JP2000193980A - Liquid crystal display element and its manufacture - Google Patents

Liquid crystal display element and its manufacture

Info

Publication number
JP2000193980A
JP2000193980A JP37321998A JP37321998A JP2000193980A JP 2000193980 A JP2000193980 A JP 2000193980A JP 37321998 A JP37321998 A JP 37321998A JP 37321998 A JP37321998 A JP 37321998A JP 2000193980 A JP2000193980 A JP 2000193980A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrates
pair
crystal layer
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP37321998A
Other languages
Japanese (ja)
Other versions
JP4546586B2 (en
Inventor
Masatoshi Horii
正俊 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP37321998A priority Critical patent/JP4546586B2/en
Publication of JP2000193980A publication Critical patent/JP2000193980A/en
Application granted granted Critical
Publication of JP4546586B2 publication Critical patent/JP4546586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a vertical alignment liquid crystal display element in which a bright defect at voltages close to the threshold voltage is prevented and with which a high contrast display and excellent response characteristics are attained and a method for its manufacture. SOLUTION: The vertical alignment liquid crystal display element is provided with a pair of substrates 10, 11, placed opposite to each other with a specified gap and having electrodes formed on the respective surfaces and a liquid crystal layer interposed between the pair of the substrates 10, 11. Liquid crystal molecules are vertically aligned with respect to the surfaces of the substrates in the case no voltage is applied to the liquid crystal layer. A means is provided to generate an oblique electric field inclined with respect to the substrate surfaces between the pair of the substrates 10, 11 in the case a voltage is applied to the liquid crystal layer. The surfaces of the substrates 10, 11 in contact with the liquid crystal layer are subjected to an alignment treatment to provide a pretilt angle to the liquid crystal molecules in the liquid crystal layer in a direction different from the direction of the oblique electric field. The alignment direction of the liquid crystal molecules under voltage application is set by the directions of the oblique electric field and the pretilt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液晶表示素子に関
し、特にコントラスト特性や応答性等の表示品質が優れ
た垂直配向型液晶表示素子とその製造方法とに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a vertical alignment type liquid crystal display device having excellent display quality such as contrast characteristics and responsiveness, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】垂直配向型の電界制御複屈折に基づくE
CB(Electrically Controlle
d Birefringence)モードで動作するC
SH−LCD(Color Super Hoeotr
opic 液晶表示装置)は、電圧無印加時に液晶分子
が上下基板に対して垂直に配向しているため直交ニコル
配置の偏光板と組み合わせることにより高コントラスト
表示が得られる。
2. Description of the Related Art Vertical alignment type electric field control based on birefringence E
CB (Electrically Control)
d Birefringence) operating in C mode
SH-LCD (Color Super Hoeotr)
opic liquid crystal display device) has high contrast display when combined with a polarizing plate having a crossed Nicols arrangement because liquid crystal molecules are oriented perpendicular to the upper and lower substrates when no voltage is applied.

【0003】図6(A)及び(B)にCSH−LCDの
一部分(1画素程度)の拡大平面図と、そのA−A’に
おける断面図とを示す。互いに直交する二次元方向x−
y平面が液晶セルのガラス基板面に平行な方向で、x軸
はセグメント電極62の長手方向と一致し、y軸がコモ
ン電極63の長手方向と一致する。
FIGS. 6A and 6B are an enlarged plan view of a part (about one pixel) of a CSH-LCD and a cross-sectional view taken along line AA '. Two-dimensional directions x-
The y plane is a direction parallel to the glass substrate surface of the liquid crystal cell, the x axis matches the longitudinal direction of the segment electrode 62, and the y axis matches the longitudinal direction of the common electrode 63.

【0004】図6(A)は、単純マトリックス表示装置
に適用した場合の1画素分の領域の平面図である。図6
(A)において、セグメント電極62と、コモン電極6
3とが交差する領域に一つの画素領域が形成される。画
素領域はスリット67を境として左右二つの分割領域
(ドメイン)を有する。
FIG. 6A is a plan view of an area corresponding to one pixel when applied to a simple matrix display device. FIG.
3A, the segment electrode 62 and the common electrode 6
One pixel region is formed in a region where 3 intersects. The pixel region has two left and right divided regions (domains) with the slit 67 as a boundary.

【0005】その構造は、互いの偏光軸方向p,dが直
交した偏光板(図示せず)の間に一対のガラス基板6
0、61が挟持され、各々のガラス基板には透明電極6
2、63と、垂直配向膜64、65が成膜され、誘電率
異方性が負の液晶66がガラス基板間に封入されてい
る。なお、同図及び他の図では液晶分子をダイレクタの
方向に細長い楕円で描いてある。
[0005] The structure is such that a pair of glass substrates 6 are arranged between polarizing plates (not shown) whose polarization axis directions p and d are orthogonal to each other.
0 and 61 are sandwiched, and a transparent electrode 6 is provided on each glass substrate.
2 and 63 and vertical alignment films 64 and 65 are formed, and a liquid crystal 66 having a negative dielectric anisotropy is sealed between the glass substrates. In this figure and other figures, the liquid crystal molecules are drawn as elongated ellipses in the direction of the director.

【0006】このECBモードでは、電圧印加時にセル
の上下基板間の中央部の液晶分子から倒れはじめ、それ
と共に液晶層のリターデーションが変化して徐々に透過
率が上昇するという電気光学的特性を持っている。
In the ECB mode, when voltage is applied, the liquid crystal molecules at the center between the upper and lower substrates of the cell begin to fall, and at the same time, the retardation of the liquid crystal layer changes and the transmissivity gradually increases. have.

