JP4546586B2 - Liquid crystal display element and manufacturing method thereof - Google Patents

Liquid crystal display element and manufacturing method thereof Download PDF

Info

Publication number
JP4546586B2
JP4546586B2 JP37321998A JP37321998A JP4546586B2 JP 4546586 B2 JP4546586 B2 JP 4546586B2 JP 37321998 A JP37321998 A JP 37321998A JP 37321998 A JP37321998 A JP 37321998A JP 4546586 B2 JP4546586 B2 JP 4546586B2
Authority
JP
Japan
Prior art keywords
liquid crystal
substrates
pair
electrode opening
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37321998A
Other languages
Japanese (ja)
Other versions
JP2000193980A (en
Inventor
正俊 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Stanley Electric Co Ltd
Original Assignee
Sharp Corp
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Stanley Electric Co Ltd filed Critical Sharp Corp
Priority to JP37321998A priority Critical patent/JP4546586B2/en
Publication of JP2000193980A publication Critical patent/JP2000193980A/en
Application granted granted Critical
Publication of JP4546586B2 publication Critical patent/JP4546586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a vertical alignment liquid crystal display element in which a bright defect at voltages close to the threshold voltage is prevented and with which a high contrast display and excellent response characteristics are attained and a method for its manufacture. SOLUTION: The vertical alignment liquid crystal display element is provided with a pair of substrates 10, 11, placed opposite to each other with a specified gap and having electrodes formed on the respective surfaces and a liquid crystal layer interposed between the pair of the substrates 10, 11. Liquid crystal molecules are vertically aligned with respect to the surfaces of the substrates in the case no voltage is applied to the liquid crystal layer. A means is provided to generate an oblique electric field inclined with respect to the substrate surfaces between the pair of the substrates 10, 11 in the case a voltage is applied to the liquid crystal layer. The surfaces of the substrates 10, 11 in contact with the liquid crystal layer are subjected to an alignment treatment to provide a pretilt angle to the liquid crystal molecules in the liquid crystal layer in a direction different from the direction of the oblique electric field. The alignment direction of the liquid crystal molecules under voltage application is set by the directions of the oblique electric field and the pretilt.

Description

【0001】
【発明の属する技術分野】
本発明は液晶表示素子に関し、特にコントラスト特性や応答性等の表示品質が優れた垂直配向型液晶表示素子とその製造方法とに関する。
【0002】
【従来の技術】
垂直配向型の電界制御複屈折に基づくECB(Electrically Controlled Birefringence)モードで動作するCSH−LCD(Color Super Hoeotropic 液晶表示装置)は、電圧無印加時に液晶分子が上下基板に対して垂直に配向しているため直交ニコル配置の偏光板と組み合わせることにより高コントラスト表示が得られる。
【0003】
図6(A)及び(B)にCSH−LCDの一部分(1画素程度)の拡大平面図と、そのA−A’における断面図とを示す。互いに直交する二次元方向x−y平面が液晶セルのガラス基板面に平行な方向で、x軸はセグメント電極62の長手方向と一致し、y軸がコモン電極63の長手方向と一致する。
【0004】
図6(A)は、単純マトリックス表示装置に適用した場合の1画素分の領域の平面図である。図6(A)において、セグメント電極62と、コモン電極63とが交差する領域に一つの画素領域が形成される。画素領域はスリット67を境として左右二つの分割領域(ドメイン)を有する。
【0005】
その構造は、互いの偏光軸方向p,dが直交した偏光板(図示せず)の間に一対のガラス基板60、61が挟持され、各々のガラス基板には透明電極62、63と、垂直配向膜64、65が成膜され、誘電率異方性が負の液晶66がガラス基板間に封入されている。なお、同図及び他の図では液晶分子をダイレクタの方向に細長い楕円で描いてある。
【0006】
このECBモードでは、電圧印加時にセルの上下基板間の中央部の液晶分子から倒れはじめ、それと共に液晶層のリターデーションが変化して徐々に透過率が上昇するという電気光学的特性を持っている。
【0007】
このCSH−LCDでは、図6(A)で示すように、電極にスリット形状の開口部67を設けて、1画素を互いに配向方向の異なる二つの領域(分割配向構造)で形成することによりより広い視角特性を得ている。すなわち、電圧印加時に倒れる液晶分子66の方向性をセグメント電極62とコモン電極63との間で生じる斜め電界68a,68bによって制御している。図6(B)で示すように、この左右方向からの斜め電界によって液晶分子ダイレクタを2分割している。
【0008】
この開口部スリット67が無いとすると、左右方向の電界により液晶分子ダイレクタが画素中央でぶつかりランダムな方向性を持つことになる。開口部スリット67が有ると液晶分子ダイレクタ66は斜め電界により左右方向に倒れるため、偏光板は図6(A)の矢印で示すように画素のセグメント電極、コモン電極に対して斜め45°と135°方向に配置するのが効果的である。図6(A)に示すように、セグメント電極62のエッジの方向であるx軸方向を0°とする。
【0009】
【発明が解決しようとする課題】
しかし、この従来のCSH−LCDでは、電極エッジの液晶分子ダイレクタは、斜め電界の影響で画素中央部の液晶分子ダイレクタよりも低い電圧で水平方向に倒れてしまう。そのために、偏光板の偏光軸角度が45°/135°の場合、off電圧(しきい値電圧付近)でのリターデーションにより光抜けが発生してしまい、コントラストが低下する問題がある。
【0010】
偏光板角度p,dを0°/90°に配置(x,y軸と重なる。)すると、液晶分子ダイレクタと偏光板の偏光軸方向とが揃うために、リターデーションがなく、光抜けが防止できる。但し、その場合には、画素中央部の液晶分子ダイレクタと偏光板の軸方向が揃うために、ECB効果が小さくなってしまう。
【0011】
一方、マルチプレックス駆動の条件でコントラストを高くするために、液晶材料にカイラル剤を添加することが行われている。この場合も、偏光軸角度は45°/135°が標準的であるが、これを0°/90°とすることでoff電圧での光抜けが抑えられるのはカイラル剤を添加しない場合と同様である。
【0012】
カイラル剤添加の場合では、液晶分子ダイレクタがツイスト(捩じれ)しているために、前述のようなECB効果の減少はなく、高コントラストが得られる。
しかし、この配置の場合は応答性が極端に遅く(応答時間が10倍程度に)なり、実用的ではない。
【0013】
本発明の目的は、しきい値電圧付近での光抜けを抑制して高コントラスト表示が得られ、かつ応答性が良い垂直配向型液晶表示素子とその製造方法を提供することにある。
【0014】
【課題を解決するための手段】
本発明の一観点によれば、各々電極が形成され、互いに対向配置された一対の基板であって、少なくとも一方の前記電極に、長方形状の縁を持つ電極開口部が形成された一対の基板と、前記一対の基板間に配置され、誘電率異方性が負でカイラル剤が添加された液晶材料を含む液晶層とを有し、前記液晶層への電圧印加時に、前記電極開口部の縁と該電極開口部に対向する基板との間で基板面に対して傾斜した斜め電界が発生し、前記一対の基板間で液晶分子のプレティルト方向がアンチパラレル配向になるように、前記電極開口部の縁の長辺方向に配向処理が施されており、前記斜め電界と前記プレティルト方向とによって前記液晶分子の電圧印加時の配向方向が設定される垂直配向型液晶表示素子が提供される。
本発明の他の観点によれば、各々電極が形成され、互いに対向配置された一対の基板であって、少なくとも一方の前記電極に、長方形状の縁を持つ電極開口部が形成された一対の基板と、前記一対の基板間に配置され、誘電率異方性が負でカイラル剤が添加された液晶材料を含む液晶層とを有し、前記液晶層への電圧印加時に、前記電極開口部の縁と該電極開口部に対向する基板との間で基板面に対して傾斜した斜め電界が発生し、前記一対の基板間で液晶分子のプレティルト方向がパラレル配向になるように、前記電極開口部の縁の短辺方向に配向処理が施されており、前記斜め電界と前記プレティルト方向とによって前記液晶分子の電圧印加時の配向方向が設定される垂直配向型液晶表示素子が提供される。
【0015】
本発明のさらに他の観点によれば、各々電極が形成された一対の基板であって、少なくとも一方の前記電極に、長方形状の縁を持つ電極開口部が形成された、一対の基板を用意する工程と、前記基板の面に、前記電極開口部の縁に対して所定方向に、液晶分子にプレティルト角を与えるための配向処理を施す工程と、前記一対の基板を対向配置し、該基板間に誘電率異方性が負でカイラル剤が添加された液晶材料を注入して液晶層を形成する工程とを有し、前記配向処理を施す工程は、対向配置された前記一対の基板間で液晶分子のプレティルト方向がアンチパラレル配向になるように、前記電極開口部の縁の長辺方向に配向処理を施し、前記液晶層への電圧印加時に、前記電極開口部の縁と該電極開口部に対向する基板との間で基板面に対して傾斜した斜め電界が発生し、前記斜め電界と前記プレティルト方向とによって前記液晶分子の電圧印加時の配向方向が設定される垂直配向型液晶表示素子の製造方法が提供される。
本発明のさらに他の観点によれば、各々電極が形成された一対の基板であって、少なくとも一方の前記電極に、長方形状の縁を持つ電極開口部が形成された、一対の基板を用意する工程と、前記基板の面に、前記電極開口部の縁に対して所定方向に、液晶分子にプレティルト角を与えるための配向処理を施す工程と、前記一対の基板を対向配置し、該基板間に誘電率異方性が負でカイラル剤が添加された液晶材料を注入して液晶層を形成する工程とを有し、前記配向処理を施す工程は、対向配置された前記一対の基板間で液晶分子のプレティルト方向がパラレル配向になるように、前記電極開口部の縁の短辺方向に配向処理を施し、前記液晶層への電圧印加時に、前記電極開口部の縁と該電極開口部に対向する基板との間で基板面に対して傾斜した斜め電界が発生し、前記斜め電界と前記プレティルト方向とによって前記液晶分子の電圧印加時の配向方向が設定される垂直配向型液晶表示素子の製造方法が提供される。
【0016】
斜め電界による配向力ベクトルとプレティルトによる配向力ベクトルの合成ベクトルの方向に電圧印加時の液晶ダイレクタの方向が定まる。この合成ベクトルの方向と偏光板の偏光軸方向とが特定の関係、例えば45°になるようにプレティルトの方向を設定することにより高コントラスト表示が得られる。
【0017】
【発明の実施の形態】
図1(A)及び(B)に本発明の実施例によるCSH−LCDの一部分(1画素程度)の拡大平面図と、そのB−B’における断面図とを示す。その構造は、互いの偏光軸方向p,dが直交した偏光板(図示せず。)の間に一対のガラス基板10、11を挟持し、各々のガラス基板には透明電極12、13と、垂直配向膜14、15が成膜され、誘電率異方性が負の液晶16がガラス基板間に封入されている。図では液晶分子16をダイレクタの方向に細長い楕円で描いてある。
【0018】
このCSH−LCDでも、図6(A)と同様に、電極にスリット形状の開口部17を設けて、1画素を互いに配向方向の異なる二つの領域(分割配向構造)で形成することによりより広い視角特性を得ている。すなわち、電圧印加時に倒れる液晶分子16の方向性をセグメント電極12とコモン電極13との間で生じる斜め電界よって制御している。
【0019】
本実施例では、off電圧での光抜けを抑制するために、偏光板角度を図1(A)で示すように、0°/90°配置としている。発明が解決しようとする課題の段落で説明したように、偏光板角度を0°/90°配置とするとECB効果が少なくなるので、これを解決するために、液晶分子ダイレクタの方向を基板面内でx軸に対して45°方向にチルト(傾ける)させる。すなわち、垂直配向膜14、15にx軸方向にラビング処理を行うこと等によりプレティルト処理を施す。
【0020】
この結果、斜め電界による配向ベクトルeと、プレティルト処理による配向ベクトルtとの合成ベクトルdが液晶分子ダイレクタの方向となり、これは、x軸に対して45°方向に傾いていることになる。
【0021】
従って、この実施例では、斜め電界を発生するスリット電極と、0°/90°配置の偏光板と、垂直配向膜のプレティルト処理との組み合わせによって、高コントラストが得られる。カイラル剤を添加しても応答性は改善される。
【0022】
なお、プレティルト処理の方法としては、上記説明のように垂直配向膜をラビング処理する方法の他に、垂直配向膜に紫外線を基板法線に対して斜め方向から照射する方法や、透明電極状にSiO2 膜を斜め方向からスパッタで成膜し、そのSiO2 膜上に垂直配向膜を形成する方法などが使用できる。
【0023】
【実施例】
(実施例1)
本発明によるCSH−LCDの製造方法の実施例とその表示性能の実験結果についてさらに説明する。
【0024】
▲1▼ 図6(A)、(B)で示したようなパターンのセグメント電極とコモン電極をITO(インジウム錫酸化物)により形成した2枚のガラス基板に垂直配向膜(SE1211、日産化学(株)製)をスピンコートにより塗布し、200°Cで焼成した。
【0025】
▲2▼ 上記工程で得た基板上の配向膜に綿布によりラビングを施した。つまり、セグメント電極基板12に対しては図2の矢印rs の方向に、コモン電極基板13に対しては矢印rc の方向にラビングして図1(B)で示すようなプレティルト角θp を与えた。なお、このプレティルト角θp は、クリスタルローテーション法による測定では89.9°であった。
【0026】
このプレティルト角θp の値は、89.9°〜80°の範囲にあることが望ましい。
【0027】
▲3▼ 上記▲2▼の工程で配向処理した2枚のガラス基板の一方にエポキシ系接着剤のシール剤を印刷し、他方の基板にセル間の厚みを制御するためのギャップコントロール材のシリカビーズ(SW3.8μm、触媒化成(株)製)を均等に散布し、図2に示すように2枚の基板のプレティルト方向がアンチパラレル配向になるように重ね合わせて空セルを作製した。
【0028】
▲4▼ 上記▲3▼の工程で得た各空セルに,真空注入法を用いてカイラル剤(CB15)を添加した誘電率異方性が負の液晶材料を注入し、その注入口(図示せず)を封止した。注入した液晶材料は、液晶の自然捩じれピッチpの値と、セル厚dの値との関係がd/p=0.7になるようにカイラル剤の添加濃度を調整した。
【0029】
▲5▼ 完成した液晶セルを直交ニコル配置の2枚の偏光板(SQ1852、住友化学(株)製)で挟み、それらの偏光軸を図1(A)と同様な0°/90°配置とした。この液晶セルに方形波を印加して、電圧−光透過率特性を測定した所、図3のような結果が得られた。なお、その際に図6で示したような従来の技術による垂直配向型セルで、プレティルト処理を行わず、偏光軸配置が45°/135°配置のものも同様に作製して比較のために測定した。
【0030】
図3は、その測定実験の結果得られた、電圧−光透過率特性であり、1/120デューティで(1/11.95)Vのバイアス電圧でマルチプレックス駆動したときのコントラスト値を表1に示す。
【0031】
【表1】

Figure 0004546586
【0032】
図3の測定結果から、従来技術によるセルでは、電極エッジによる斜め電界のために、しきい電圧付近(4.5〜5.2V)で光抜けが生じて透過率が本発明の実施例のセルよりも高くなっていることが分かる。逆に、本発明の実施例によるものでは、0°/90°配置の偏光板を使用しラビング処理によるプレティルトを与えたのでしきい値電圧付近の光抜けは抑えられている。また、表1から明らかなように、従来のものよりもコントラスト値が改善されている。また、電極スリットでの斜め電界による2分割配向により広視野角の表示が得られた。
【0033】
(実施例2)
本発明によるCSH−LCDの製造方法のさらに別の実施例とその表示性能の実験結果についてさらに説明する。図4(A)及び(B)にこの第2の実施例によるCSH−LCDの一部分(1画素程度)の拡大平面図と、そのC−C’における断面図とを示す。
【0034】
▲1▼ 実施例1と同様なパターンのセグメント電極22とコモン電極23をITOにより形成した2枚のガラス基板20,21に垂直配向膜24、25(SE1211、日産化学(株)製)をスピンコートにより塗布し、200℃で焼成した。
【0035】
▲2▼ 上記工程▲2▼で得た基板に波長が254nmの紫外線を基板面に対して斜め45°から照射し、プレティルト処理を施した。つまり、セグメント電極基板22に対しては図4(B)の矢印vs の方向に、コモン電極基板23に対しては矢印vc の方向に紫外線を照射して図4(B)で示すようなプレティルト角θp を与えた。なお、このプレティルト角θp は、クリスタルローテーション法による測定では89.9°であった。
【0036】
▲3▼ 上記▲2▼の工程で配向処理した2枚のガラス基板の一方にエポキシ系接着剤のシール剤を印刷し、他方の基板にセル間の厚みを制御するためのギャップコントロール材のシリカビーズ(SW3.8μm、触媒化成(株)製)を均等に散布し、2枚の基板のプレティルト方向が図4(A)のようにパラレル配向になるように重ね合わせて空セルを作製した。
【0037】
4) 上記3)の工程で得た各空セルに,真空注入法を用いてカイラル剤(CB15)を添加した誘電率異方性が負の液晶材料を注入し、その注入口(図示せず)を封止した。注入した液晶材料は、液晶の自然捩じれピッチpの値と、セル厚dの値との関係がd/p=0.7になるようにカイラル剤の添加濃度を調整した。液晶分子は、カイラル剤と基板のパラレル配向のプレティルト処理に従い、180度旋回する。矢印26は、液晶層中央の液晶分子のダイレクタを示す。
【0038】
▲5▼ 完成した液晶セルを直交ニコル配置の2枚の偏光板(SQ1852、住友化学(株)製)で挟み、それらの偏光軸が図1(A)と同様な0°/90°配置とした。この液晶セルに方形波を印加して、電圧−光透過率特性を測定した所、図5のような結果が得られた。
【0039】
なお、図6で示したような従来の技術による垂直配向型セルで、紫外線によるプレティルト処理を行わず、偏光軸配置が45°/135°配置のものも同様に作製して比較のために測定した。
【0040】
図5は、その測定実験の結果得られた、電圧−光透過率特性を示す。1/120デューティで(1V/11.95)Vバイアス電圧でマルチプレックス駆動したときのコントラスト値を表2に示す。なお、表2では偏光軸配置が0°/90°の従来技術のセルも比較対象として記載した。
【0041】
【表2】
Figure 0004546586
【0042】
図5の測定結果から、この実施例においても、0°/90°配置の偏光板を使用し紫外線照射処理によるプレティルトを与えたのでしきい値電圧付近の光抜けは従来技術のものと比べて格段に抑えられている。また、表2から明らかなように、従来のいずれの偏光軸配置のものよりもコントラスト値が改善されている。
さらに、応答時間についても、カイラル剤を添加したにもかかわらず、従来技術の0°/90°偏光軸配置のものよりも高速になっていることが分かる。
【0043】
なお、以上説明した実施例では、プレティルトの方向が上下基板間でアンチパラレルあるいはパラレルの関係で設定されているが、本発明はこれに限るものではなく、0°〜360°の範囲で任意に上下基板のプレティルトの方向を設定できる。
【0044】
さらに、斜め電界の生成は、上記実施例のような細長いスリット開口のものに限らず、他の形状の電極でもかまわない。
【0045】
以上、実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。また、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
【0046】
【発明の効果】
本発明によれば、垂直配向型液晶表示素子において、一対の基板の間で基板面に対して傾斜した斜め電界を発生する手段を設け、基板の液晶層と接する面には斜め電界の方向とは異なる方向に液晶分子にプレティルト角を与える配向処理を施したことにより、斜め電界とプレティルトの方向とによって液晶分子の電圧印加時の配向方向が設定される。すなわち、斜め電界による配向力ベクトルとプレティルトによる配向力ベクトルの合成ベクトルの方向に電圧印加時の液晶ダイレクタの方向が定まる。この合成ベクトルの方向と偏光板の偏光軸方向とが特定の関係になるようにプレティルトの方向を設定することにより、しきい値電圧付近での光抜けを抑制して高コントラスト表示で応答性が良い垂直配向型液晶表示素子とその製造方法を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例によるプレティルト処理をした垂直配向型CSH−LCDのほぼ1画素分の平面図と断面図である。
【図2】本発明の実施例によるラビング処理をした垂直配向型CSH−LCDのほぼ1画素分の平面図である。
ある。
【図3】図2の実施例による液晶セルの電圧−光透過率特性図である。
【図4】本発明の別の実施例による紫外線照射処理をした垂直配向型CSH−LCDのほぼ1画素分の平面図と断面図である。
【図5】図4の実施例による液晶セルの電圧−光透過率特性図である。
【図6】従来の技術による垂直配向型CSH−LCDのほぼ1画素分の平面図と断面図である。
【符号の説明】
10、11 ガラス基板
12 セグメント電極
13 コモン電極
14、 15 垂直配向膜
16 液晶分子
17 電極開口部(スリット)
20、21 ガラス基板
22 セグメント電極
23 コモン電極
24、 25 垂直配向膜
26 液晶分子
27 電極開口部(スリット)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal display device, and more particularly to a vertical alignment type liquid crystal display device having excellent display quality such as contrast characteristics and responsiveness, and a manufacturing method thereof.
[0002]
[Prior art]
A CSH-LCD (Color Super Hot Liquid Crystal Display Device) operating in an ECB (Electrically Controlled Birefringence) mode based on a vertical alignment type electric field control birefringence has liquid crystal molecules aligned vertically with respect to the upper and lower substrates when no voltage is applied. Therefore, a high contrast display can be obtained by combining with a polarizing plate having an orthogonal Nicol arrangement.
[0003]
6A and 6B are an enlarged plan view of a part (about one pixel) of the CSH-LCD and a cross-sectional view taken along the line AA ′. The two-dimensional directions xy plane orthogonal to each other are directions parallel to the glass substrate surface of the liquid crystal cell, the x axis coincides with the longitudinal direction of the segment electrode 62, and the y axis coincides with the longitudinal direction of the common electrode 63.
[0004]
FIG. 6A is a plan view of a region for one pixel when applied to a simple matrix display device. In FIG. 6A, one pixel region is formed in a region where the segment electrode 62 and the common electrode 63 intersect. The pixel region has two right and left divided regions (domains) with the slit 67 as a boundary.
[0005]
The structure is such that a pair of glass substrates 60 and 61 are sandwiched between polarizing plates (not shown) whose polarization axis directions p and d are orthogonal to each other, and transparent electrodes 62 and 63 are perpendicular to each glass substrate. Alignment films 64 and 65 are formed, and a liquid crystal 66 having a negative dielectric anisotropy is sealed between glass substrates. In this figure and other figures, the liquid crystal molecules are drawn as ellipses elongated in the direction of the director.
[0006]
This ECB mode has an electro-optical characteristic that begins to fall from the liquid crystal molecules in the center between the upper and lower substrates of the cell when a voltage is applied, and the transmittance of the liquid crystal layer changes gradually along with that. .
[0007]
In this CSH-LCD, as shown in FIG. 6A, a slit-shaped opening 67 is provided in the electrode, and one pixel is formed by two regions (divided alignment structures) having different alignment directions. Wide viewing angle characteristics are obtained. That is, the directionality of the liquid crystal molecules 66 that are tilted when a voltage is applied is controlled by the oblique electric fields 68 a and 68 b generated between the segment electrode 62 and the common electrode 63. As shown in FIG. 6B, the liquid crystal molecule director is divided into two by the oblique electric field from the left-right direction.
[0008]
If there is no opening slit 67, the liquid crystal molecule director collides with the center of the pixel due to the electric field in the left-right direction and has a random directionality. When the opening slit 67 is provided, the liquid crystal molecular director 66 is tilted in the left-right direction by an oblique electric field, so that the polarizing plate is inclined at 45 ° and 135 ° with respect to the pixel segment electrode and the common electrode as indicated by arrows in FIG. It is effective to arrange in the direction. As shown in FIG. 6A, the x-axis direction that is the direction of the edge of the segment electrode 62 is set to 0 °.
[0009]
[Problems to be solved by the invention]
However, in this conventional CSH-LCD, the liquid crystal molecular director at the electrode edge falls down in the horizontal direction at a lower voltage than the liquid crystal molecular director at the center of the pixel due to the influence of an oblique electric field. For this reason, when the polarization axis angle of the polarizing plate is 45 ° / 135 °, light leakage occurs due to retardation at an off voltage (near the threshold voltage), and there is a problem that the contrast is lowered.
[0010]
When the polarizing plate angles p and d are arranged at 0 ° / 90 ° (overlapping with the x and y axes), the liquid crystal molecular director and the polarizing axis direction of the polarizing plate are aligned, so there is no retardation and light leakage is prevented. it can. However, in that case, since the axial directions of the liquid crystal molecular director and the polarizing plate in the center of the pixel are aligned, the ECB effect is reduced.
[0011]
On the other hand, a chiral agent is added to a liquid crystal material in order to increase contrast under multiplex driving conditions. In this case as well, the polarization axis angle is typically 45 ° / 135 °, but by setting this to 0 ° / 90 °, light leakage at the off voltage can be suppressed as in the case where no chiral agent is added. It is.
[0012]
In the case of adding a chiral agent, the liquid crystal molecule director is twisted (twisted), so the ECB effect is not reduced as described above, and high contrast can be obtained.
However, in this arrangement, the response is extremely slow (response time is about 10 times), which is not practical.
[0013]
An object of the present invention is to provide a vertical alignment type liquid crystal display element which can suppress light leakage near a threshold voltage and obtain a high contrast display and has a good response, and a method for manufacturing the same.
[0014]
[Means for Solving the Problems]
According to one aspect of the present invention, a pair of substrates each having an electrode formed thereon and disposed to face each other, wherein at least one of the electrodes has an electrode opening having a rectangular edge. And a liquid crystal layer including a liquid crystal material disposed between the pair of substrates and having a negative dielectric anisotropy and a chiral agent added thereto, and when the voltage is applied to the liquid crystal layer, The electrode opening is formed such that an oblique electric field inclined with respect to the substrate surface is generated between the edge and the substrate facing the electrode opening, and the pretilt direction of the liquid crystal molecules is anti-parallel alignment between the pair of substrates. An alignment process is performed in the long side direction of the edge of the portion, and a vertical alignment type liquid crystal display element is provided in which the alignment direction when the voltage of the liquid crystal molecules is applied is set by the oblique electric field and the pretilt direction.
According to another aspect of the present invention, a pair of substrates each having an electrode formed thereon and opposed to each other, wherein at least one of the electrodes is formed with an electrode opening having a rectangular edge. A substrate and a liquid crystal layer including a liquid crystal material which is disposed between the pair of substrates and has a negative dielectric anisotropy and to which a chiral agent is added, and when the voltage is applied to the liquid crystal layer, the electrode opening The electrode opening is formed such that an oblique electric field inclined with respect to the substrate surface is generated between the edge of the substrate and the substrate facing the electrode opening, and the pretilt direction of liquid crystal molecules is parallelly aligned between the pair of substrates. An alignment process is performed in the short side direction of the edge of the part, and a vertical alignment type liquid crystal display element is provided in which the alignment direction when the voltage of the liquid crystal molecules is applied is set by the oblique electric field and the pretilt direction.
[0015]
According to still another aspect of the present invention, there is provided a pair of substrates each having an electrode formed thereon, wherein at least one of the electrodes is formed with an electrode opening having a rectangular edge. Performing an alignment treatment for giving a pretilt angle to the liquid crystal molecules in a predetermined direction with respect to the edge of the electrode opening on the surface of the substrate, and arranging the pair of substrates to face each other. Forming a liquid crystal layer by injecting a liquid crystal material having a negative dielectric anisotropy between which a chiral agent is added, and performing the alignment treatment between the pair of substrates disposed opposite to each other And applying an alignment treatment in the long side direction of the edge of the electrode opening so that the pretilt direction of the liquid crystal molecules is anti-parallel, and when applying a voltage to the liquid crystal layer, the edge of the electrode opening and the electrode opening Against the substrate surface An oblique electric field which is inclined occurs Te method of a vertical alignment type liquid crystal display device in which alignment directions when a voltage is applied is set for the liquid crystal molecules the oblique electric field between the said pretilt direction are provided.
According to still another aspect of the present invention, there is provided a pair of substrates each having an electrode formed thereon, wherein at least one of the electrodes is formed with an electrode opening having a rectangular edge. Performing an alignment treatment for giving a pretilt angle to the liquid crystal molecules in a predetermined direction with respect to the edge of the electrode opening on the surface of the substrate, and arranging the pair of substrates to face each other. Forming a liquid crystal layer by injecting a liquid crystal material having a negative dielectric anisotropy between which a chiral agent is added, and performing the alignment treatment between the pair of substrates disposed opposite to each other The liquid crystal molecules are aligned in the short side direction of the edge of the electrode opening so that the pretilt direction of the liquid crystal molecules becomes parallel alignment, and when the voltage is applied to the liquid crystal layer, the edge of the electrode opening and the electrode opening With respect to the substrate surface. Oblique electric field is generated the method of manufacturing a vertical alignment type liquid crystal display device alignment direction when a voltage is applied is set for the liquid crystal molecules the oblique electric field between the said pretilt direction are provided.
[0016]
The direction of the liquid crystal director when a voltage is applied is determined in the direction of the resultant vector of the alignment force vector due to the oblique electric field and the alignment force vector due to the pretilt. A high contrast display can be obtained by setting the pretilt direction so that the direction of the combined vector and the polarization axis direction of the polarizing plate have a specific relationship, for example, 45 °.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
1A and 1B are an enlarged plan view of a part (about one pixel) of a CSH-LCD according to an embodiment of the present invention, and a cross-sectional view taken along line BB ′. The structure is such that a pair of glass substrates 10 and 11 are sandwiched between polarizing plates (not shown) whose polarization axis directions p and d are orthogonal to each other, and transparent electrodes 12 and 13 are provided on each glass substrate, Vertical alignment films 14 and 15 are formed, and liquid crystal 16 having negative dielectric anisotropy is sealed between glass substrates. In the figure, the liquid crystal molecules 16 are drawn as elongated ellipses in the direction of the director.
[0018]
Also in this CSH-LCD, similarly to FIG. 6A, a slit-shaped opening 17 is provided in the electrode, and one pixel is formed by two regions (divided alignment structures) having different alignment directions. Visual angle characteristics are obtained. That is, the directionality of the liquid crystal molecules 16 that fall when a voltage is applied is controlled by an oblique electric field generated between the segment electrode 12 and the common electrode 13.
[0019]
In this embodiment, in order to suppress light leakage at the off voltage, the polarizing plate angle is set to 0 ° / 90 ° as shown in FIG. As described in the paragraph of the problem to be solved by the invention, when the polarizing plate angle is set to 0 ° / 90 °, the ECB effect is reduced. To solve this, the direction of the liquid crystal molecular director is set in the substrate plane. Tilt (tilt) in the direction of 45 ° with respect to the x-axis. That is, a pretilt process is performed on the vertical alignment films 14 and 15 by performing a rubbing process in the x-axis direction.
[0020]
As a result, the combined vector d of the alignment vector e by the oblique electric field and the alignment vector t by the pretilt process becomes the direction of the liquid crystal molecule director, which is inclined in the 45 ° direction with respect to the x axis.
[0021]
Therefore, in this embodiment, a high contrast can be obtained by a combination of a slit electrode that generates an oblique electric field, a polarizing plate arranged at 0 ° / 90 °, and a pretilt treatment of a vertical alignment film. Even if a chiral agent is added, the response is improved.
[0022]
In addition to the method of rubbing the vertical alignment film as described above, the pretilt treatment method includes a method of irradiating the vertical alignment film with ultraviolet rays obliquely with respect to the substrate normal, or a transparent electrode shape. deposited by sputtering a SiO 2 film from an oblique direction, and a method of forming a vertical alignment film on the SiO 2 film can be used.
[0023]
【Example】
Example 1
An example of a method for manufacturing a CSH-LCD according to the present invention and an experimental result of its display performance will be further described.
[0024]
(1) A vertical alignment film (SE1211, Nissan Chemical Industries, Ltd.) is formed on two glass substrates in which segment electrodes and common electrodes having a pattern as shown in FIGS. 6A and 6B are formed of ITO (indium tin oxide). Co., Ltd.) was applied by spin coating and baked at 200 ° C.
[0025]
(2) The alignment film on the substrate obtained in the above step was rubbed with a cotton cloth. That is, in the direction of arrow r s in FIG. 2 for the segment electrode substrate 12, an arrow r pretilt angle as shown in FIG. 1 (B) was rubbed in the direction of the c theta p for the common electrode substrate 13 Gave. The pretilt angle θ p was 89.9 ° as measured by the crystal rotation method.
[0026]
The pretilt angle θ p is preferably in the range of 89.9 ° to 80 °.
[0027]
(3) A gap control material silica for printing an epoxy adhesive sealant on one of the two glass substrates subjected to orientation treatment in the above step (2) and controlling the thickness between cells on the other substrate. Beads (SW 3.8 μm, manufactured by Catalytic Chemicals Co., Ltd.) were evenly dispersed, and an empty cell was produced by superimposing the two substrates so that the pretilt direction of the two substrates was in antiparallel orientation as shown in FIG.
[0028]
(4) A liquid crystal material having a negative dielectric anisotropy, to which a chiral agent (CB15) is added, is injected into each empty cell obtained in the step (3) above using a vacuum injection method. (Not shown) was sealed. In the injected liquid crystal material, the additive concentration of the chiral agent was adjusted so that the relationship between the value of the natural twist pitch p of the liquid crystal and the value of the cell thickness d was d / p = 0.7.
[0029]
(5) The completed liquid crystal cell is sandwiched between two polarizing plates (SQ1852, manufactured by Sumitomo Chemical Co., Ltd.) with crossed Nicols, and their polarization axes are set to 0 ° / 90 ° as in FIG. 1 (A). did. When a square wave was applied to the liquid crystal cell and the voltage-light transmittance characteristics were measured, a result as shown in FIG. 3 was obtained. At that time, a vertical alignment type cell as shown in FIG. 6 and having a polarization axis arrangement of 45 ° / 135 ° without using pretilt processing and having a polarization axis arrangement of 45 ° / 135 ° is also produced for comparison. It was measured.
[0030]
FIG. 3 shows voltage-light transmittance characteristics obtained as a result of the measurement experiment. Table 1 shows the contrast value when the multiplex driving is performed with a 1/11/95 (V) bias voltage of 1/11/95. Shown in
[0031]
[Table 1]
Figure 0004546586
[0032]
From the measurement results of FIG. 3, in the cell according to the prior art, light leakage occurs in the vicinity of the threshold voltage (4.5 to 5.2 V) due to the oblique electric field due to the electrode edge, and the transmittance of the embodiment of the present invention. It can be seen that it is higher than the cell. On the contrary, according to the embodiment of the present invention, the light leakage near the threshold voltage is suppressed because the polarizing plate of 0 ° / 90 ° arrangement is used and the pretilt is given by the rubbing process. Further, as apparent from Table 1, the contrast value is improved over the conventional one. In addition, a wide viewing angle display was obtained by two-part alignment by an oblique electric field at the electrode slit.
[0033]
(Example 2)
Another embodiment of the method for manufacturing a CSH-LCD according to the present invention and the experimental results of the display performance will be further described. 4A and 4B are an enlarged plan view of a part (about one pixel) of the CSH-LCD according to the second embodiment and a cross-sectional view taken along the line CC ′.
[0034]
(1) Spinning vertical alignment films 24 and 25 (SE1211, manufactured by Nissan Chemical Industries, Ltd.) on two glass substrates 20 and 21 in which segment electrodes 22 and common electrodes 23 having the same pattern as in Example 1 are formed of ITO. It was applied by coating and baked at 200 ° C.
[0035]
(2) The substrate obtained in the above step (2) was irradiated with ultraviolet rays having a wavelength of 254 nm from an angle of 45 ° with respect to the substrate surface, and pretilt treatment was performed. That is, in the direction of arrow v s in Figure 4 for the segment electrode substrate 22 (B), as shown in FIG. 4 (B) with respect to the common electrode substrate 23 is irradiated with ultraviolet rays in the direction of arrow v c Gave a pretilt angle θ p . The pretilt angle θ p was 89.9 ° as measured by the crystal rotation method.
[0036]
(3) A gap control material silica for printing an epoxy adhesive sealant on one of the two glass substrates subjected to orientation treatment in the above step (2) and controlling the thickness between cells on the other substrate. Beads (SW 3.8 μm, produced by Catalytic Chemical Co., Ltd.) were evenly dispersed, and an empty cell was produced by superimposing the two substrates so that the pretilt directions were in a parallel orientation as shown in FIG.
[0037]
4) A liquid crystal material having a negative dielectric anisotropy, to which a chiral agent (CB15) is added, is injected into each empty cell obtained in the step 3) using a vacuum injection method, and an injection port (not shown) ) Was sealed. In the injected liquid crystal material, the additive concentration of the chiral agent was adjusted so that the relationship between the value of the natural twist pitch p of the liquid crystal and the value of the cell thickness d was d / p = 0.7. The liquid crystal molecules are rotated 180 degrees in accordance with the pretilt treatment of the parallel alignment of the chiral agent and the substrate. An arrow 26 indicates a director of liquid crystal molecules at the center of the liquid crystal layer.
[0038]
(5) The completed liquid crystal cell is sandwiched between two polarizing plates (SQ1852, manufactured by Sumitomo Chemical Co., Ltd.) with crossed Nicols, and their polarization axes are 0 ° / 90 ° arrangement similar to FIG. 1 (A). did. When a square wave was applied to the liquid crystal cell and the voltage-light transmittance characteristics were measured, a result as shown in FIG. 5 was obtained.
[0039]
In addition, a vertical alignment type cell according to the conventional technique as shown in FIG. 6 is used, and a pre-tilt treatment with ultraviolet rays is not performed and a polarization axis arrangement of 45 ° / 135 ° is similarly produced and measured for comparison. did.
[0040]
FIG. 5 shows voltage-light transmittance characteristics obtained as a result of the measurement experiment. Table 2 shows the contrast values when the multiplex driving is performed at 1/120 duty and (1V / 11.95) V bias voltage. In Table 2, a conventional cell having a polarization axis arrangement of 0 ° / 90 ° is also shown as a comparison target.
[0041]
[Table 2]
Figure 0004546586
[0042]
From the measurement results shown in FIG. 5, in this example as well, since the pretilt was applied by the ultraviolet irradiation process using the polarizing plates arranged at 0 ° / 90 °, the light leakage near the threshold voltage was compared with that of the prior art. Remarkably suppressed. Further, as apparent from Table 2, the contrast value is improved as compared with any conventional arrangement of the polarization axes.
Furthermore, it can be seen that the response time is faster than that of the conventional arrangement of 0 ° / 90 ° polarization axis despite the addition of the chiral agent.
[0043]
In the embodiment described above, the pretilt direction is set in an anti-parallel or parallel relationship between the upper and lower substrates, but the present invention is not limited to this, and can be arbitrarily set within a range of 0 ° to 360 °. The pretilt direction of the upper and lower substrates can be set.
[0044]
Furthermore, the generation of the oblique electric field is not limited to the one having the long and narrow slit opening as in the above embodiment, and an electrode having another shape may be used.
[0045]
As mentioned above, although this invention was demonstrated along the Example, this invention is not restrict | limited to these. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.
[0046]
【The invention's effect】
According to the present invention, in the vertical alignment type liquid crystal display device, means for generating an oblique electric field inclined with respect to the substrate surface is provided between the pair of substrates, and the direction of the oblique electric field is formed on the surface in contact with the liquid crystal layer of the substrate. Since the alignment treatment for giving the pretilt angle to the liquid crystal molecules in different directions is performed, the alignment direction when the voltage of the liquid crystal molecules is applied is set by the oblique electric field and the pretilt direction. That is, the direction of the liquid crystal director when a voltage is applied is determined in the direction of the combined vector of the alignment force vector due to the oblique electric field and the alignment force vector due to the pretilt. By setting the pretilt direction so that the direction of the combined vector and the polarization axis of the polarizing plate have a specific relationship, light leakage near the threshold voltage is suppressed, and high contrast display is responsive. A good vertical alignment type liquid crystal display element and its manufacturing method can be obtained.
[Brief description of the drawings]
FIGS. 1A and 1B are a plan view and a cross-sectional view of almost one pixel of a vertical alignment type CSH-LCD subjected to a pretilt process according to an embodiment of the present invention.
FIG. 2 is a plan view of almost one pixel of a vertical alignment type CSH-LCD subjected to a rubbing process according to an embodiment of the present invention;
is there.
FIG. 3 is a voltage-light transmittance characteristic diagram of the liquid crystal cell according to the embodiment of FIG. 2;
FIGS. 4A and 4B are a plan view and a cross-sectional view of substantially one pixel of a vertical alignment type CSH-LCD subjected to ultraviolet irradiation processing according to another embodiment of the present invention. FIGS.
FIG. 5 is a voltage-light transmittance characteristic diagram of the liquid crystal cell according to the embodiment of FIG. 4;
FIGS. 6A and 6B are a plan view and a cross-sectional view of almost one pixel of a conventional vertical alignment type CSH-LCD.
[Explanation of symbols]
10, 11 Glass substrate 12 Segment electrode 13 Common electrode 14, 15 Vertical alignment film 16 Liquid crystal molecule 17 Electrode opening (slit)
20, 21 Glass substrate 22 Segment electrode 23 Common electrode 24, 25 Vertical alignment film 26 Liquid crystal molecule 27 Electrode opening (slit)

Claims (6)

各々電極が形成され、互いに対向配置された一対の基板であって、少なくとも一方の前記電極に、長方形状の縁を持つ電極開口部が形成された一対の基板と、
前記一対の基板間に配置され、誘電率異方性が負でカイラル剤が添加された液晶材料を含む液晶層と
を有し、
前記液晶層への電圧印加時に、前記電極開口部の縁と該電極開口部に対向する基板との間で基板面に対して傾斜した斜め電界が発生し、
前記一対の基板間で液晶分子のプレティルト方向がアンチパラレル配向になるように、前記電極開口部の縁の長辺方向に配向処理が施されており、
前記斜め電界と前記プレティルト方向とによって前記液晶分子の電圧印加時の配向方向が設定される垂直配向型液晶表示素子。
A pair of substrates each formed with an electrode and disposed opposite to each other, wherein at least one of the electrodes has a pair of substrates with an electrode opening having a rectangular edge;
A liquid crystal layer including a liquid crystal material disposed between the pair of substrates and having a negative dielectric anisotropy and a chiral agent added thereto;
Have
When a voltage is applied to the liquid crystal layer, an oblique electric field that is inclined with respect to the substrate surface is generated between the edge of the electrode opening and the substrate facing the electrode opening,
An alignment treatment has been performed in the long side direction of the edge of the electrode opening so that the pretilt direction of the liquid crystal molecules is anti-parallel alignment between the pair of substrates,
A vertical alignment type liquid crystal display element in which an alignment direction when a voltage is applied to the liquid crystal molecules is set by the oblique electric field and the pretilt direction .
各々電極が形成され、互いに対向配置された一対の基板であって、少なくとも一方の前記電極に、長方形状の縁を持つ電極開口部が形成された一対の基板と、
前記一対の基板間に配置され、誘電率異方性が負でカイラル剤が添加された液晶材料を含む液晶層と
を有し、
前記液晶層への電圧印加時に、前記電極開口部の縁と該電極開口部に対向する基板との間で基板面に対して傾斜した斜め電界が発生し、
前記一対の基板間で液晶分子のプレティルト方向がパラレル配向になるように、前記電極開口部の縁の短辺方向に配向処理が施されており、
前記斜め電界と前記プレティルト方向とによって前記液晶分子の電圧印加時の配向方向が設定される垂直配向型液晶表示素子。
A pair of substrates each formed with an electrode and disposed opposite to each other, wherein at least one of the electrodes has a pair of substrates with an electrode opening having a rectangular edge;
A liquid crystal layer including a liquid crystal material disposed between the pair of substrates and having a negative dielectric anisotropy and a chiral agent added thereto;
Have
When a voltage is applied to the liquid crystal layer, an oblique electric field that is inclined with respect to the substrate surface is generated between the edge of the electrode opening and the substrate facing the electrode opening,
An alignment treatment is performed in the short side direction of the edge of the electrode opening so that the pretilt direction of the liquid crystal molecules is parallel alignment between the pair of substrates,
A vertical alignment type liquid crystal display element in which an alignment direction when a voltage is applied to the liquid crystal molecules is set by the oblique electric field and the pretilt direction .
さらに、前記一対の基板を挟み、直交ニコル配置された一対の偏光板を有し、前記一対の偏光板の偏光軸方向が、前記電極開口部の長辺方向と短辺方向に揃った請求項1または2に記載の垂直配向型液晶表示素子。 Further, the present invention has a pair of polarizing plates arranged with crossed Nicols arranged across the pair of substrates, and the polarization axis directions of the pair of polarizing plates are aligned in the long side direction and the short side direction of the electrode opening. 3. A vertical alignment type liquid crystal display device according to 1 or 2 . 前記配向処理によるプレティルト角が、基板面に対して89.9°〜80°の範囲である請求項1〜3のいずれか1項に記載の垂直配向型液晶表示素子。The vertical alignment type liquid crystal display element according to claim 1, wherein a pretilt angle by the alignment treatment is in a range of 89.9 ° to 80 ° with respect to the substrate surface. 各々電極が形成された一対の基板であって、少なくとも一方の前記電極に、長方形状の縁を持つ電極開口部が形成された、一対の基板を用意する工程と、
前記基板の面に、前記電極開口部の縁に対して所定方向に、液晶分子にプレティルト角を与えるための配向処理を施す工程と、
前記一対の基板を対向配置し、該基板間に誘電率異方性が負でカイラル剤が添加された液晶材料を注入して液晶層を形成する工程と
を有し、
前記配向処理を施す工程は、対向配置された前記一対の基板間で液晶分子のプレティルト方向がアンチパラレル配向になるように、前記電極開口部の縁の長辺方向に配向処理を施し、
前記液晶層への電圧印加時に、前記電極開口部の縁と該電極開口部に対向する基板との間で基板面に対して傾斜した斜め電界が発生し、前記斜め電界と前記プレティルト方向とによって前記液晶分子の電圧印加時の配向方向が設定される垂直配向型液晶表示素子の製造方法。
Providing a pair of substrates each having an electrode formed thereon, wherein at least one of the electrodes is formed with an electrode opening having a rectangular edge;
Applying a pre-tilt angle to the liquid crystal molecules in a predetermined direction with respect to the edge of the electrode opening on the surface of the substrate;
Forming a liquid crystal layer by placing the pair of substrates facing each other and injecting a liquid crystal material having a negative dielectric anisotropy and a chiral agent added between the substrates;
Have
The step of performing the alignment treatment performs alignment treatment in the long side direction of the edge of the electrode opening such that the pretilt direction of the liquid crystal molecules is anti-parallel alignment between the pair of substrates arranged opposite to each other,
When a voltage is applied to the liquid crystal layer, an oblique electric field inclined with respect to the substrate surface is generated between the edge of the electrode opening and the substrate facing the electrode opening, and the oblique electric field and the pretilt direction A method for producing a vertical alignment type liquid crystal display element, wherein an alignment direction when a voltage is applied to the liquid crystal molecules is set .
各々電極が形成された一対の基板であって、少なくとも一方の前記電極に、長方形状の縁を持つ電極開口部が形成された、一対の基板を用意する工程と、
前記基板の面に、前記電極開口部の縁に対して所定方向に、液晶分子にプレティルト角を与えるための配向処理を施す工程と、
前記一対の基板を対向配置し、該基板間に誘電率異方性が負でカイラル剤が添加された液晶材料を注入して液晶層を形成する工程と
を有し、
前記配向処理を施す工程は、対向配置された前記一対の基板間で液晶分子のプレティルト方向がパラレル配向になるように、前記電極開口部の縁の短辺方向に配向処理を施し、
前記液晶層への電圧印加時に、前記電極開口部の縁と該電極開口部に対向する基板との間で基板面に対して傾斜した斜め電界が発生し、前記斜め電界と前記プレティルト方向とによって前記液晶分子の電圧印加時の配向方向が設定される垂直配向型液晶表示素子の製造方法。
Providing a pair of substrates each having an electrode formed thereon, wherein at least one of the electrodes is formed with an electrode opening having a rectangular edge;
Applying a pre-tilt angle to the liquid crystal molecules in a predetermined direction with respect to the edge of the electrode opening on the surface of the substrate;
Forming a liquid crystal layer by placing the pair of substrates facing each other and injecting a liquid crystal material having a negative dielectric anisotropy and a chiral agent added between the substrates;
Have
The step of performing the alignment treatment performs alignment treatment in the short side direction of the edge of the electrode opening so that the pretilt direction of the liquid crystal molecules is parallel alignment between the pair of substrates opposed to each other,
When a voltage is applied to the liquid crystal layer, an oblique electric field inclined with respect to the substrate surface is generated between the edge of the electrode opening and the substrate facing the electrode opening, and the oblique electric field and the pretilt direction A method for producing a vertical alignment type liquid crystal display element, wherein an alignment direction when a voltage is applied to the liquid crystal molecules is set .
JP37321998A 1998-12-28 1998-12-28 Liquid crystal display element and manufacturing method thereof Expired - Fee Related JP4546586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37321998A JP4546586B2 (en) 1998-12-28 1998-12-28 Liquid crystal display element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37321998A JP4546586B2 (en) 1998-12-28 1998-12-28 Liquid crystal display element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000193980A JP2000193980A (en) 2000-07-14
JP4546586B2 true JP4546586B2 (en) 2010-09-15

Family

ID=18501794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37321998A Expired - Fee Related JP4546586B2 (en) 1998-12-28 1998-12-28 Liquid crystal display element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4546586B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102411234A (en) * 2010-09-22 2012-04-11 斯坦雷电气株式会社 Liquid cyristal display element

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101018754B1 (en) 2004-10-04 2011-03-04 삼성전자주식회사 Liquid crystal display and method of modifying image signals for liquid crystal display
JP4774727B2 (en) * 2004-11-26 2011-09-14 カシオ計算機株式会社 Liquid crystal display element
JP5511340B2 (en) * 2009-12-04 2014-06-04 スタンレー電気株式会社 Liquid crystal display
JP5301485B2 (en) * 2010-03-15 2013-09-25 スタンレー電気株式会社 Liquid crystal display
JP5301503B2 (en) * 2010-06-07 2013-09-25 スタンレー電気株式会社 Liquid crystal display
JP5497578B2 (en) * 2010-08-25 2014-05-21 スタンレー電気株式会社 Liquid crystal display element
JP5313216B2 (en) * 2010-09-27 2013-10-09 スタンレー電気株式会社 Liquid crystal display
CN102455549B (en) 2010-10-27 2015-11-04 斯坦雷电气株式会社 Liquid crystal indicator
JP5584091B2 (en) * 2010-10-27 2014-09-03 スタンレー電気株式会社 Liquid crystal display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102411234A (en) * 2010-09-22 2012-04-11 斯坦雷电气株式会社 Liquid cyristal display element
CN102411234B (en) * 2010-09-22 2016-02-03 斯坦雷电气株式会社 Liquid crystal display cells

Also Published As

Publication number Publication date
JP2000193980A (en) 2000-07-14

Similar Documents

Publication Publication Date Title
JP2572537B2 (en) Liquid crystal display device and manufacturing method thereof
JP3673045B2 (en) Method for producing twisted nematic liquid crystal cell using light
US7084947B2 (en) Multi-domain liquid crystal display device having alignment structures for producing axial symmetrical alignment and method for producing the same
JPH0772484A (en) Liquid crystal display element and its production
JPH0822023A (en) Liquid crystal display element and its production
JPH09325373A (en) Liquid crystal display element and production therefor
US7009677B2 (en) LCD device implementing FLCP orientation film
JP4546586B2 (en) Liquid crystal display element and manufacturing method thereof
JPH11305256A (en) Active matrix type liquid crystal display device
JPH0961825A (en) Liquid crystal display device
JP4364542B2 (en) Liquid crystal display device and manufacturing method thereof
JP4031658B2 (en) Liquid crystal display
JP5529709B2 (en) Liquid crystal display
KR100480812B1 (en) Method of manufacturing an alignment layer of liquid crystal display device
JP2000039615A (en) Liquid crystal electrooptical device and its manufacture
JP2000131698A (en) Liquid crystal display element and its production
JPH09222604A (en) Liquid crystal display panel
JP4817161B2 (en) Horizontal electric field type liquid crystal device and method for manufacturing the same
JPH10197858A (en) Liquid crystal display element and its production
KR100201571B1 (en) The method of manufacturing ecb mode liquid crystal cell
JPH0784260A (en) Liquid crystal display panel
JP2753206B2 (en) Guest-host type liquid crystal display
JPH06294961A (en) Liquid crystal display element and its production
JPH11142854A (en) Liquid crystal display device and its production
JPS63124030A (en) Ferroelectric liquid crystal element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081114

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees