1の配向を示す層14は基
板上に形成されたホモジニアス配向佳表面で、この一部
を覆うホメオトロピック配向領域を第2の配向を示す層
15で示す。この時の平面形状を示す拡大平面図を第4
図(b)に示す、 16は液晶分子で、その液晶分子の
主軸方向がどちらに向いているかを示す。界面領域aで
はミクロな配向は、配向能の異なる微小領域によって支
配されるが、この液晶がセルとして光学的挙動を呈する
のはbのバルク領域である。この領域はセルギャップd
が第2の配向を示す層15のドメイン形成回部な面積に
比較して充分に大きい時、界面での配向能の差異はバル
ク領域内で分解しなくなる。分解はしなくなるが、バル
ク領域での分子の方向は各界面領域での異なるプレティ
ルト角をもつものが、あたかも平均化され、界面が第1
.の配向を示す層14の配向能と第2の配向を示す層1
5の配向能の平均プレティルト角を持つような挙動を示
す、第4図(b)の軸方向Xに面積の広がりを持つ第2
の配向を示す層15のパターンでは、液晶分子16は図
中のθに示すようなプレティルト角を持つ、この軸方向
を揃えることで一軸性が保たれることとなる。この−軸
性付与は従来て言えばラビングや斜方蒸着の蒸着方向に
よるものに相当するが、本発明ではパターン形成のみに
よって達成できる特徴がある。
FIG. 4(a) is an explanatory diagram showing an example of the alignment state of a liquid crystal element according to the present invention. A layer 14 exhibiting a first orientation is a homogeneously oriented surface formed on the substrate, and a homeotropically oriented region partially covering this surface is represented by a layer 15 exhibiting a second orientation. The enlarged plan view showing the planar shape at this time is shown in the fourth figure.
In Figure (b), 16 is a liquid crystal molecule, and indicates which direction the main axis of the liquid crystal molecule is oriented. In the interface region a, the microscopic alignment is dominated by minute regions having different alignment abilities, but it is in the bulk region b that the liquid crystal exhibits optical behavior as a cell. This region has a cell gap d
is sufficiently large compared to the area of the domain-forming portion of the layer 15 exhibiting the second orientation, the difference in orientation ability at the interface no longer resolves within the bulk region. Although the decomposition does not occur, the orientation of the molecules in the bulk region is as if the different pretilt angles at each interface region are averaged, and the interface becomes the first one.
.. The orientation ability of layer 14 showing the orientation and the layer 1 showing the second orientation
The second crystal with an area spread in the axial direction
In the pattern of the layer 15 showing the orientation, the liquid crystal molecules 16 have a pretilt angle as shown by θ in the figure, and by aligning these axial directions, uniaxiality is maintained. Conventionally speaking, this imparting of -axiality corresponds to the deposition direction of rubbing or oblique evaporation, but the present invention has the feature that it can be achieved only by pattern formation.

以上説明した例では、ホモジニアス配向溌を示す下地に
ホメオトロピックな配向能の微小領域を設けたが、プレ
ティルト角の異なる二種のホモジニアス配向同志をや、
ホメオトロピック同志、又は下地にホメオトロピック配
向を行って、その上にホモジニアス配向を行うもの、又
あらかじめ両者を区分した領域で形成してもよい。
In the example explained above, a micro region with homeotropic alignment ability was provided on the base exhibiting homogeneous alignment.
They may be formed in a homeotropic manner, or in which a homeotropic orientation is applied to a base and a homogeneous orientation is performed thereon, or in a region where both are separated in advance.

更に本発明においては、二種以上の配向能の組合せを行
うことも可詣で、例えば配向剤として特に用いられない
材料を一部介在させることも可ttである0例えば部分
的に使用される金属材料や絶縁材料、半導体材料、着色
材料等が微小領域として分散配置されてなるものであっ
てもよい。
Furthermore, in the present invention, it is also possible to combine two or more types of alignment ability, for example, it is also possible to partially include a material that is not specifically used as an alignment agent. It may be formed by dispersing materials, insulating materials, semiconductor materials, colored materials, etc. as minute regions.

本発明において、この様な配向処理が適用できる液晶動
作モードとしては、ツィステッドネマティックセル(T
Nセル)、ツイストのある又はツイストの無いゲストホ
ストセル等があるが、特に大きなチルト角を必要とする
スーパーツイスト複屈折効果を用いたセルや強誘電性液
晶に用いると有効である。
In the present invention, the liquid crystal operation mode to which such alignment treatment can be applied is twisted nematic cell (T
N cells), guest-host cells with or without twist, etc., but it is particularly effective when used in cells using the super-twist birefringence effect and ferroelectric liquid crystals that require a large tilt angle.

[作用] 本発明の液晶素子は、少なくとも一方の基板が同一基板
面に少なくとも二種以上の相異なる液晶配向能を有する
微小領域を分散して形成され、かつ少なくとも一方の前
記微小領域の形状が軸方向が同一方向の一軸対称パター
ンからなる2枚の基板間に液晶を挟持した構成からなる
ので、液晶分子の配向は基板面の界面領域では二種以上
の相異なる液晶配向能により支配されるが、中間部のバ
ルク領域においては液晶分子の配向は、前記の相異なる
微小領域の支配による互に異なるプレティルト角が平均
化され、各微小領域の均衡の保たれたプレティルト角を
示し、−軸性が保持されるものと推定される。
[Function] In the liquid crystal element of the present invention, at least one of the substrates is formed by dispersing at least two or more types of microregions having different liquid crystal alignment abilities on the same substrate surface, and the shape of at least one of the microregions is Since the structure consists of a liquid crystal sandwiched between two substrates with a uniaxially symmetric pattern with the same axis direction, the alignment of liquid crystal molecules is controlled by two or more different liquid crystal alignment abilities in the interface region of the substrate surface. However, in the bulk region in the middle, the orientation of liquid crystal molecules is such that the different pretilt angles due to the control of the different microregions are averaged, and each microregion shows a balanced pretilt angle, and the -axis It is presumed that the gender will be preserved.

[実施例] 以下、実施例を示し本発明をさらに具体的に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 たて300!Ill、よこ 300m■、厚さ 1.1
m−の青板ガラス面にSiO□被膜を1000人、In
2O,を主成分とする透明導電膜300〜500人、こ
の上に第1の領域としてポリイミド膜300〜800人
が順次積層された基板上に、第2の領域としてフレキソ
印刷を用いてオクタデシルエトキシシラン0.5wt%
イソプロピルアルコール溶液を第3図(a)に示す形状
で、j)1m3鉢層、ω、=1.OIL飄、ポリイミド
膜に対する面積比30%の設計値にて印刷した。印刷後
、t o o ”cで1時間加熱して一軸対称パターン
を形成した基板を得た。
Example 1 Vertical 300! Ill, width 300m■, thickness 1.1
1,000 SiO□ films were applied to the blue plate glass surface of m-.
On a substrate on which 300 to 500 transparent conductive films containing 2O as the main component and 300 to 800 polyimide films as a first region are successively laminated, octadecyl ethoxy as a second region is laminated using flexographic printing. Silane 0.5wt%
The isopropyl alcohol solution was prepared in the shape shown in FIG. 3(a), j) 1 m3 pot layer, ω, = 1. Printing was carried out at a design value of 30% of the area ratio to the OIL film and polyimide film. After printing, the substrate was heated at t o ''c for 1 hour to obtain a substrate on which a uniaxially symmetrical pattern was formed.

該基板を二枚用いて、セルギャップ8μIの液晶セルを
作成し、ホフマン・う・ロッシュ製、液晶剤ROTN 
403を注入した。該セルを磁界電位法によってプレテ
ィルト角の測定を行ったところ約15°の一軸配向セル
が得られた。
A liquid crystal cell with a cell gap of 8 μI was prepared using two of the substrates, and liquid crystal agent ROTN manufactured by Hoffmann U. Roche was used.
403 was injected. When the pretilt angle of this cell was measured by a magnetic field potential method, a uniaxially oriented cell of approximately 15° was obtained.

実施例2 実施例1と同様のポリイミド形成基板面にフォトレジス
トAZ−1:150J  (シュプレー社製)又は0F
PR−77(東京応化製)等のポジタイプレジストをス
ピン塗布し、80℃て10分間加熱してから、第3図(
b)に示す形状で、β2=5琲1.ρ=1.5μ麿、ポ
リイミド膜に対する面積比25%の設計値を持つマスク
パターンにて露光し、焼付け、所定の現像液にて現像、
乾煙し、この表面なFS−115゜0.5wt%タイフ
ロン溶液で浸漬塗布し、 100°Cで20分間乾燥し
た。
Example 2 Photoresist AZ-1:150J (manufactured by Spree) or 0F was applied to the same polyimide substrate as in Example 1.
A positive type resist such as PR-77 (manufactured by Tokyo Ohka) was applied by spin coating, heated at 80°C for 10 minutes, and then applied as shown in Figure 3 (
In the shape shown in b), β2=5琲1. Exposure using a mask pattern with a design value of ρ = 1.5μ and an area ratio of 25% to the polyimide film, baking, and developing with a prescribed developer.
After dry-smoking, this surface was dip-coated with a 0.5 wt% Tyflon solution of FS-115, and dried at 100°C for 20 minutes.

この後桟されたフォトレジスト部をFS−116と共に
アセトン、MEK等を用いて溶解除去し、更に150〜
2GO’Cで1時間加熱し、焼付けて一軸対称パターン
を有する基板を得た。この基板を用いて実施例1と同様
のセルを作製したところ、プレティルト角12″の一軸
配向セルが得られた。
After this, the photoresist part that was cut off was dissolved and removed using acetone, MEK, etc. together with FS-116, and then
The substrate was heated with 2GO'C for 1 hour and baked to obtain a substrate having a uniaxially symmetrical pattern. When a cell similar to that of Example 1 was produced using this substrate, a uniaxially oriented cell with a pretilt angle of 12'' was obtained.

[発明の効果] 以上説明したように、本発明の液晶素子は二種以上の相
異なる配向能を有する微小領域を一軸対称性形状となし
、対称軸を一定方向として基板面に形成した構成からな
るので、次のような効果かある。
[Effects of the Invention] As explained above, the liquid crystal element of the present invention has a configuration in which two or more microregions having different alignment abilities are formed in a uniaxially symmetrical shape and formed on a substrate surface with the axis of symmetry in a fixed direction. Therefore, there are the following effects.

使用する二種以上の相異なる配向能を有する微小領域の
パターン形状のみによってラビングを用いない簡便な一
軸配向処理が得られる。これは斜方蒸着に比較して、装
置が簡単て高速処理が回走で、大面積が容易に得られる
A simple uniaxial alignment process that does not require rubbing can be obtained by using only the pattern shape of the micro regions having two or more different alignment abilities. Compared to oblique evaporation, this method uses simple equipment, high-speed processing, and can easily obtain a large area.

又より大きな効果はこのように高速簡便な配向処理であ
りながら、ラビングを要しないためラビング時の粉塵の
付着や、機械的接触か無く、精密化する液晶セルにとっ
て特に有効となる。即ち、微小なゴミの混入を嫌う5g
m以下のセルギャップを有する強誘電性液晶セル等で有
利となる。
A greater effect is that while this is a fast and simple alignment process, it does not require rubbing, so there is no dust adhesion during rubbing and no mechanical contact, making it particularly effective for liquid crystal cells, which are becoming more precise. In other words, 5g which does not like the inclusion of minute dust
This is advantageous for ferroelectric liquid crystal cells having a cell gap of m or less.

又機械的ラビングが無いことは多数の薄膜トランジスタ
を設けたTPTセル等での欠陥発生プロセスを回避し1
歩留り向上に効果かある。
In addition, the absence of mechanical rubbing avoids the defect generation process in TPT cells, etc., which have a large number of thin film transistors1.
Is it effective in improving yield?

又形状設計のみによって一軸配向性が得られ、これはラ
ビングや斜め蒸着と比較して、外乱に対して強く、特に
配向処理後のアルコール洗浄等が強く行える効果を持つ
。又パターン形状には形状のミクロな形態には影響を受
は難く、形状及び分布に対して通常のパターン形成と比
較して 良度が大きい。
Moreover, uniaxial orientation can be obtained only by shape design, which is more resistant to external disturbances than rubbing or oblique vapor deposition, and has the effect of being particularly strong against alcohol cleaning after orientation treatment. Furthermore, the pattern shape is not easily affected by the microscopic morphology of the shape, and the quality of the shape and distribution is greater than that of normal pattern formation.

このように設計、製造か容易なため、応用分野として、
TN、 SBE 、強誘電性液晶、ゲストホストセル、
TFT液晶セル又その他の光変調器等へ容易に活用でき
る。
Because it is easy to design and manufacture, it can be used as an application field.
TN, SBE, ferroelectric liquid crystal, guest host cell,
It can be easily applied to TFT liquid crystal cells or other optical modulators.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における基板の断面を示す模式図、第2
図は基板の配向処理面の部分平面図、第3図(a)、 
(b)、 (c)は−軸対称性を持つ配向パターンの形
状例を示す説明図および第4図(a)、 (b)は本発
明に係わる液晶素子の配向状態の一例を示す説明図であ
る。 11・・・基板 12・・・アンダーコート 13・・・透明電極 14・・・第1の配向を示す層 14’・・・第1の配向を示す領域 15・・・第2の配向を示す層 15′・・・第2の配向を示す領域 16.16’、16″・・・液晶分子 a・・・界面領域 b・・・バルク領域 1’+、 !!2. I!、  ・・・微小領域の長さ
ω】、ω2.ωコ・・・微小領域の巾 d・・・セルギャップ
FIG. 1 is a schematic diagram showing a cross section of the substrate in the present invention, and FIG.
The figure is a partial plan view of the orientation-treated surface of the substrate, FIG. 3(a),
(b) and (c) are explanatory diagrams showing an example of the shape of an alignment pattern having −axis symmetry, and FIGS. 4(a) and (b) are explanatory diagrams showing an example of the alignment state of a liquid crystal element according to the present invention. It is. 11... Substrate 12... Undercoat 13... Transparent electrode 14... Layer showing first orientation 14'... Region showing first orientation 15... Showing second orientation Layer 15'...Regions showing second orientation 16.16', 16''...Liquid crystal molecules a...Interface region b...Bulk region 1'+, !!2.I!,...・Minute region length ω], ω2.ωko...Minute region width d...Cell gap

Claims (1)

【特許請求の範囲】[Claims] 表面に透明電極を形成した二枚の基板間に液晶を挟持し
てなる液晶素子において、少なくとも一方の基板が同一
基板面に少なくとも二種以上の相異なる液晶配向能を有
する微小領域を分散して形成され、かつ少なくとも一種
の微小領域の形状が軸方向が同一方向の一軸対称パター
ンからなることを特徴とする液晶素子。
In a liquid crystal element in which a liquid crystal is sandwiched between two substrates each having a transparent electrode formed on its surface, at least one of the substrates has at least two types of microregions having different liquid crystal alignment abilities dispersed on the same substrate surface. 1. A liquid crystal element, wherein the shape of at least one microregion is formed in a uniaxially symmetrical pattern with the axial directions in the same direction.
JP61157916A 1986-07-07 1986-07-07 Liquid crystal element Expired - Lifetime JPH0612385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61157916A JPH0612385B2 (en) 1986-07-07 1986-07-07 Liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61157916A JPH0612385B2 (en) 1986-07-07 1986-07-07 Liquid crystal element

Publications (2)

Publication Number Publication Date
JPS6314124A true JPS6314124A (en) 1988-01-21
JPH0612385B2 JPH0612385B2 (en) 1994-02-16

Family

ID=15660258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61157916A Expired - Lifetime JPH0612385B2 (en) 1986-07-07 1986-07-07 Liquid crystal element

Country Status (1)

Country Link
JP (1) JPH0612385B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338918A (en) * 1986-08-04 1988-02-19 Canon Inc Liquid crystal optical modulator
US5644415A (en) * 1993-12-20 1997-07-01 Casio Computer Co., Ltd. Liquid crystal display device having wide field angle
KR20180031153A (en) * 2016-09-19 2018-03-28 엘지전자 주식회사 Airport robot, and method for operating server connected thereto

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545754A (en) * 1977-06-15 1979-01-17 Toshiba Corp Twist nematic type liquid crystal display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545754A (en) * 1977-06-15 1979-01-17 Toshiba Corp Twist nematic type liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338918A (en) * 1986-08-04 1988-02-19 Canon Inc Liquid crystal optical modulator
US5644415A (en) * 1993-12-20 1997-07-01 Casio Computer Co., Ltd. Liquid crystal display device having wide field angle
US5897187A (en) * 1993-12-20 1999-04-27 Casio Computer Co., Ltd. Liquid crystal display device having wide field angle
KR20180031153A (en) * 2016-09-19 2018-03-28 엘지전자 주식회사 Airport robot, and method for operating server connected thereto

Also Published As

Publication number Publication date
JPH0612385B2 (en) 1994-02-16

Similar Documents

Publication Publication Date Title
US6798482B2 (en) In-plane switching mode liquid crystal display device
JPS63182627A (en) Color liquid crystal element
JPH06294959A (en) Liquid crystal display device and its production
US7215396B2 (en) Multi-domain liquid crystal display having spacer aligned with alignment boundary
KR100587365B1 (en) Multidomain Liquid Crystal Display Device
JPH11305256A (en) Active matrix type liquid crystal display device
JPS6314123A (en) Liquid crystal element
JP2566760B2 (en) Liquid crystal element
JP3937587B2 (en) Liquid crystal element
JP4357622B2 (en) Liquid crystal display
JPH06194655A (en) Liquid crystal display element and its production
JPS6314124A (en) Liquid crystal element
JP2000193980A (en) Liquid crystal display element and its manufacture
JPH09222604A (en) Liquid crystal display panel
JPH086028A (en) Liquid crystal display device
JPS6360422A (en) Ferroelectric liquid crystal element
JP2753206B2 (en) Guest-host type liquid crystal display
JPH06294961A (en) Liquid crystal display element and its production
JPH0830808B2 (en) Liquid crystal element
KR20020080862A (en) Apparatus for liquid crystal display and method for manufacturing the same
JPH06160858A (en) Liquid crystal display element
JPH09211458A (en) Liquid crystal display element
JPH08122784A (en) Liquid crystal display element
JPH04355725A (en) Production of active matrix liquid crystal display panel
JPH08171091A (en) Liquid crystal display element and its production