【0007】このCSH−LCDでは、図6(A)で示
すように、電極にスリット形状の開口部67を設けて、
1画素を互いに配向方向の異なる二つの領域(分割配向
構造)で形成することによりより広い視角特性を得てい
る。すなわち、電圧印加時に倒れる液晶分子66の方向
性をセグメント電極62とコモン電極63との間で生じ
る斜め電界68a,68bによって制御している。図6
(B)で示すように、この左右方向からの斜め電界によ
って液晶分子ダイレクタを2分割している。
In this CSH-LCD, as shown in FIG. 6A, a slit-shaped opening 67 is provided in the electrode,
A wider viewing angle characteristic is obtained by forming one pixel by two regions (division alignment structures) having different alignment directions. That is, the directionality of the liquid crystal molecules 66 that fall when a voltage is applied is controlled by the oblique electric fields 68a and 68b generated between the segment electrode 62 and the common electrode 63. FIG.
As shown in (B), the liquid crystal molecule director is divided into two by the oblique electric field from the left and right directions.

【0008】この開口部スリット67が無いとすると、
左右方向の電界により液晶分子ダイレクタが画素中央で
ぶつかりランダムな方向性を持つことになる。開口部ス
リット67が有ると液晶分子ダイレクタ66は斜め電界
により左右方向に倒れるため、偏光板は図6(A)の矢
印で示すように画素のセグメント電極、コモン電極に対
して斜め45°と135°方向に配置するのが効果的で
ある。
If there is no opening slit 67,
The liquid crystal molecule director collides at the center of the pixel due to the electric field in the left-right direction, and has a random direction. When the opening slit 67 is provided, the liquid crystal molecule director 66 is tilted in the left and right directions due to the oblique electric field. Therefore, as shown by arrows in FIG. It is effective to arrange them in the ° direction.

【0009】[0009]

【発明が解決しようとする課題】しかし、この従来のC
SH−LCDでは、電極エッジの液晶分子ダイレクタ
は、斜め電界の影響で画素中央部の液晶分子ダイレクタ
よりも低い電圧で水平方向に倒れてしまう。そのため
に、偏光板の偏光軸角度が45°/135°の場合、o
ff電圧(しきい値電圧付近)でのリターデーションに
より光抜けが発生してしまい、コントラストが低下する
問題がある。
However, this conventional C
In the SH-LCD, the liquid crystal molecule director at the electrode edge falls down in the horizontal direction at a lower voltage than the liquid crystal molecule director at the pixel center due to the oblique electric field. Therefore, when the polarizing axis angle of the polarizing plate is 45 ° / 135 °, o
There is a problem that light leakage occurs due to retardation at the ff voltage (near the threshold voltage), and the contrast is reduced.

【0010】偏光板角度p,dを0°/90°に配置
(x,y軸と重なる。)すると、液晶分子ダイレクタと
偏光板の偏光軸方向とが揃うために、リターデーション
がなく、光抜けが防止できる。但し、その場合には、画
素中央部の液晶分子ダイレクタと偏光板の軸方向が揃う
ために、ECB効果が小さくなってしまう。
When the polarizer angles p and d are arranged at 0 ° / 90 ° (overlap with the x and y axes), the liquid crystal molecule director and the polarizing axis direction of the polarizer are aligned. Dropout can be prevented. In this case, however, the ECB effect is reduced because the axial directions of the liquid crystal molecule director and the polarizing plate at the center of the pixel are aligned.

【0011】一方、マルチプレックス駆動の条件でコン
トラストを高くするために、液晶材料にカイラル剤を添
加することが行われている。この場合も、偏光軸角度は
45°/135°が標準的であるが、これを0°/90
°とすることでoff電圧での光抜けが抑えられるのは
カイラル剤を添加しない場合と同様である。
On the other hand, in order to increase the contrast under multiplex driving conditions, a chiral agent is added to a liquid crystal material. Also in this case, the polarization axis angle is typically 45 ° / 135 °, but this is 0 ° / 90 °.
The light leakage at the off voltage can be suppressed by setting the angle to the same degree as in the case where the chiral agent is not added.

【0012】カイラル剤添加の場合では、液晶分子ダイ
レクタがツイスト(捩じれ)しているために、前述のよ
うなECB効果の減少はなく、高コントラストが得られ
る。しかし、この配置の場合は応答性が極端に遅く(応
答時間が10倍程度に)なり、実用的ではない。
In the case of adding a chiral agent, since the liquid crystal molecule director is twisted, the ECB effect is not reduced as described above, and a high contrast can be obtained. However, in this arrangement, the response is extremely slow (response time is about 10 times), which is not practical.

【0013】本発明の目的は、しきい値電圧付近での光
抜けを抑制して高コントラスト表示が得られ、かつ応答
性が良い垂直配向型液晶表示素子とその製造方法を提供
することにある。
An object of the present invention is to provide a vertical alignment type liquid crystal display device which can obtain high contrast display by suppressing light leakage near a threshold voltage and has good responsiveness, and a method of manufacturing the same. .

【0014】[0014]

【課題を解決するための手段】本発明による垂直配向型
液晶表示素子は、各々電極を表面に形成し、所定間隔で
互いに対向配置された一対の基板と、前記一対の基板間
に配置される液晶層とを有し、前記液晶層に電圧が印加
されていない状態で液晶分子が基板面に対して垂直に配
向している垂直配向型液晶表示素子において、前記液晶
層への電圧印加時に前記一対の基板の間で基板面に対し
て傾斜した斜め電界を発生する手段を設け、前記基板の
前記液晶層と接する面には前記斜め電界の方向とは異な
る方向に前記液晶層の液晶分子にプレティルト角を与え
る配向処理が施されており、前記斜め電界と前記プレテ
ィルトの方向とによって前記液晶分子の電圧印加時の配
向方向が設定されている。
In a vertical alignment type liquid crystal display device according to the present invention, electrodes are formed on a surface, respectively, and a pair of substrates arranged opposite to each other at a predetermined interval, and are disposed between the pair of substrates. A liquid crystal layer, wherein the liquid crystal molecules are vertically aligned with respect to the substrate surface in a state where no voltage is applied to the liquid crystal layer, wherein when applying a voltage to the liquid crystal layer, Means for generating an oblique electric field inclined with respect to the substrate surface is provided between the pair of substrates, and the surface of the substrate in contact with the liquid crystal layer is applied to liquid crystal molecules of the liquid crystal layer in a direction different from the direction of the oblique electric field. An orientation process for giving a pretilt angle is performed, and the orientation direction of the liquid crystal molecules when a voltage is applied is set by the oblique electric field and the direction of the pretilt.

【0015】本発明による垂直配向型液晶表示素子の製
造方法は、液晶分子が垂直配向するように配向処理がさ
れ、開口部を有する電極を表面に形成した一対の基板を
用意する工程と、前記基板の面に前記開口部の縁に対し
て所定方向に液晶分子にプレティルト角を与えるための
配向処理を施す工程と、前記液晶層への電圧印加時に、
前記開口部と該開口部に対向する基板との間で基板面に
対して傾斜した斜め電界を発生し、該斜め電界の方向と
前記プレティルトの方向が異なるように前記一対の基板
を所定間隔で対向配置して、該基板間に液晶材料を注入
する工程とを有する。
The method of manufacturing a vertical alignment type liquid crystal display device according to the present invention comprises the steps of: preparing a pair of substrates on which an alignment process is performed so that liquid crystal molecules are vertically aligned and an electrode having an opening is formed on the surface; A step of subjecting the surface of the substrate to an alignment treatment for giving a pretilt angle to the liquid crystal molecules in a predetermined direction with respect to the edge of the opening, and applying a voltage to the liquid crystal layer;
An oblique electric field inclined with respect to the substrate surface is generated between the opening and the substrate facing the opening, and the pair of substrates are separated at a predetermined interval so that the direction of the oblique electric field and the direction of the pretilt are different. And injecting a liquid crystal material between the substrates.

【0016】斜め電界による配向力ベクトルとプレティ
ルトによる配向力ベクトルの合成ベクトルの方向に電圧
印加時の液晶ダイレクタの方向が定まる。この合成ベク
トルの方向と偏光板の偏光軸方向とが特定の関係、例え
ば45°になるようにプレティルトの方向を設定するこ
とにより高コントラスト表示が得られる。
The direction of the liquid crystal director when voltage is applied is determined by the direction of the combined vector of the alignment force vector due to the oblique electric field and the alignment force vector due to the pretilt. By setting the direction of the pretilt so that the direction of the composite vector and the direction of the polarization axis of the polarizing plate have a specific relationship, for example, 45 °, a high-contrast display can be obtained.

【0017】[0017]

【発明の実施の形態】図1(A)及び(B)に本発明の
実施例によるCSH−LCDの一部分(1画素程度)の
拡大平面図と、そのB−B’における断面図とを示す。
その構造は、互いの偏光軸方向p,dが直交した偏光板
(図示せず。)の間に一対のガラス基板10、11を挟
持し、各々のガラス基板には透明電極12、13と、垂
直配向膜14、15が成膜され、誘電率異方性が負の液
晶16がガラス基板間に封入されている。図では液晶分
子16をダイレクタの方向に細長い楕円で描いてある。
1A and 1B are an enlarged plan view of a portion (about one pixel) of a CSH-LCD according to an embodiment of the present invention and a cross-sectional view taken along the line BB '. .
The structure is such that a pair of glass substrates 10 and 11 are sandwiched between polarizing plates (not shown) whose polarization axis directions p and d are orthogonal to each other, and transparent electrodes 12 and 13 are provided on each glass substrate. Vertical alignment films 14 and 15 are formed, and liquid crystal 16 having negative dielectric anisotropy is sealed between glass substrates. In the figure, the liquid crystal molecules 16 are drawn as ellipses elongated in the direction of the director.

【0018】このCSH−LCDでも、図6(A)と同
様に、電極にスリット形状の開口部17を設けて、1画
素を互いに配向方向の異なる二つの領域(分割配向構
造)で形成することによりより広い視角特性を得てい
る。すなわち、電圧印加時に倒れる液晶分子16の方向
性をセグメント電極12とコモン電極13との間で生じ
る斜め電界よって制御している。
Also in this CSH-LCD, similarly to FIG. 6A, a slit-shaped opening 17 is provided in the electrode, and one pixel is formed of two regions (division alignment structures) having different alignment directions from each other. To obtain a wider viewing angle characteristic. That is, the directionality of the liquid crystal molecules 16 that fall down when a voltage is applied is controlled by the oblique electric field generated between the segment electrode 12 and the common electrode 13.

【0019】本実施例では、off電圧での光抜けを抑
制するために、偏光板角度を図1(A)で示すように、
0°/90°配置としている。発明が解決しようとする
課題の段落で説明したように、偏光板角度を0°/90
°配置とするとECB効果が少なくなるので、これを解
決するために、液晶分子ダイレクタの方向を基板面内で
x軸に対して45°方向にチルト(傾ける)させる。す
なわち、垂直配向膜14、15にx軸方向にラビング処
理を行うこと等によりプレティルト処理を施す。
In this embodiment, in order to suppress light leakage at the off voltage, the angle of the polarizing plate is set as shown in FIG.
The arrangement is 0 ° / 90 °. As described in the paragraph of the problem to be solved by the invention, the polarizing plate angle is set to 0 ° / 90 °.
In order to solve this problem, the ECB effect is reduced. Therefore, the direction of the liquid crystal molecule director is tilted (inclined) in the direction of 45 ° with respect to the x-axis in the substrate plane. That is, the pre-tilt process is performed on the vertical alignment films 14 and 15 by performing a rubbing process in the x-axis direction or the like.

【0020】この結果、斜め電界による配向ベクトルe
と、プレティルト処理による配向ベクトルtとの合成ベ
クトルdが液晶分子ダイレクタの方向となり、これは、
x軸に対して45°方向に傾いていることになる。
As a result, the orientation vector e due to the oblique electric field
And the resultant vector d of the orientation vector t by the pretilt process becomes the direction of the liquid crystal molecule director.
This means that it is inclined in the direction of 45 ° with respect to the x-axis.

【0021】従って、この実施例では、斜め電界を発生
するスリット電極と、0°/90°配置の偏光板と、垂
直配向膜のプレティルト処理との組み合わせによって、
高コントラストが得られる。カイラル剤を添加しても応
答性は改善される。
Therefore, in this embodiment, a combination of a slit electrode for generating an oblique electric field, a polarizing plate arranged at 0 ° / 90 °, and a pretilt treatment of a vertical alignment film is employed.
High contrast can be obtained. The responsiveness is improved by adding a chiral agent.

【0022】なお、プレティルト処理の方法としては、
上記説明のように垂直配向膜をラビング処理する方法の
他に、垂直配向膜に紫外線を基板法線に対して斜め方向
から照射する方法や、透明電極状にSiO2 膜を斜め方
向からスパッタで成膜し、そのSiO2 膜上に垂直配向
膜を形成する方法などが使用できる。
The pretilt method is as follows.
In addition to the method of rubbing the vertical alignment film as described above, a method of irradiating ultraviolet light to the vertical alignment film in an oblique direction with respect to the substrate normal, or a method of sputtering a SiO 2 film in a transparent electrode shape from an oblique direction. A method of forming a film and forming a vertical alignment film on the SiO 2 film can be used.

【0023】[0023]

【実施例】(実施例1)本発明によるCSH−LCDの
製造方法の実施例とその表示性能の実験結果についてさ
らに説明する。
EXAMPLES (Example 1) An example of a method for manufacturing a CSH-LCD according to the present invention and experimental results of its display performance will be further described.

【0024】 図6(A)、(B)で示したようなパ
ターンのセグメント電極とコモン電極をITO(インジ
ウム錫酸化物)により形成した2枚のガラス基板に垂直
配向膜(SE1211、日産化学(株)製)をスピンコ
ートにより塗布し、200°Cで焼成した。
A vertical alignment film (SE1211, Nissan Chemical Co., Ltd.) is formed on two glass substrates in which the segment electrode and the common electrode having the patterns shown in FIGS. 6A and 6B are formed of ITO (indium tin oxide). Co., Ltd.) was applied by spin coating and baked at 200 ° C.

【0025】 上記工程で得た基板上の配向膜に綿布
によりラビングを施した。つまり、セグメント電極基板
12に対しては図2の矢印rs の方向に、コモン電極基
板13に対しては矢印rc の方向にラビングして図1
(B)で示すようなプレティルト角θp を与えた。な
お、このプレティルト角θp は、クリスタルローテーシ
ョン法による測定では89.9°であった。
The alignment film on the substrate obtained in the above step was rubbed with a cotton cloth. That is, in the direction of arrow r s in FIG. 2 for the segment electrode substrate 12, for the common electrode substrate 13 is rubbed in the direction of the arrow r c 1
It gave pretilt angle theta p as shown by (B). The pretilt angle θ p was 89.9 ° as measured by the crystal rotation method.

【0026】このプレティルト角θp の値は、89.9
°〜80°の範囲にあることが望ましい。
The value of the pretilt angle θ p is 89.9.
It is desirably in the range of ° to 80 °.

【0027】 上記の工程で配向処理した2枚のガ
ラス基板の一方にエポキシ系接着剤のシール剤を印刷
し、他方の基板にセル間の厚みを制御するためのギャッ
プコントロール材のシリカビーズ(SW3.8μm、触
媒化成(株)製)を均等に散布し、図2に示すように2
枚の基板のプレティルト方向がアンチパラレル配向にな
るように重ね合わせて空セルを作製した。
A sealant of an epoxy-based adhesive is printed on one of the two glass substrates subjected to the orientation treatment in the above process, and silica beads (SW3) as a gap control material for controlling the thickness between cells are printed on the other substrate. .8 μm, manufactured by Catalyst Chemicals Co., Ltd.).
An empty cell was produced by superposing the substrates so that the pretilt directions of the substrates were antiparallel.

【0028】 上記の工程で得た各空セルに,真空
注入法を用いてカイラル剤(CB15)を添加した誘電
率異方性が負の液晶材料を注入し、その注入口(図示せ
ず)を封止した。注入した液晶材料は、液晶の自然捩じ
れピッチpの値と、セル厚dの値との関係がd/p=
0.7になるようにカイラル剤の添加濃度を調整した。
A liquid crystal material having a negative dielectric anisotropy, to which a chiral agent (CB15) is added, is injected into each empty cell obtained in the above process by using a vacuum injection method, and the injection port (not shown) is provided. Was sealed. In the injected liquid crystal material, the relationship between the value of the natural twist pitch p of the liquid crystal and the value of the cell thickness d is d / p =
The concentration of the chiral agent was adjusted to 0.7.

【0029】 完成した液晶セルを直交ニコル配置の
2枚の偏光板(SQ1852、住友化学(株)製)で挟
み、それらの偏光軸を図1(A)と同様な0°/90°
配置とした。この液晶セルに方形波を印加して、電圧−
光透過率特性を測定した所、図3のような結果が得られ
た。なお、その際に図6で示したような従来の技術によ
る垂直配向型セルで、プレティルト処理を行わず、偏光
軸配置が45°/135°配置のものも同様に作製して
比較のために測定した。
The completed liquid crystal cell is sandwiched between two polarizing plates (SQ1852, manufactured by Sumitomo Chemical Co., Ltd.) having orthogonal Nicols, and their polarization axes are 0 ° / 90 ° as in FIG. 1A.
It was arranged. A square wave is applied to this liquid crystal cell, and a voltage −
When the light transmittance characteristics were measured, the results as shown in FIG. 3 were obtained. At this time, a vertical alignment type cell according to the prior art as shown in FIG. 6 which was not subjected to pretilt treatment and had a polarization axis arrangement of 45 ° / 135 ° was similarly produced and used for comparison. It was measured.

【0030】図3は、その測定実験の結果得られた、電
圧−光透過率特性であり、1/120デューティで(1
/11.95)Vのバイアス電圧でマルチプレックス駆
動したときのコントラスト値を表1に示す。
FIG. 3 shows the voltage-light transmittance characteristics obtained as a result of the measurement experiment.
Table 1 shows the contrast values when multiplex driving was performed with a bias voltage of (/11.95)V.

【0031】[0031]

【表1】 [Table 1]

【0032】図3の測定結果から、従来技術によるセル
では、電極エッジによる斜め電界のために、しきい電圧
付近(4.5〜5.2V)で光抜けが生じて透過率が本
発明の実施例のセルよりも高くなっていることが分か
る。逆に、本発明の実施例によるものでは、0°/90
°配置の偏光板を使用しラビング処理によるプレティル
トを与えたのでしきい値電圧付近の光抜けは抑えられて
いる。また、表1から明らかなように、従来のものより
もコントラスト値が改善されている。また、電極スリッ
トでの斜め電界による2分割配向により広視野角の表示
が得られた。
From the measurement results shown in FIG. 3, it can be seen that in the cell according to the prior art, light leakage occurs near the threshold voltage (4.5 to 5.2 V) due to the oblique electric field caused by the electrode edge, and the transmittance of the cell according to the present invention is reduced. It turns out that it is higher than the cell of the example. Conversely, according to the embodiment of the present invention, 0 ° / 90 °
Since a pretilt is provided by a rubbing process using a polarizing plate arranged at an angle, light leakage near the threshold voltage is suppressed. Further, as is clear from Table 1, the contrast value is improved as compared with the conventional one. In addition, a display with a wide viewing angle was obtained by two-division alignment by an oblique electric field at the electrode slit.

【0033】(実施例2)本発明によるCSH−LCD
の製造方法のさらに別の実施例とその表示性能の実験結
果についてさらに説明する。図4(A)及び(B)にこ
の第2の実施例によるCSH−LCDの一部分(1画素
程度)の拡大平面図と、そのC−C’における断面図と
を示す。
(Example 2) CSH-LCD according to the present invention
A further example of the manufacturing method of the present invention and experimental results of its display performance will be further described. FIGS. 4A and 4B show an enlarged plan view of a part (about one pixel) of the CSH-LCD according to the second embodiment and a cross-sectional view taken along CC '.

【0034】 実施例1と同様なパターンのセグメン
ト電極22とコモン電極23をITOにより形成した2
枚のガラス基板20,21に垂直配向膜24、25(S
E1211、日産化学(株)製)をスピンコートにより
塗布し、200℃で焼成した。
The segment electrode 22 and the common electrode 23 having the same pattern as in the first embodiment are formed by ITO.
Vertical alignment films 24 and 25 (S
E1211, manufactured by Nissan Chemical Industries, Ltd.) was applied by spin coating and baked at 200 ° C.

【0035】 上記工程で得た基板に波長が254
nmの紫外線を基板面に対して斜め45°から照射し、
プレティルト処理を施した。つまり、セグメント電極基
板22に対しては図4(B)の矢印vs の方向に、コモ
ン電極基板23に対しては矢印vc の方向に紫外線を照
射して図4(B)で示すようなプレティルト角θp を与
えた。なお、このプレティルト角θp は、クリスタルロ
ーテーション法による測定では89.9°であった。
The substrate obtained in the above process has a wavelength of 254.
irradiates ultraviolet rays of 45 nm obliquely to the substrate surface,
Pretilt treatment was applied. That is, in the direction of arrow v s in Figure 4 for the segment electrode substrate 22 (B), as shown in FIG. 4 (B) with respect to the common electrode substrate 23 is irradiated with ultraviolet rays in the direction of arrow v c such was given a pre-tilt angle θ p. The pretilt angle θ p was 89.9 ° as measured by the crystal rotation method.

【0036】 上記の工程で配向処理した2枚のガ
ラス基板の一方にエポキシ系接着剤のシール剤を印刷
し、他方の基板にセル間の厚みを制御するためのギャッ
プコントロール材のシリカビーズ(SW3.8μm、触
媒化成(株)製)を均等に散布し、2枚の基板のプレテ
ィルト方向が図4(A)のようにパラレル配向になるよ
うに重ね合わせて空セルを作製した。
A sealing agent such as an epoxy-based adhesive is printed on one of the two glass substrates subjected to the orientation treatment in the above process, and silica beads (SW3) as a gap control material for controlling the thickness between cells are printed on the other substrate. 0.8 μm, manufactured by Catalyst Chemicals Co., Ltd.), and the two substrates were overlapped so that the pretilt directions of the two substrates were parallel to each other as shown in FIG.

【0037】 上記の工程で得た各空セルに,真空
注入法を用いてカイラル剤(CB15)を添加した誘電
率異方性が負の液晶材料を注入し、その注入口(図示せ
ず)を封止した。注入した液晶材料は、液晶の自然捩じ
れピッチpの値と、セル厚dの値との関係がd/p=
0.7になるようにカイラル剤の添加濃度を調整した。
A liquid crystal material having a negative dielectric anisotropy, to which a chiral agent (CB15) is added, is injected into each of the empty cells obtained in the above process by using a vacuum injection method. Was sealed. In the injected liquid crystal material, the relationship between the value of the natural twist pitch p of the liquid crystal and the value of the cell thickness d is d / p =
The concentration of the chiral agent was adjusted to 0.7.

【0038】 完成した液晶セルを直交ニコル配置の
2枚の偏光板(SQ1852、住友化学(株)製)で挟
み、それらの偏光軸が図1(A)と同様な0°/90°
配置とした。この液晶セルに方形波を印加して、電圧−
光透過率特性を測定した所、図5のような結果が得られ
た。
The completed liquid crystal cell is sandwiched between two polarizing plates (SQ1852, manufactured by Sumitomo Chemical Co., Ltd.) having orthogonal Nicols, and their polarization axes are 0 ° / 90 ° as in FIG. 1A.
It was arranged. A square wave is applied to this liquid crystal cell, and a voltage −
When the light transmittance characteristics were measured, the results as shown in FIG. 5 were obtained.

【0039】なお、図6で示したような従来の技術によ
る垂直配向型セルで、紫外線によるプレティルト処理を
行わず、偏光軸配置が45°/135°配置のものも同
様に作製して比較のために測定した。
It should be noted that a vertical alignment type cell according to the prior art as shown in FIG. 6 which was not subjected to pretilt treatment by ultraviolet rays and had a polarization axis arrangement of 45 ° / 135 ° was similarly manufactured and used for comparison. Measured for.

【0040】図5は、その測定実験の結果得られた、電
圧−光透過率特性を示す。1/120デューティで(1
V/11.95)Vバイアス電圧でマルチプレックス駆
動したときのコントラスト値を表2に示す。なお、表2
では偏光軸配置が0°/90°の従来技術のセルも比較
対象として記載した。
FIG. 5 shows a voltage-light transmittance characteristic obtained as a result of the measurement experiment. At 1/120 duty (1
(V / 11.95) The contrast value when multiplex driving was performed with a V bias voltage is shown in Table 2. Table 2
In the above, a cell of the prior art having a polarization axis arrangement of 0 ° / 90 ° is also described as a comparative object.

【0041】[0041]

【表2】 [Table 2]

【0042】図5の測定結果から、この実施例において
も、0°/90°配置の偏光板を使用し紫外線照射処理
によるプレティルトを与えたのでしきい値電圧付近の光
抜けは従来技術のものと比べて格段に抑えられている。
また、表2から明らかなように、従来のいずれの偏光軸
配置のものよりもコントラスト値が改善されている。さ
らに、応答時間についても、カイラル剤を添加したにも
かかわらず、従来技術の0°/90°偏光軸配置のもの
よりも高速になっていることが分かる。
From the measurement results shown in FIG. 5, it can be seen from this result that light leakage near the threshold voltage was not obtained in the prior art because a polarizing plate arranged at 0 ° / 90 ° was used and pretilt was applied by ultraviolet irradiation. It is much lower than that.
Further, as is apparent from Table 2, the contrast value is improved as compared with any conventional polarization axis arrangement. Furthermore, it can be seen that the response time is faster than that of the prior art having a 0 ° / 90 ° polarization axis arrangement despite the addition of the chiral agent.

【0043】なお、以上説明した実施例では、プレティ
ルトの方向が上下基板間でアンチパラレルあるいはパラ
レルの関係で設定されているが、本発明はこれに限るも
のではなく、0°〜360°の範囲で任意に上下基板の
プレティルトの方向を設定できる。
In the embodiment described above, the pretilt direction is set in an anti-parallel or parallel relationship between the upper and lower substrates. However, the present invention is not limited to this, and the pretilt direction is in the range of 0 ° to 360 °. The pretilt directions of the upper and lower substrates can be set as desired.

【0044】さらに、斜め電界の生成は、上記実施例の
ような細長いスリット開口のものに限らず、他の形状の
電極でもかまわない。
Further, the generation of the oblique electric field is not limited to the one in the elongated slit opening as in the above embodiment, but may be an electrode of another shape.

【0045】以上、実施例に沿って本発明を説明した
が、本発明はこれらに制限されるものではない。また、
種々の変更、改良、組み合わせ等が可能なことは当業者
に自明であろう。
Although the present invention has been described with reference to the embodiments, the present invention is not limited to these embodiments. Also,
It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

【0046】[0046]

【発明の効果】本発明によれば、垂直配向型液晶表示素
子において、一対の基板の間で基板面に対して傾斜した
斜め電界を発生する手段を設け、基板の液晶層と接する
面には斜め電界の方向とは異なる方向に液晶分子にプレ
ティルト角を与える配向処理を施したことにより、斜め
電界とプレティルトの方向とによって液晶分子の電圧印
加時の配向方向が設定される。すなわち、斜め電界によ
る配向力ベクトルとプレティルトによる配向力ベクトル
の合成ベクトルの方向に電圧印加時の液晶ダイレクタの
方向が定まる。この合成ベクトルの方向と偏光板の偏光
軸方向とが特定の関係になるようにプレティルトの方向
を設定することにより、しきい値電圧付近での光抜けを
抑制して高コントラスト表示で応答性が良い垂直配向型
液晶表示素子とその製造方法を得ることができる。
According to the present invention, in a vertical alignment type liquid crystal display device, means for generating an oblique electric field inclined with respect to the substrate surface is provided between a pair of substrates, and a surface of the substrate which is in contact with the liquid crystal layer is provided. By performing an alignment process for giving a pretilt angle to liquid crystal molecules in a direction different from the direction of the oblique electric field, the orientation direction of the liquid crystal molecules when a voltage is applied is set by the oblique electric field and the direction of the pretilt. That is, the direction of the liquid crystal director when voltage is applied is determined by the direction of the combined vector of the alignment force vector due to the oblique electric field and the alignment force vector due to the pretilt. By setting the pretilt direction so that the direction of the composite vector and the polarization axis direction of the polarizing plate have a specific relationship, light leakage near the threshold voltage is suppressed, and high-contrast display and responsiveness are achieved. A good vertical alignment type liquid crystal display device and a method for manufacturing the same can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例によるプレティルト処理をした
垂直配向型CSH−LCDのほぼ1画素分の平面図と断
面図である。
FIG. 1 is a plan view and a cross-sectional view of almost one pixel of a vertical alignment type CSH-LCD subjected to a pretilt process according to an embodiment of the present invention.

【図2】本発明の実施例によるラビング処理をした垂直
配向型CSH−LCDのほぼ1画素分の平面図である。
ある。
FIG. 2 is a plan view of almost one pixel of a rubbed vertical alignment type CSH-LCD according to an embodiment of the present invention.
is there.

【図3】図2の実施例による液晶セルの電圧−光透過率
特性図である。
FIG. 3 is a voltage-light transmittance characteristic diagram of the liquid crystal cell according to the embodiment of FIG. 2;

【図4】本発明の別の実施例による紫外線照射処理をし
た垂直配向型CSH−LCDのほぼ1画素分の平面図と
断面図である。
FIG. 4 is a plan view and a cross-sectional view of almost one pixel of a vertical alignment type CSH-LCD subjected to an ultraviolet irradiation process according to another embodiment of the present invention.

【図5】図4の実施例による液晶セルの電圧−光透過率
特性図である。
FIG. 5 is a voltage-light transmittance characteristic diagram of the liquid crystal cell according to the embodiment of FIG.

【図6】従来の技術による垂直配向型CSH−LCDの
ほぼ1画素分の平面図と断面図である。
FIG. 6 is a plan view and a cross-sectional view of almost one pixel of a vertical alignment type CSH-LCD according to a conventional technique.

【符号の説明】[Explanation of symbols]

10、11 ガラス基板 12 セグメント電極 13 コモン電極 14、 15 垂直配向膜 16 液晶分子 17 電極開口部(スリット) 20、21 ガラス基板 22 セグメント電極 23 コモン電極 24、 25 垂直配向膜 26 液晶分子 27 電極開口部(スリット) 10, 11 Glass substrate 12 Segment electrode 13 Common electrode 14, 15 Vertical alignment film 16 Liquid crystal molecule 17 Electrode opening (slit) 20, 21 Glass substrate 22 Segment electrode 23 Common electrode 24, 25 Vertical alignment film 26 Liquid crystal molecule 27 Electrode opening Part (slit)

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年1月26日(1999.1.2
6)
[Submission date] January 26, 1999 (1999.1.2
6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【図3】 FIG. 3

【図1】 FIG.

【図4】 FIG. 4

【図5】 FIG. 5

【図6】 FIG. 6

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 各々電極を表面に形成し、所定間隔で互
いに対向配置された一対の基板と、前記一対の基板間に
配置される液晶層とを有し、前記液晶層に電圧が印加さ
れていない状態で液晶分子が基板面に対して垂直に配向
している垂直配向型液晶表示素子において、前記液晶層
への電圧印加時に前記一対の基板の間で基板面に対して
傾斜した斜め電界を発生する手段を設け、前記基板の前
記液晶層と接する面には前記斜め電界の方向とは異なる
方向に前記液晶層の液晶分子にプレティルト角を与える
配向処理が施されており、前記斜め電界と前記プレティ
ルトの方向とによって前記液晶分子の電圧印加時の配向
方向が設定されている垂直配向型液晶表示素子。
An electrode is formed on a surface of the substrate, and the substrate has a pair of substrates disposed to face each other at a predetermined interval, and a liquid crystal layer disposed between the pair of substrates. A voltage is applied to the liquid crystal layer. In a vertical alignment type liquid crystal display device in which liquid crystal molecules are vertically aligned with respect to a substrate surface in a state where the liquid crystal layer is not placed, an oblique electric field inclined with respect to the substrate surface between the pair of substrates when a voltage is applied to the liquid crystal layer. The surface of the substrate that is in contact with the liquid crystal layer is subjected to an orientation treatment for giving a pretilt angle to the liquid crystal molecules of the liquid crystal layer in a direction different from the direction of the oblique electric field. A vertical alignment type liquid crystal display element in which the alignment direction of the liquid crystal molecules when voltage is applied is set according to the direction of the pretilt and the pretilt direction.
【請求項2】 前記斜め電界を発生する手段は、前記一
対の基板の少なくとも一方に設けた電極開口部を含み、
前記液晶層への電圧印加時に、前記電極開口部の縁と該
開口部に対向する基板との間で基板面に対して傾斜した
斜め電界を発生する請求項1記載の垂直配向型液晶表示
素子。
2. The means for generating an oblique electric field includes an electrode opening provided on at least one of the pair of substrates,
2. The vertical alignment type liquid crystal display device according to claim 1, wherein when a voltage is applied to the liquid crystal layer, an oblique electric field inclined with respect to a substrate surface is generated between an edge of the electrode opening and a substrate facing the opening. .
【請求項3】 前記電極開口部は、左右対称な長方形状
の縁を有し、前記長方形状の開口部の長辺方向に前記液
晶分子がプレティルトするように配向処理されている請
求項2記載の垂直配向型液晶表示素子。
3. The electrode opening has a left-right symmetric rectangular edge, and is oriented so as to pretilt the liquid crystal molecules in a long side direction of the rectangular opening. Vertical alignment type liquid crystal display device.
【請求項4】 前記プレティルト角が基板面に対して8
9.9°〜80°の範囲である請求項3記載の垂直配向
型液晶表示素子。
4. The method according to claim 1, wherein the pretilt angle is 8 with respect to the substrate surface.
4. The vertical alignment type liquid crystal display device according to claim 3, wherein the angle is in the range of 9.9 ° to 80 °.
【請求項5】 基板面内での前記プレティルト角の方向
と前記斜め電界の方向とが90°の関係にある請求項1
〜4のいずれか記載の垂直配向型液晶表示素子。
5. The method according to claim 1, wherein the direction of the pretilt angle in the plane of the substrate and the direction of the oblique electric field are in a relationship of 90 °.
5. The vertical alignment type liquid crystal display device according to any one of items 4 to 4.
【請求項6】 一方の基板と他方の基板とで互いのプレ
ティルトの方向が0°〜360°の範囲にあるように設
定されている請求項1〜5のいずれか記載の垂直配向型
液晶表示素子。
6. The vertical alignment type liquid crystal display according to claim 1, wherein the directions of the pretilt between the one substrate and the other substrate are set in a range of 0 ° to 360 °. element.
【請求項7】 前記一対の基板を挟持する一対の偏光板
を有し、前記一対の偏光板の偏光軸が互いにほぼ直交す
るように配置され、該一対の偏光板の偏光軸と前記液晶
層の中央部の液晶分子の電圧印加時の配向方向とが互い
に実質的に45°で交差するように配置されている請求
項1に記載の垂直配向型液晶表示素子。
7. A liquid crystal layer comprising a pair of polarizing plates sandwiching the pair of substrates, wherein the polarizing axes of the pair of polarizing plates are arranged to be substantially orthogonal to each other, and the polarizing axes of the pair of polarizing plates and the liquid crystal layer. 2. The vertical alignment type liquid crystal display device according to claim 1, wherein the liquid crystal molecules at the central portion thereof are arranged such that the alignment directions thereof when voltage is applied intersect at substantially 45 degrees.
【請求項8】 液晶分子が垂直配向するように配向処理
がされ、開口部を有する電極を表面に形成した一対の基
板を用意する工程と、 前記基板の面に前記開口部の縁に対して所定方向に液晶
分子にプレティルト角を与えるための配向処理を施す工
程と、 前記液晶層への電圧印加時に、前記開口部と該開口部に
対向する基板との間で基板面に対して傾斜した斜め電界
を発生し、該斜め電界の方向と前記プレティルトの方向
が異なるように前記一対の基板を所定間隔で対向配置し
て、該基板間に液晶材料を注入する工程とを有する垂直
配向型液晶表示素子の製造方法。
8. A step of preparing a pair of substrates on which liquid crystal molecules are aligned so that liquid crystal molecules are vertically aligned, and on which an electrode having an opening is formed. Performing an alignment treatment for giving a pretilt angle to the liquid crystal molecules in a predetermined direction, and when applying a voltage to the liquid crystal layer, the liquid crystal layer is inclined with respect to the substrate surface between the opening and the substrate facing the opening. Generating an oblique electric field, arranging the pair of substrates facing each other at a predetermined interval so that the direction of the oblique electric field is different from the direction of the pretilt, and injecting a liquid crystal material between the substrates. A method for manufacturing a display element.
JP37321998A 1998-12-28 1998-12-28 Liquid crystal display element and manufacturing method thereof Expired - Fee Related JP4546586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37321998A JP4546586B2 (en) 1998-12-28 1998-12-28 Liquid crystal display element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37321998A JP4546586B2 (en) 1998-12-28 1998-12-28 Liquid crystal display element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000193980A true JP2000193980A (en) 2000-07-14
JP4546586B2 JP4546586B2 (en) 2010-09-15

Family

ID=18501794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37321998A Expired - Fee Related JP4546586B2 (en) 1998-12-28 1998-12-28 Liquid crystal display element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4546586B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006154105A (en) * 2004-11-26 2006-06-15 Casio Comput Co Ltd Liquid crystal display element
US7839369B2 (en) 2004-10-04 2010-11-23 Samsung Electronics Co., Ltd. Liquid crystal display having cutout arranged at pixel electrode with specific position from cutout arranged at common electrode, and driving method thereof
JP2011118247A (en) * 2009-12-04 2011-06-16 Stanley Electric Co Ltd Liquid crystal display device
JP2011191567A (en) * 2010-03-15 2011-09-29 Stanley Electric Co Ltd Liquid crystal display device
JP2011257470A (en) * 2010-06-07 2011-12-22 Stanley Electric Co Ltd Liquid crystal display device
JP2012047902A (en) * 2010-08-25 2012-03-08 Stanley Electric Co Ltd Liquid crystal display element
JP2012068353A (en) * 2010-09-22 2012-04-05 Stanley Electric Co Ltd Liquid crystal display element
JP2012068591A (en) * 2010-09-27 2012-04-05 Stanley Electric Co Ltd Liquid crystal display device
JP2012093587A (en) * 2010-10-27 2012-05-17 Stanley Electric Co Ltd Liquid crystal display device
US8842250B2 (en) 2010-10-27 2014-09-23 Stanley Electric Co., Ltd. Liquid crystal display having pixel electrodes with tilted pixel edges

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839369B2 (en) 2004-10-04 2010-11-23 Samsung Electronics Co., Ltd. Liquid crystal display having cutout arranged at pixel electrode with specific position from cutout arranged at common electrode, and driving method thereof
JP2006154105A (en) * 2004-11-26 2006-06-15 Casio Comput Co Ltd Liquid crystal display element
JP2011118247A (en) * 2009-12-04 2011-06-16 Stanley Electric Co Ltd Liquid crystal display device
JP2011191567A (en) * 2010-03-15 2011-09-29 Stanley Electric Co Ltd Liquid crystal display device
JP2011257470A (en) * 2010-06-07 2011-12-22 Stanley Electric Co Ltd Liquid crystal display device
JP2012047902A (en) * 2010-08-25 2012-03-08 Stanley Electric Co Ltd Liquid crystal display element
JP2012068353A (en) * 2010-09-22 2012-04-05 Stanley Electric Co Ltd Liquid crystal display element
US8542335B2 (en) 2010-09-22 2013-09-24 Stanley Electric Co., Ltd. Liquid crystal display element
JP2012068591A (en) * 2010-09-27 2012-04-05 Stanley Electric Co Ltd Liquid crystal display device
US8531636B2 (en) 2010-09-27 2013-09-10 Stanley Electric Co., Ltd. Liquid crystal display
JP2012093587A (en) * 2010-10-27 2012-05-17 Stanley Electric Co Ltd Liquid crystal display device
US8842250B2 (en) 2010-10-27 2014-09-23 Stanley Electric Co., Ltd. Liquid crystal display having pixel electrodes with tilted pixel edges

Also Published As

Publication number Publication date
JP4546586B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
KR100259474B1 (en) Lcd device with hybrid array
JP2572537B2 (en) Liquid crystal display device and manufacturing method thereof
JP3850002B2 (en) Liquid crystal electro-optical device
JP5101268B2 (en) Liquid crystal display element
JPH09325373A (en) Liquid crystal display element and production therefor
US7009677B2 (en) LCD device implementing FLCP orientation film
JPH0922025A (en) Liquid crystal display device
JP4546586B2 (en) Liquid crystal display element and manufacturing method thereof
JPH11305256A (en) Active matrix type liquid crystal display device
JP4364542B2 (en) Liquid crystal display device and manufacturing method thereof
JP2856466B2 (en) Liquid crystal display device
JP3183647B2 (en) Parallel alignment liquid crystal display
JP4031658B2 (en) Liquid crystal display
WO1998033092A1 (en) Liquid crystal device and its manufacturing method
JP5213482B2 (en) Liquid crystal display element
JP2006106434A (en) Liquid crystal display element
JP2000131698A (en) Liquid crystal display element and its production
KR100480812B1 (en) Method of manufacturing an alignment layer of liquid crystal display device
JP2000039615A (en) Liquid crystal electrooptical device and its manufacture
JPH06342154A (en) Liquid crystal display device
JPH07281190A (en) Liquid crystal display device and its production
JPH06294961A (en) Liquid crystal display element and its production
JPH11142854A (en) Liquid crystal display device and its production
JP2004341025A (en) Liquid crystal display element and method for manufacturing the same
JPH0695120A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081114

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees