JPS6314072B2 - - Google Patents

Info

Publication number
JPS6314072B2
JPS6314072B2 JP56028567A JP2856781A JPS6314072B2 JP S6314072 B2 JPS6314072 B2 JP S6314072B2 JP 56028567 A JP56028567 A JP 56028567A JP 2856781 A JP2856781 A JP 2856781A JP S6314072 B2 JPS6314072 B2 JP S6314072B2
Authority
JP
Japan
Prior art keywords
chromium
layer
diffused
iron
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56028567A
Other languages
Japanese (ja)
Other versions
JPS57143489A (en
Inventor
Junji Kawabe
Shoji Shizuma
Koichi Tsumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2856781A priority Critical patent/JPS57143489A/en
Publication of JPS57143489A publication Critical patent/JPS57143489A/en
Publication of JPS6314072B2 publication Critical patent/JPS6314072B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐腐食性、加工性、スポツト溶接性、
化成処理性などの特性すべてに優れる表面処理鋼
板およびその製造方法に関するものである。 最近ひとつの表面処理鋼板に対し、同時に多く
の特性が要求される例が多発している。特に、自
動車、家電機器、建材等に用いられる表面処理鋼
板についていえば、そのほとんどが耐腐食性向上
を本来の目的としているにもかかわらず、加工
性、スポツト溶接性、化成処理性等の多くの特性
が要求されることは周知のとおりである。しかし
ながら、この目的に用いられている溶融亜鉛めつ
き鋼板、ガルバニードル鋼板、電気亜鉛めつき鋼
板、ジンクリツチプライマ塗布鋼板等の従来の表
面処理鋼板は、そのいずれもが加工性、スポツト
溶接性、化成処理性等の特性のうち1種以上の特
性において問題があり、更に本来備えるべき耐腐
食性においてさえも不充分なものがある。 ところで、耐腐食性が優れることでは、クロム
ニツケルなどの耐腐食性金属元素を鋼中に多量に
含有させた各種ステンレス鋼板や鋼板表面にクロ
ムを拡散めつきしたクロマイズド鋼板が広く知ら
れているのであるが、これらもまた前記各種鋼板
と同様にいくつかの欠点を有し、両鋼板とも特に
化成処理性が劣悪であり、クロマイズド鋼板に関
しては更に加工性においても問題がある。 このような問題点を克服するために、例えば、
ジンクリツチプライマ塗布鋼板はこれまで種々の
改良が試みられてきたにもかかわらず、その表面
処理層すなわち塗膜が塗装下地処理を施した鋼板
表面上に単にロールコーテイングされて形成され
たものであるから、完全な塗装下地処理法が考案
されるに至つていない現状では、強い加工を受け
た場合に塗膜が鋼板から分離し易く、ジンクリツ
チプライマ塗布鋼板の本質的欠陥と考えられてい
る。また、その塗膜は約70wt%以上もの亜鉛微
粒子のほかに樹脂成分およびその他の添加成分と
で構成されているが、スポツト溶接時にこの多量
の亜鉛と銅または銅合金からなる電極チツプとが
反応し易く、スポツト溶接性は劣るものである。
同様に、溶融亜鉛めつき鋼板、ガルバニールド鋼
板および電気亜鉛めつき鋼板は、表面処理層が亜
鉛主体であるためにスポツト溶接性は劣悪であ
る。 また、これらはリン酸亜鉛による化成処理にお
いて、一般に処理液との反応が不充分なために生
成するリン酸塩の皮膜は完全なものとならない。
すなわち、化成処理性は劣悪である。さらに、各
種ステンレス鋼板やクロマイズド鋼板は、その鋼
板表面がクロムやニツケルを多量に含有して不動
態化していることから優れた耐腐食性を誇示して
いるのであるが、逆にこれに起因して化成処理液
とはほとんど反応せず、完全なリン酸塩皮膜が形
成されないのである。更にクロマイズド鋼板に関
しては、その製造法に起因した本質的な欠陥とし
て、拡散めつき層の表面部でクロム濃度が30wt
%以上にも達し、クロムが酸化し易いことと相俟
つて、固くて脆いものとなる場合がある。このた
め、クロマイズド鋼板は強い加工、例えば、プレ
ス成形において、表面の亀裂、パウダリングおよ
び表面処理層の分離などのトラブルを起し易いの
である。 このように、従来の表面処理鋼板等は、亜鉛、
クロム、ニツケルなどの金属元素を表面部に多量
に含有させるか、あるいは、表面処理層の主体と
することによつてかなりの耐腐食性を得ているの
であるが、逆にこのような特性に起因すると考え
られる重大な欠点を有しているのである。 従つて、本発明の目的は上述したような実状に
鑑み、加工性、スポツト溶接性、化成処理性など
の優れた耐腐食性表面処理鋼板およびその製造方
法を提供しようとするにある。 鋼板素地上に、厚さ2μm以上のクロム拡散鋼
板層と、平均クロム濃度10〜35wt%で厚さ1〜
55μmの鉄拡散クロム含有層と、平均クロム濃度
5wt%以下で厚さ3μm以上のクロム拡散鉄めつき
層とが順次形成されてなる表面処理層が設けられ
ており、その表面処理層は平均クロム濃度10〜
30wt%で厚さ6〜60μmであり、クロム濃度が前
記クロム拡散鉄めつき層の表面から前記鉄拡散ク
ロム含有層の内部にかけて連続的に上昇し、その
鉄拡散クロム含有層の内部から前記鋼板素地にか
けて連続的に低下していることを特徴とする三層
構造の被覆層を有する表面処理鋼板が提供され
る。 本発明の第2の態様によれば、鋼板表面上に厚
さ1〜55μmのクロム含有層を形成し、このクロ
ム含有層上に厚さ3μm以上の鉄めつき層を形成
し、その後に熱処理を施すことにより前記鋼板、
前記クロム含有層および前記鉄めつき層間におい
て金属元素を拡散浸透させ、前記鋼板中にクロム
が拡散した厚さ2μm以上のクロム拡散鋼板層と、
前記クロム含有層中に鉄が拡散した平均クロム濃
度10〜35wt%、厚さ1〜55μmの鉄拡散クロム含
有層と、前記鉄めつき層中にクロムが拡散した平
均クロム濃度5wt%以下、厚さ3μm以上のクロム
拡散鉄めつき層とを形成することを特徴とする三
層構造の被覆層を有する表面処理鋼板の製造方法
が提供される。 上記両態様において、クロム含有層はクロムだ
けで構成しても良く、また、クロムと、鉄、ニツ
ケル、ニオブ、アルミニウム、銅、コバルト、モ
リブデン、チタン、シリコンから選択された1種
以上の金属元素とで構成することもできる。 以下、本発明の三層構造の被覆層を有する表面
処理鋼板およびその製造方法を添付図面に基いて
詳細に説明する。 第1aおよび1b図は本発明の表面処理鋼板の
製造時における表面処理層の生成過程を示すもの
で、簡単のためクロムを含有する層がクロム単味
からなる場合について以下説明する。第1a図
は、鋼板素地1上にクロム単味からなる層2(以
下クロム層と称す)、さらに層2上に鉄めつき層
3を形成した段階で、末だ熱処理がなされていな
い状態を示すものである。 第1b図は第1a図に示す被覆鋼板に熱処理を
施した状態を示すもので、鋼板の熱処理によりク
ロム層2中の一部のクロム元素は鋼板素地1の方
向および層3の方向に拡散浸透し、これに対し鋼
板素地1および鉄めつき層3中の主として鉄元素
はクロム層2中へ拡散浸透し、このようにしてク
ロムと鉄の両元素は鋼板素地1とクロム層2との
接触界面およびクロム層2と鉄めつき層3との接
触界面において相互に拡散浸透する。その結果、
上述の二つの界面は、クロム濃度分布について実
質上消失した状態となるが、表面処理層の生成過
程から、外見上各層間の界面が略区別できるA層
(クロム拡散鋼板層、即ち、鋼板素地1中にクロ
ム層2からクロムが拡散浸透することにより生成
した層)、B層(鉄拡散クロム含有層、即ち、ク
ロム層2中に鋼板素地1および鉄めつき層3中の
鉄が拡散浸透することにより生成した層)、C層
(クロム拡散鉄めつき層、即ち、鉄めつき層3中
にクロム層2中のクロムが拡散浸透することによ
り生成した層)の3層が形成される。また、この
場合、B層およびC層の厚みはそれぞれ熱処理前
のクロム層の厚み、鉄めつき層の厚みと同等であ
る。そこで、上記B層およびC層は、それぞれ熱
処理前のクロム層、鉄めつき層の形成位置に対応
する熱処理後の表面処理鋼板における層というこ
とができる。また、上記A層の厚みはクロム層か
ら鋼板素地中にクロムが拡散浸透する距離に等し
く、全表面処理層の厚みからB層及びC層の厚み
を減じた差ということができる。 このようにして製造された本発明の表面処理鋼
板と、比較材として従来のクロマイズド鋼板との
表面処理層断面におけるクロムおよび鉄の両元素
の濃度分布をX線マイクロアナライザーを用いて
X線分析した結果をそれぞれ第2aおよび第2b
図に示す。第2b図を参照すれば明らかなよう
に、比較材である従来のクロマイズド鋼板は、ク
ロム濃度は表面では約35wt%と高いが、鋼板素
地方向にかけて連続的に低下している。逆に、鉄
濃度は表面では低いが、鋼板素地方向にかけて連
続的に高くなつている。これに対して、本発明の
表面処理鋼板は第2a図を参照すれば明らかなよ
うに、クロム濃度は表面では低いが、表面処理層
の内部にかけて連続的に上昇して最高濃度に達し
た後、鋼板素地方向にかけて連続的に低下してい
る。逆に、鉄濃度は表面では高いが、表面処理層
の内部にかけて連続的に低下して最低濃度を示し
た後、鋼板素地方向にかけて連続的に上昇してい
ることが判る。このように、本発明方法により製
造された本発明の鋼板の表面処理層は、表面近傍
の比較的クロム濃度が低い部域のC層と、この内
部の比較的クロム濃度が高い部域のB層と、鋼板
素地近傍の比較的クロム濃度が低い部域のA層と
で構成される。 本発明方法により形成される表面処理層に関し
ては、クロム単味からなる層(クロム層)および
鉄めつき層の厚み、クロムおよび鉄両元素の相互
的拡散浸透を促進するための熱処理条件などの複
雑な関数になつており、これらを適宜変えること
によつて上述した各層の厚みおよび各層内クロム
濃度を広範囲に亘つて変化させ得るが、本発明者
等はこれらを種々変化させて耐腐食性、加工性、
スポツト溶接性、化成処理性などの特性との関係
を詳細に調べてこれらの間に深い相関関係がある
ことを見い出した。 第3図には本発明の鋼板の全表面処理層の厚み
および平均クロム濃度と耐腐食性との関係を示
す。耐腐食性試験は、板厚が1.0mmの表面処理鋼
板について、JIS Z 2371により連続2000時間の
塩水噴霧試験を行つて鋼板厚の減少量を測定し、
これが少ないものを耐食性が良好であるとした。
第3図において、曲線、、、およびは
それぞれ平均クロム濃度が2、5、10、30および
40wt%を示す。第3図から、全表面処理層の厚
みが厚い程、また平均クロム濃度が高い程耐腐食
性が改善されていることがわかる。なお、同図中
点線は本発明が目的とする下限を示すものであ
る。 第4図にはB層の厚みおよび平均クロム濃度と
本発明の表面処理鋼板の耐食性の関係を示す。耐
食性試験は、JIS Z 2371により連続2000時間の
塩水噴霧試験を行つて鋼板厚の減少量を測定し、
これが少ないものを耐食性が良好であるとした。
第4図において、曲線、、、およびは
それぞれB層の平均クロム濃度が5、7、10、35
および40wt%を示す。第4図からB層の厚みが
厚いほど、また平均クロム濃度が高いほど耐食性
が改善されていることがわかる。なお、本図中点
線は本発明が目的とする耐食性の目安を示し、腐
食減少量がこれ以下の場合が特に望ましい。 第5図にはA層の厚みとプレス加工性との関係
を示す。これによれば、A層の厚みが2μm以上
の場合に加工性は優れ、2μm以下の場合で特に
A層がほとんど存在しない1μm以下では加工性
が劣悪であることが確認された。なお、第5図に
おける加工性評価は第1表に示す通りであり、数
値の大きい程加工性が良好なることを示す。同図
中、点線は本発明が目的とする下限を示す。
The present invention has corrosion resistance, workability, spot weldability,
The present invention relates to a surface-treated steel sheet that is excellent in all properties such as chemical conversion treatment properties, and a method for manufacturing the same. Recently, there have been many cases in which a single surface-treated steel sheet is required to have many properties at the same time. In particular, when it comes to surface-treated steel sheets used in automobiles, home appliances, building materials, etc., although most of them are originally intended to improve corrosion resistance, there are many problems such as workability, spot weldability, chemical conversion treatment properties, etc. It is well known that the following characteristics are required. However, the conventional surface-treated steel sheets used for this purpose, such as hot-dip galvanized steel sheets, galvanized steel sheets, electrogalvanized steel sheets, and zinc-rich primer-coated steel sheets, all have poor workability, spot weldability, and There are problems in one or more of the properties such as chemical conversion treatment properties, and even the corrosion resistance that should be provided is insufficient. By the way, various types of stainless steel sheets that contain a large amount of corrosion-resistant metal elements such as chromium nickel in the steel, and chromized steel sheets that have chromium diffused plated on the surface of the steel sheet are widely known for their excellent corrosion resistance. However, like the various steel sheets mentioned above, these also have some drawbacks; both steel sheets have particularly poor chemical conversion treatment properties, and chromized steel sheets also have problems in workability. In order to overcome these problems, for example,
Despite various attempts to improve zinc-rich primer-coated steel sheets, the surface treatment layer, or coating film, is simply roll-coated on the surface of the steel sheet, which has been treated with a paint base. Therefore, at present, as a complete coating surface treatment method has not yet been devised, the coating film tends to separate from the steel sheet when subjected to strong processing, which is considered to be an essential defect of zinc-rich primer-coated steel sheets. . In addition, the coating film is composed of about 70wt% or more of fine zinc particles, as well as a resin component and other additive components, and during spot welding, this large amount of zinc reacts with the electrode tip made of copper or copper alloy. The spot weldability is poor.
Similarly, hot-dip galvanized steel sheets, galvanized steel sheets, and electrogalvanized steel sheets have poor spot weldability because their surface treatment layers are mainly zinc-based. Furthermore, in chemical conversion treatment using zinc phosphate, the reaction with the treatment solution is generally insufficient, so the phosphate film formed is not complete.
That is, the chemical conversion treatment property is poor. Furthermore, various types of stainless steel sheets and chromized steel sheets boast excellent corrosion resistance because their surfaces contain large amounts of chromium and nickel, making them passivated. Therefore, there is almost no reaction with the chemical conversion treatment solution, and a complete phosphate film is not formed. Furthermore, regarding chromized steel sheets, an essential defect due to the manufacturing method is that the chromium concentration on the surface of the diffusion plated layer is 30wt.
% or more, and combined with the fact that chromium is easily oxidized, it may become hard and brittle. For this reason, chromized steel sheets are susceptible to problems such as surface cracking, powdering, and separation of the surface treatment layer during strong processing, such as press forming. In this way, conventional surface-treated steel sheets, etc.
Considerable corrosion resistance is achieved by containing large amounts of metal elements such as chromium and nickel on the surface, or by making them the main component of the surface treatment layer. It has serious drawbacks that can be attributed to this. Therefore, in view of the above-mentioned circumstances, an object of the present invention is to provide a corrosion-resistant surface-treated steel sheet with excellent workability, spot weldability, chemical conversion treatment properties, etc., and a method for manufacturing the same. A chromium-diffused steel plate layer with a thickness of 2 μm or more is placed on the steel plate base, and a chromium-diffused steel plate layer with an average chromium concentration of 10 to 35 wt% and a thickness of 1 to
55 μm iron-diffused chromium-containing layer and average chromium concentration
A surface treatment layer is provided in which a chromium diffused iron plating layer of 5 wt% or less and a thickness of 3 μm or more is sequentially formed, and the surface treatment layer has an average chromium concentration of 10 to 10.
30 wt% and a thickness of 6 to 60 μm, and the chromium concentration increases continuously from the surface of the chromium-diffused iron plating layer to the inside of the iron-diffused chromium-containing layer, and the chromium concentration increases from the inside of the iron-diffused chromium-containing layer to the steel plate. Provided is a surface-treated steel sheet having a three-layered coating layer, which is characterized by a three-layer structure in which the coating layer decreases continuously over the substrate. According to the second aspect of the present invention, a chromium-containing layer with a thickness of 1 to 55 μm is formed on the surface of a steel plate, an iron plating layer with a thickness of 3 μm or more is formed on this chromium-containing layer, and then heat treatment is performed. The steel plate by applying
A chromium-diffused steel sheet layer with a thickness of 2 μm or more, in which a metal element is diffused between the chromium-containing layer and the iron plating layer, and chromium is diffused into the steel sheet;
An iron-diffused chromium-containing layer with an average chromium concentration of 10 to 35 wt% and a thickness of 1 to 55 μm in which iron is diffused into the chromium-containing layer, and an average chromium concentration of 5 wt% or less with a thickness of 1 to 55 μm in which chromium is diffused into the iron plating layer. Provided is a method for manufacturing a surface-treated steel sheet having a three-layer structure coating layer, characterized by forming a chromium-diffused iron plating layer with a thickness of 3 μm or more. In both of the above embodiments, the chromium-containing layer may be composed of chromium alone, or chromium and one or more metal elements selected from iron, nickel, niobium, aluminum, copper, cobalt, molybdenum, titanium, and silicon. It can also be composed of DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a surface-treated steel sheet having a three-layered coating layer and a method for manufacturing the same according to the present invention will be described in detail with reference to the accompanying drawings. Figures 1a and 1b show the process of forming a surface treatment layer during production of the surface treated steel sheet of the present invention, and for simplicity, the case where the chromium-containing layer consists of only chromium will be described below. Figure 1a shows a state in which a layer 2 made of only chromium (hereinafter referred to as the chromium layer) has been formed on a steel sheet base 1, and an iron plating layer 3 has been formed on the layer 2, but no heat treatment has been performed yet. It shows. Figure 1b shows the state in which the coated steel plate shown in Figure 1a has been heat-treated.Due to the heat treatment of the steel plate, some of the chromium elements in the chromium layer 2 diffuse and permeate in the direction of the steel plate base 1 and the layer 3. However, on the other hand, mainly the iron element in the steel sheet base 1 and the iron plating layer 3 diffuses into the chromium layer 2, and in this way, both chromium and iron elements come into contact with the steel sheet base 1 and the chromium layer 2. They diffuse into each other at the interface and the contact interface between the chromium layer 2 and the iron plating layer 3. the result,
The two interfaces mentioned above virtually disappear in terms of chromium concentration distribution, but from the generation process of the surface treatment layer, the interface between each layer can be visually distinguished from the A layer (chromium diffused steel sheet layer, i.e., the steel sheet base layer). Layer B (a layer formed by diffusion and penetration of chromium from chromium layer 2 into chromium layer 1), B layer (iron-diffused chromium-containing layer, i.e., a layer formed by diffusion and penetration of chromium from steel plate base 1 and iron plating layer 3 into chromium layer 2) Three layers are formed: layer C (chromium diffusion iron plating layer, i.e., a layer generated by diffusion of chromium in chromium layer 2 into iron plating layer 3). . Further, in this case, the thicknesses of the B layer and the C layer are respectively equivalent to the thickness of the chromium layer and the thickness of the iron plating layer before heat treatment. Therefore, the above B layer and C layer can be said to be layers in the surface-treated steel sheet after heat treatment corresponding to the formation positions of the chromium layer and iron plating layer before heat treatment, respectively. Further, the thickness of the A layer is equal to the distance through which chromium diffuses into the steel sheet base from the chromium layer, and can be said to be the difference obtained by subtracting the thicknesses of the B and C layers from the total surface treatment layer thickness. The concentration distribution of both elements chromium and iron in the cross section of the surface treatment layer of the surface-treated steel sheet of the present invention manufactured in this manner and a conventional chromized steel sheet as a comparative material was analyzed by X-ray analysis using an X-ray microanalyzer. The results are shown in sections 2a and 2b, respectively.
As shown in the figure. As is clear from FIG. 2b, the conventional chromized steel sheet used as a comparison material has a high chromium concentration of about 35 wt% at the surface, but it continuously decreases toward the base of the steel sheet. Conversely, the iron concentration is low at the surface, but increases continuously toward the steel sheet base. On the other hand, as is clear from FIG. 2a, in the surface-treated steel sheet of the present invention, the chromium concentration is low at the surface, but increases continuously toward the inside of the surface-treated layer, and after reaching the maximum concentration. , decreases continuously toward the steel sheet substrate. Conversely, it can be seen that although the iron concentration is high at the surface, it continuously decreases toward the inside of the surface treatment layer, reaches its lowest concentration, and then continuously increases toward the steel sheet base. As described above, the surface treatment layer of the steel sheet of the present invention manufactured by the method of the present invention has a C layer in the area near the surface where the chromium concentration is relatively low, and a B layer in the area where the chromium concentration is relatively high inside the layer. A layer and an A layer in a region where the chromium concentration is relatively low near the steel sheet base. Regarding the surface treatment layer formed by the method of the present invention, the thickness of the layer consisting of only chromium (chromium layer) and the iron plating layer, the heat treatment conditions to promote mutual diffusion of both chromium and iron elements, etc. The thickness of each layer and the chromium concentration within each layer can be varied over a wide range by changing these functions appropriately. , processability,
We investigated in detail the relationship between properties such as spot weldability and chemical conversion treatment properties, and found that there is a deep correlation between these. FIG. 3 shows the relationship between the thickness of the total surface treatment layer, the average chromium concentration, and the corrosion resistance of the steel sheet of the present invention. In the corrosion resistance test, a surface-treated steel plate with a thickness of 1.0 mm was subjected to a salt spray test for 2000 continuous hours according to JIS Z 2371, and the amount of reduction in steel plate thickness was measured.
Those with a small amount of this were considered to have good corrosion resistance.
In Figure 3, the curves , , and have average chromium concentrations of 2, 5, 10, 30, and 2, respectively.
Indicates 40wt%. From FIG. 3, it can be seen that the thicker the total surface treatment layer and the higher the average chromium concentration, the better the corrosion resistance. Note that the dotted line in the figure indicates the lower limit aimed at by the present invention. FIG. 4 shows the relationship between the thickness of layer B, the average chromium concentration, and the corrosion resistance of the surface-treated steel sheet of the present invention. Corrosion resistance tests were conducted in accordance with JIS Z 2371 by conducting a salt spray test for 2000 continuous hours to measure the reduction in steel sheet thickness.
Those with a small amount of this were considered to have good corrosion resistance.
In Fig. 4, the curves , , and are respectively 5, 7, 10, and 35 for the average chromium concentration of the B layer.
and 40wt%. It can be seen from FIG. 4 that the thicker the B layer and the higher the average chromium concentration, the better the corrosion resistance. Note that the dotted line in this figure indicates the standard of corrosion resistance aimed at by the present invention, and it is particularly desirable that the amount of corrosion reduction is less than this. FIG. 5 shows the relationship between the thickness of layer A and press workability. According to this, it was confirmed that workability is excellent when the thickness of the A layer is 2 μm or more, and poor workability when the thickness is 2 μm or less, especially when the thickness is 1 μm or less where the A layer is hardly present. Note that the workability evaluation in FIG. 5 is as shown in Table 1, and the larger the numerical value, the better the workability is. In the figure, the dotted line indicates the lower limit aimed at by the present invention.

【表】 第6図にはC層の厚みおよび平均クロム濃度と
スポツト溶接性との関係を示す。スポツト溶接性
は、1対のCu−Cr系合金製電極チツプでドレツ
シングすることなくナゲツトの形成が不能になる
まで連続的にスポツト溶接を行つて、ナゲツトの
形成が不能になる溶接点数で比較評価して溶接点
数が多い程スポツト溶接性が良好であるとした。
第6図において、曲線、、、、および
はそれぞれ平均クロム濃度1、3、5、10、15
および40wt%を示す。これによれば、スポツト
溶接性はC層の平均クロム濃度が低い程改善さ
れ、厚みとの関係においては平均クロム濃度が約
10wt%を境にしてこれ以下では厚みの増大とと
もに改善され、逆にこれ以上では厚みの増大とと
もに劣化することがわかる。同図中、点線は本発
明が目的とする下限を示す。 第7図にはC層の厚みおよび平均クロム濃度と
化成処理性との関係を示す。化成処理性は、主成
分がリン酸亜鉛からなる化成処理液を用いて化成
処理を行つた後、これに塗装を施してその塗膜の
密着性を調べ、密着性が良好なものを化成処理性
が良好であるとした。第7図において、曲線、
、、、およびはそれぞれ平均クロム濃
度が1、3、5、10、15および40wt%を示す。
第7図から明らかなように、化成処理性は平均ク
ロム濃度が低い程、C層の厚みが厚い程改善され
ることがわかる。なお、同図中点線は本発明が目
的とする下限を示す。 本発明の表面処理鋼板は、上述したように、そ
の表面処理層が平均クロム濃度の異なる3部域ま
たは3層で構成され、これらの3層それぞれが有
する特性の相加によつてはじめて耐腐食性、加工
性、スポツト溶接性および化成処理性等の特性が
優れたものになるのであるが、上記特性との関係
の他に製造コストを加味した詳細な検討を行つた
結果、本発明の表面処理鋼板の表面処理層を第2
表に示すような範囲にするのが特に好適であるこ
とが確認された。
[Table] Figure 6 shows the relationship between the thickness of the C layer, the average chromium concentration, and spot weldability. Spot weldability was evaluated by performing spot welding continuously with a pair of Cu-Cr alloy electrode tips without dressing until nuggets could no longer be formed, and by comparing the number of welding points at which no nuggets could be formed. It was determined that the greater the number of welding points, the better the spot weldability.
In Figure 6, the curves , , and are average chromium concentrations of 1, 3, 5, 10, and 15, respectively.
and 40wt%. According to this, spot weldability is improved as the average chromium concentration of the C layer is lower, and in relation to the thickness, the average chromium concentration is approximately
It can be seen that below 10wt%, it improves as the thickness increases, and conversely, that it deteriorates as the thickness increases. In the figure, the dotted line indicates the lower limit aimed at by the present invention. FIG. 7 shows the relationship between the thickness of the C layer, the average chromium concentration, and the chemical conversion treatment properties. Chemical conversion treatment properties are determined by performing chemical conversion treatment using a chemical conversion treatment solution whose main component is zinc phosphate, then applying a coating and examining the adhesion of the coating film.Those with good adhesion are evaluated for chemical conversion treatment. The properties were considered to be good. In FIG. 7, the curve,
, , and indicate average chromium concentrations of 1, 3, 5, 10, 15, and 40 wt%, respectively.
As is clear from FIG. 7, it can be seen that the chemical conversion treatment property is improved as the average chromium concentration is lower and the thickness of the C layer is thicker. Note that the dotted line in the figure indicates the lower limit aimed at by the present invention. As mentioned above, the surface-treated steel sheet of the present invention has a surface-treated layer composed of three regions or three layers with different average chromium concentrations, and corrosion resistance is achieved only by adding the characteristics of each of these three layers. The surface of the present invention has excellent properties such as hardness, workability, spot weldability, and chemical conversion treatability. The surface treatment layer of the treated steel sheet is
It was confirmed that the range shown in the table is particularly suitable.

【表】 表面処理層が上表の如く形成されるのが好まし
いのは以下のような理由による。 全表面処理層の厚みおよび平均クロム濃度につ
いては、第3図から明らかなように、耐腐食性が
特に望ましいのは厚みが6μm以上で平均クロム
濃度が10wt%以上の場合である。また第3図に
おいて表面処理層の厚みが60μm以上では、厚み
が厚くなることによる改善の効果はほとんど認め
られなくなり、さらに平均クロム濃度が30wt%
以上では平均クロム濃度が高くなることによる改
善の効果はほとんどない。また厚みを厚くし、平
均クロム濃度を高めることによつて、製造コスト
が上昇する。これらのことから、全表面処理層の
厚みおよび平均クロム濃度はそれぞれ6μm以上
60μm以下、10wt%以上30wt%以下とすることが
最も好ましい。 A層に関しては、第5図からわかるようにその
厚みがプレス加工性と深い関係があり、A層の厚
みが2μm以上のとき本発明の目的を充分に達し
得る。 B層に関しては第4図からわかるように、厚み
および平均クロム濃度と耐腐食性は深い関係があ
り、B層の厚みおよび平均クロム濃度がそれぞれ
1μm以上、10wt%以上のとき本発明の目的とす
るところを満足し得るようになる。また、厚みが
55μm以上では厚みが厚くなることによる効果は
それほど期待できなくなる。平均クロム濃度が
35wt%以上においても濃度が高くすることによ
る効果はそれほど期待できなくなる。このような
ことからB層の厚みおよび平均クロム濃度はそれ
ぞれ1μm以上55μm以下、10wt%以上35wt%以
下に規制することが好ましい。 C層の厚みおよび平均クロム濃度について、第
6図および第7図からわかるように、スポツト溶
接性および化成処理性と深い関係がある。スポツ
ト溶接性はC層の厚みおよび平均クロム濃度が
2μm以上、5wt%以下のとき好ましいが、化成処
理性はスポツト溶接性による平均クロム濃度の規
制5wt%以下では厚みが3μm以上のときが好まし
い。本発明の目的とするところから、スポツト溶
接性も化成処理性も満足させるには、3μm以上、
5wt%以下とすることが好ましい。 以上の説明はクロムを含有する層(クロム層)
がクロム単味からなる層の場合についてであつた
が、本発明においてはクロムのみではなく、他の
元素をも表面処理層中に含有させることによつて
本発明の効果を更に向上させることもでき、以下
これにつき説明する。 第8図には表面処理層中にクロムおよびニツケ
ルを含有せしめた鋼板の含有元素量の変動に応じ
た耐腐食性の試験結果を示すもので、同図におい
て、平均クロム濃度と平均ニツケル濃度との加算
値を25wt%とした時、(ニツケル重量)/(ニツ
ケル重量+クロム重量)の値が、曲線では0、
では0.05、では0.10、では0.30の場合を示
す。耐腐食性はJIS Z 2371により2160時間まで
の塩水噴霧試験を行つて試験材の腐食減量を測定
し、腐食減量が少ない程耐腐食性が良好であると
した。第8図に示されるように、耐腐食性はクロ
ムにニツケルを加味することにより改善されるの
は明らかである。 このような効果は、ニツケルの他、ニオブ、ア
ルミニウム、銅、コバルト、モリブデン、チタ
ン、シリコン等の各金属元素においても認めら
れ、効果が確認された上記金属元素を1種以上混
合させても各元素の効果は損われることなく、む
しろ、以下に例示するように効果が相乗的に表わ
れる例もあつた。かように多種の金属元素を混合
添加する場合において、ニツケル、ニオブ、アル
ミニウム、銅、コバルト、モリブデン、チタン、
シリコン等の金属元素群の内から選ばれた1種以
上の金属元素の表面処理層中での平均濃度と平均
クロム濃度との加算値は、第2表に示されるクロ
ム単味の平均クロム濃度値を越えない範囲とし、
しかも、(クロム以外の元素の重量)/(クロム
+クロム以外の元素の重量)が0.4を越えない範
囲とするのが好ましいことも確認された。その理
由は以下の通りである。 本発明の目的は、耐腐食性、加工性、スポツト
溶接性および化成処理性をともに満足することに
もあるが、上記特性のうち、本発明の主旨から耐
腐食性が優れることが特に重要である。第3図か
らわかるように、表面処理層中のクロム濃度は耐
腐食性に大きく影響し、クロムの耐腐食性への寄
与は他の元素の追随をゆるさないほどである。本
発明者らの研究によれば、前述の如くクロム以外
の元素も耐腐食性の改善に寄与するが、その寄与
は概して耐高温酸化性、耐酸性などの特別な耐腐
食性に限られ、またそれらの効果はクロムが含有
されていることを前提としており、クロム以外の
元素単独での効果は少ないものであることがわか
つた。耐塩水性、耐アルカリ性、耐酸性、耐高温
酸化性などを含む耐腐食性を総合的に評価したと
き、クロム以外の元素の重量割合は0.4を越えな
い範囲とするのが望ましいことを確認した。 鉄、ニツケル、ニオブ、アルミニウム、銅、コ
バルト、モリブデン、チタン、シリコンの各選択
元素は、本発明に下記のような効果をもたらすこ
とができる。 鉄は鋼板および鉄めつき層の主体をなす元素で
あり、本発明の構成には不可欠の元素であること
は当然である。またその働きは、クロムおよび他
の元素と同様に拡散浸透することによつて各層の
形成を円滑にするものである。ニツケル、ニオ
ブ、アルミニウム、銅、モリブデン、チタン、シ
リコンの各元素は、元素周期律表に記載される単
独では常温、大気圧の条件下でガス体である元素
を除く各種元素を本発明の表面処理に個々に添加
し、本発明の目的に寄与した元素のうち、少量の
添加でその効果が顕著であつたものである。 上記金属元素のうち、ニツケル、銅などの元素
は加工性を改善し、ニオブ、アルミニウム、チタ
ンは溶接性を改善した。また、上記元素のほとん
どは耐腐食性も改善する効果があつた。 第3表は、表面処理層中にクロム単味が平均濃
度20wt%含有される鋼板(表中記号A)、20wt%
のクロムの他に10wt%のニツケルが含有される
鋼板(表中記号B)、20wt%のクロムの他に
0.6wt%のシリコンが含有される鋼板(表中記号
C)、および20wt%のクロムの他に10wt%のニツ
ケルと0.6wt%のシリコンとが含有される鋼板
(表中記号D)について、1000℃の空気中で100時
間加熱したときの腐食深さを示す。表から腐食深
さはクロムの他にニツケルまたはシリコンを含有
させることによつて減少しており、ニツケルおよ
びシリコンによる効果は明らかである。また、ク
ロムの他にニツケル、シリコンの2つの元素を含
有させることによつて、クロムの他にニツケル、
シリコンを個々に含有させた場合よりもさらに減
少し、ニツケルとシリコンとが相乗的に作用して
いることが明らかである。
[Table] The reason why the surface treatment layer is preferably formed as shown in the above table is as follows. Regarding the thickness and average chromium concentration of the entire surface treatment layer, as is clear from FIG. 3, corrosion resistance is particularly desirable when the thickness is 6 μm or more and the average chromium concentration is 10 wt% or more. In addition, in Figure 3, when the thickness of the surface treatment layer is 60 μm or more, the improvement effect due to the increase in thickness is hardly recognized, and the average chromium concentration is 30 wt%.
Above this, there is almost no improvement effect by increasing the average chromium concentration. Also, increasing the thickness and increasing the average chromium concentration increases manufacturing costs. For these reasons, the thickness of the total surface treatment layer and the average chromium concentration are each 6 μm or more.
Most preferably, the thickness is 60 μm or less, and 10 wt% or more and 30 wt% or less. Regarding layer A, as can be seen from FIG. 5, the thickness has a close relationship with press workability, and the object of the present invention can be fully achieved when the thickness of layer A is 2 μm or more. As for the B layer, as can be seen from Figure 4, there is a deep relationship between the thickness, average chromium concentration, and corrosion resistance, and the thickness and average chromium concentration of the B layer are
When the thickness is 1 μm or more and 10 wt% or more, the object of the present invention can be satisfied. Also, the thickness
If the thickness is 55 μm or more, the effect of increasing the thickness cannot be expected to be so great. The average chromium concentration is
Even at 35 wt% or more, the effect of increasing the concentration cannot be expected to be that great. For this reason, it is preferable that the thickness and average chromium concentration of the B layer be regulated to 1 μm or more and 55 μm or less, and 10 wt% or more and 35 wt% or less, respectively. As can be seen from FIGS. 6 and 7, the thickness of the C layer and the average chromium concentration have a close relationship with spot weldability and chemical conversion treatability. Spot weldability depends on the thickness of the C layer and the average chromium concentration.
It is preferable when the thickness is 2 μm or more and 5 wt% or less, but when the average chromium concentration is regulated by spot weldability to be 5 wt% or less, it is preferable that the thickness is 3 μm or more. From the purpose of the present invention, in order to satisfy both spot weldability and chemical conversion treatment properties, it is necessary to
The content is preferably 5wt% or less. The above explanation is a layer containing chromium (chromium layer)
was concerned with the case of a layer consisting of only chromium, but in the present invention, the effect of the present invention can be further improved by containing not only chromium but also other elements in the surface treatment layer. This is possible and will be explained below. Figure 8 shows the results of a corrosion resistance test according to variations in the content of elements in a steel sheet containing chromium and nickel in the surface treatment layer. When the additional value of is 25wt%, the value of (nickel weight) / (nickel weight + chromium weight) is 0 on the curve,
shows the case of 0.05, 0.10, and 0.30. Corrosion resistance was determined by conducting a salt spray test according to JIS Z 2371 for up to 2160 hours to measure the corrosion loss of the test material, and it was determined that the smaller the corrosion loss, the better the corrosion resistance. As shown in FIG. 8, it is clear that corrosion resistance is improved by adding nickel to chromium. In addition to nickel, this effect has also been observed in various metal elements such as niobium, aluminum, copper, cobalt, molybdenum, titanium, and silicon, and even when one or more of the above metal elements for which effects have been confirmed are mixed, each The effects of the elements were not impaired; in fact, there were cases where the effects appeared synergistically, as exemplified below. In the case of mixing and adding various metal elements like this, nickel, niobium, aluminum, copper, cobalt, molybdenum, titanium,
The sum of the average concentration of one or more metal elements selected from the group of metal elements such as silicon in the surface treatment layer and the average chromium concentration is the average chromium concentration of single chromium shown in Table 2. The range does not exceed the value,
Moreover, it was also confirmed that (weight of elements other than chromium)/(chromium + weight of elements other than chromium) preferably does not exceed 0.4. The reason is as follows. The purpose of the present invention is to satisfy all of corrosion resistance, workability, spot weldability, and chemical conversion treatment properties, but among the above characteristics, excellent corrosion resistance is particularly important from the purpose of the present invention. be. As can be seen from FIG. 3, the chromium concentration in the surface treatment layer greatly affects corrosion resistance, and the contribution of chromium to corrosion resistance is greater than that of other elements. According to the research conducted by the present inventors, as mentioned above, elements other than chromium also contribute to improving corrosion resistance, but their contribution is generally limited to special corrosion resistance such as high temperature oxidation resistance and acid resistance. It was also found that these effects are based on the presence of chromium, and that elements other than chromium alone have little effect. When we comprehensively evaluated corrosion resistance, including salt water resistance, alkali resistance, acid resistance, high temperature oxidation resistance, etc., we confirmed that it is desirable that the weight ratio of elements other than chromium does not exceed 0.4. Each selected element of iron, nickel, niobium, aluminum, copper, cobalt, molybdenum, titanium, and silicon can bring the following effects to the present invention. Iron is the main element of the steel plate and the iron plating layer, and is naturally an essential element for the structure of the present invention. Also, its function is to facilitate the formation of each layer by diffusing and penetrating like chromium and other elements. The elements nickel, niobium, aluminum, copper, molybdenum, titanium, and silicon can be used on the surface of the present invention, excluding elements listed in the periodic table of elements that are gaseous at room temperature and atmospheric pressure. Among the elements that were individually added to the treatment and contributed to the object of the present invention, the effects were significant even when added in small amounts. Among the above metal elements, elements such as nickel and copper improved workability, and niobium, aluminum, and titanium improved weldability. Furthermore, most of the above elements had the effect of improving corrosion resistance. Table 3 shows steel sheets containing chromium at an average concentration of 20wt% in the surface treatment layer (symbol A in the table), 20wt%
Steel plate containing 10wt% nickel in addition to chromium (symbol B in the table), steel plate containing 10wt% nickel in addition to 20wt% chromium
For steel sheets containing 0.6wt% silicon (symbol C in the table) and steel sheets containing 10wt% nickel and 0.6wt% silicon in addition to 20wt% chromium (symbol D in the table), 1000 Indicates the corrosion depth when heated in air at ℃ for 100 hours. From the table, the corrosion depth is reduced by containing nickel or silicon in addition to chromium, and the effects of nickel and silicon are clear. In addition, by containing two elements, nickel and silicon, in addition to chromium, we have added nickel and silicon in addition to chromium.
It is clear that nickel and silicon act synergistically, as it is further reduced than when silicon is contained individually.

〔実施例 1〕[Example 1]

化学組成が、C:0.04wt%、Mn:0.25wt%、
Al:0.033wt%、残部Feおよび不可避的下純物か
ら成る低炭素アルミニウムキルド鋼板を母材とす
る板厚1.0mmの冷延鋼板上に片面22g/m2の金属
クロムを電気めきしてクロム単味からなる層を形
成し、次いで片面75g/m2の鉄を電気めつきして
鉄めつき層を形成した。その後、水洗および乾燥
を充分に行つて箱型焼鈍炉に導き、HNガス雰囲
気(水素ガス25vo1%、窒素75vo1%)中で、970
℃の温度で、約4時間熱処理を行つた。 このようにして得られた表面処理鋼板の表面処
理層は第2表に示す範囲内にあることを確認した
上で、本発明による鋼板と比較材として溶融亜鉛
めつき鋼板、クロマイズド鋼板、ガルバニールド
鋼板、ジンクリツチプライマ塗布鋼板とについ
て、後述するような方法で耐腐食性、加工性、ス
ポツト溶接性および化成処理性の試験を行つた。
その結果を第4表に示す。第4表から明らかにわ
かるように、本発明による表面処理鋼板は従来の
耐腐食性表面処理鋼板に比べて各特性とも非常に
優れていることが実証された。 (耐腐食性) JIS Z 2371による塩水噴霧試験を連続3000時
間行つて試験材の腐食減量(g/m2)を求め、そ
の減量数値の大小により比較評価した。評価の方
法は以下の通りである。 ◎……腐食減量が極小 〇……腐食減量が小さい ×……腐食減量が大きい (加工性) 実験用プレス成形機を用いてプレス加工を行
い、これによる亀裂、パウダリングおよび分離な
どのトラブルの発生程度を比較評価した。評価の
方法は以下の通りである。 ◎……程度が極めて良好 〇……程度がほぼ満足できる ×……程度が不良 (スポツト溶接性) 下記の溶接条件で各試験材ごとに、1対の電極
チツプでチツプをドレツシングすることなく連続
的に溶接し、ナゲツト形成が不能になるまでの溶
接点数で比較評価した。 溶接条件 二次溶接電流…8〜12KA 加圧力 …250Kg 通電時間 …8〜12サイクル 電極チツプ …Cu−Cr系合金、C、F型、
先端径5mmφ 評価方法は以下の通りである。 ◎……溶接点数10000点以上 〇……溶接点数4000点以上10000点以下 ×……溶接点数4000点以下 (化成処理性) 化成処理性の評価方法として、一般的には化成
処理後塗装してその塗膜の密着性を調べる方法が
採られる。本試験でもこれを採用することとし、
市販のボンデライト3112(日本パーカライジング
(株)製)による化成処理をスプレー方式で3分間行
つた後、市販のパワーコート9600(日本ペイント
(株)製)によるアニオン型電着塗装を浴槽電圧
200Vで3分間行い、更に塗膜の焼付を行つた。
これを塗膜の密着性の評価方法として一般的に実
施されている耐衝撃試験に供し、塗膜に亀裂が入
る最少高さで比較評価した。 塗膜の密着性試験条件 衝撃試験機…デユポン衝撃試験機 重錘 …500g 撃心半径 …3/16インチ 評価方法は以下の通りである。 ◎……最少高さが50cm以上 〇……最少高さが30cm以上50cm以下 ×……最少高さが30cm以下 〔実施例 2〕 化学組成が、C:0.07wt%、Mn:0.32wt%、
残部Feおよび不可避的不純物から成る低炭素リ
ムド鋼を母材とする板厚0.8mmの冷延鋼板上にク
ロム鉄合金層(クロム42wt%、鉄58wt%)を40
g/m2の割合で形成し、これに鉄めつき層を片面
52g/m2の割合で形成しこ。この後、これを箱型
焼鈍炉に導き、HNガス雰囲気(水素ガス20vo1
%、窒素ガス80vo1%)中で、900℃の温度で約
7時間熱処理を行つた。 このようにして得られた表面処理鋼板の表面処
理層は第2表に示す範囲内にあることを確認した
上で、実施例1において説明した試験方法により
各試験材の各特性について試験を行つた。その結
果を第5表に示す。この表から本発明による鋼材
は従来の表面処理鋼板に比して優れているのは一
目瞭然であることがわかる。 〔実施例 3〕 化学組成が、C:0.05wt%、Mn:0.30wt%、
Al:0.042wt%、残部Feおよび不可避的不純物か
ら成る低炭素アルミニウムキルド鋼を母材とする
板厚0.7mmの冷延鋼板上にクロムーニツケル合金
(クロム62wt%、ニツケル38wt%)を片面38g/
m2の割合で電気めつきしてクロムとニツケルから
なる層を形成し、これに鉄めつき層を片面60g/
m2の割合で形成した後、これを箱型焼鈍炉に導
き、HNガス雰囲気(水素ガス20vo1%、窒素ガ
ス80vo1%)中で、950℃の温度で、約6時間の
熱処理を行つた。 このようにして得られた表面処理鋼板の表面処
理層は第2表に示す範囲内にあることを確認した
上で、実施例1において説明した試験方法により
各供試材の各特性について試験を行つた。その結
果を第6表に示す。本表に明示される如く、本発
明による鋼板は従来の表面処理鋼板に比して優
れ、本発明の目的を充分に満足するものであつ
た。 〔実施例 4〕 化学組成が、C:0.03wt%、Mn:0.26wt%、
Al:0.059wt%、残部Feおよび不可避的不純物か
ら成る低炭素アルミニウムキルド鋼を母材とする
板厚2.2mmの熱延鋼板上に特殊な金属クロム−ア
ルミニウム塩の複合物から成る層を片面37g/m2
(その内31gが金属クロム)の割合となるように
付着形成し、この上に鉄めつき層を片面56g/m2
の割合で形成した後、これを箱型焼鈍炉に導き、
HNガス雰囲気(水素ガス20vo1%、窒素ガス
80vo1%)中で、950℃の温度で、約6時間熱処
理を行つた。 このようにして得られた本発明による表面処理
鋼板の表面処理層は第2表に示す範囲内にあるこ
とを確認した上で、実施例1において説明した試
験方法により各供試材の各特性について試験を行
つた。その結果を第7表に示す。本表から明らか
なように、本発明による表面処理鋼板は従来の表
面処理鋼板より各特性において優れ、本発明の目
的を充分に満足するものであつた。
The chemical composition is C: 0.04wt%, Mn: 0.25wt%,
Al: 0.033wt%, balance Fe and unavoidable lower impurities. Chromium is produced by electroplating 22g/ m2 of metallic chromium on one side on a 1.0mm thick cold-rolled steel sheet made of low carbon aluminum killed steel sheet as a base material. A single layer was formed, and then 75 g/m 2 of iron was electroplated on one side to form an iron-plated layer. After that, it was thoroughly washed with water and dried, then introduced into a box-type annealing furnace, and heated at 970°C in an HN gas atmosphere (hydrogen gas 25vo1%, nitrogen 75vo1%).
The heat treatment was carried out at a temperature of .degree. C. for about 4 hours. After confirming that the surface treatment layer of the surface-treated steel sheet obtained in this way is within the range shown in Table 2, we compared the steel sheet according to the present invention and comparative materials such as hot-dip galvanized steel sheet, chromized steel sheet, and galvanized steel sheet. Corrosion resistance, workability, spot weldability, and chemical conversion treatment properties were tested on the steel plate and the zinc-rich primer-coated steel plate using the methods described below.
The results are shown in Table 4. As clearly seen from Table 4, the surface-treated steel sheet according to the present invention was demonstrated to be extremely superior in all properties compared to the conventional corrosion-resistant surface-treated steel sheet. (Corrosion Resistance) A salt spray test according to JIS Z 2371 was conducted continuously for 3000 hours to determine the corrosion loss (g/m 2 ) of the test material, and the weight loss values were compared and evaluated. The evaluation method is as follows. ◎...The corrosion loss is minimal. 〇...The corrosion loss is small. The degree of occurrence was comparatively evaluated. The evaluation method is as follows. ◎...Extremely good quality 〇...Almost satisfactory ×...Poor quality (spot weldability) Under the following welding conditions, one pair of electrode tips was used continuously for each test material without dressing the tip. A comparative evaluation was made based on the number of welding points until nugget formation became impossible. Welding conditions Secondary welding current…8~12KA Pressure force…250Kg Current application time…8~12 cycles Electrode tip…Cu-Cr alloy, C, F type,
Tip diameter: 5 mmφ The evaluation method is as follows. ◎...Number of welding points: 10,000 or more 〇...Number of welding points: 4,000 to 10,000 points ×...Number of welding points: 4,000 or less (chemical conversion treatment properties) As a method for evaluating chemical conversion treatment properties, the general method is to paint after chemical conversion treatment. A method is adopted to examine the adhesion of the coating film. This will be adopted in this exam as well.
Commercially available Bonderite 3112 (Nippon Parkerizing)
Co., Ltd.) for 3 minutes using a spray method, and then commercially available Power Coat 9600 (Nippon Paint Co., Ltd.).
Co., Ltd.'s anionic electrodeposition coating with bath voltage.
The coating was heated at 200V for 3 minutes to further bake the paint film.
This was subjected to an impact resistance test, which is commonly carried out as a method for evaluating the adhesion of a paint film, and comparative evaluation was performed based on the minimum height at which cracks would occur in the paint film. Paint film adhesion test conditions Impact tester: Dupont impact tester Weight: 500g Center of impact radius: 3/16 inch The evaluation method is as follows. ◎...Minimum height is 50cm or more 〇...Minimum height is 30cm or more and 50cm or less ×...Minimum height is 30cm or less [Example 2] Chemical composition: C: 0.07wt%, Mn: 0.32wt%,
A chromium-iron alloy layer (42 wt% chromium, 58 wt% iron) is applied to a cold-rolled steel sheet with a thickness of 0.8 mm, the base material of which is low-carbon rimmed steel consisting of the balance Fe and unavoidable impurities.
g/m 2 and coated with an iron plating layer on one side.
Formed at a rate of 52g/ m2 . After this, this was led to a box-type annealing furnace, and the HN gas atmosphere (hydrogen gas 20vo1
%, nitrogen gas 80vo 1%) at a temperature of 900°C for about 7 hours. After confirming that the surface treatment layer of the surface treated steel sheet obtained in this way was within the range shown in Table 2, tests were conducted on each property of each test material using the test method explained in Example 1. Ivy. The results are shown in Table 5. From this table, it is obvious that the steel material according to the present invention is superior to conventional surface-treated steel sheets. [Example 3] Chemical composition: C: 0.05wt%, Mn: 0.30wt%,
38g of chromium-nickel alloy (62wt% chromium, 38wt% nickel) on one side is applied to a cold-rolled steel plate with a thickness of 0.7mm, which has a base material of low carbon aluminum killed steel consisting of Al: 0.042wt%, balance Fe and unavoidable impurities. /
A layer consisting of chromium and nickel is formed by electroplating at a ratio of m 2 , and then an iron plating layer of 60 g/m2 is applied on each side.
m 2 , it was introduced into a box-shaped annealing furnace and heat-treated at a temperature of 950° C. for about 6 hours in an HN gas atmosphere (hydrogen gas 20 vol 1%, nitrogen gas 80 vol 1 %). After confirming that the surface treatment layer of the surface-treated steel sheet obtained in this way was within the range shown in Table 2, the characteristics of each sample material were tested using the test method explained in Example 1. I went. The results are shown in Table 6. As clearly shown in this table, the steel sheet according to the present invention was superior to the conventional surface-treated steel sheet, and fully satisfied the object of the present invention. [Example 4] Chemical composition: C: 0.03wt%, Mn: 0.26wt%,
Al: 0.059wt%, balance Fe and unavoidable impurities A layer consisting of a special metal chromium-aluminum salt composite layer of 37g per side is applied to a 2.2mm thick hot rolled steel plate made of low carbon aluminum killed steel as a base material. / m2
(of which 31g is metallic chromium), and on top of this an iron plating layer is applied at a rate of 56g/m 2 on one side.
After forming at a ratio of
HN gas atmosphere (hydrogen gas 20vo1%, nitrogen gas
Heat treatment was performed at a temperature of 950° C. for about 6 hours in 80vo 1%). After confirming that the surface treatment layer of the surface-treated steel sheet according to the present invention thus obtained is within the range shown in Table 2, the characteristics of each sample material were determined by the test method explained in Example 1. We conducted tests on The results are shown in Table 7. As is clear from this table, the surface-treated steel sheet according to the present invention was superior to the conventional surface-treated steel sheet in each characteristic, and fully satisfied the object of the present invention.

【表】【table】

【表】【table】

【表】【table】

【表】 上述した処から明らかなように、本発明による
表面処理鋼板は、表面処理層が鉄、クロムを主体
として含有し、処理鋼板表面方向から鋼板素地に
かけて、比較的クロム濃度が低い部域、比較的ク
ロム濃度が高い部域および比較的クロム濃度が低
い部域の3部域(層)で構成されていることから
して、各部域(層)が発揮する特性が相加される
ために、耐腐食性をはじめ加工性、スポツト溶接
性、化成処理性などの多様な特性を発揮する優れ
たものであり、従来得られなかつた多目的鋼板と
して広い用途が開けている。
[Table] As is clear from the above, in the surface-treated steel sheet according to the present invention, the surface treatment layer mainly contains iron and chromium, and the chromium concentration is relatively low in the area from the surface direction of the treated steel sheet to the steel sheet base. Since it is composed of three regions (layers): a region with a relatively high chromium concentration and a region with a relatively low chromium concentration, the characteristics exhibited by each region (layer) are additive. In addition, it exhibits a variety of excellent properties such as corrosion resistance, workability, spot weldability, and chemical conversion treatment properties, and has a wide range of applications as a multipurpose steel sheet that has not been available before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造法における表面処理層の
生成過程を示す説明用線図、第2aおよび2b図
はそれぞれ本発明の表面処理鋼板および従来の表
面処理鋼板の表面処理層断面におけるクロムおよ
び鉄の濃度分布を示す図、第3図は全表面処理層
の厚みおよび平均クロム濃度と耐腐食性との関係
を示す図、第4図はB層の厚みおよび平均クロム
濃度と耐腐食性との関係を示す図、第5図はA層
の厚みとプレス加工性との関係を示す図、第6図
はC層の厚みおよび平均クロム濃度とスポツト溶
接性との関係を示す図、第7図はC層の厚みおよ
び平均クロム濃度と化成処理性との関係を示す
図、第8図は表面処理層にクロム以外にニツケル
を添加した時のクロム重量比と耐腐食性との関係
を示す図である。
FIG. 1 is an explanatory diagram showing the generation process of the surface treatment layer in the manufacturing method of the present invention, and FIGS. 2a and 2b are diagrams showing chromium and Figure 3 shows the relationship between the thickness of the entire surface treatment layer and the average chromium concentration and corrosion resistance. Figure 4 shows the relationship between the thickness of the B layer and the average chromium concentration and the corrosion resistance. Figure 5 is a diagram showing the relationship between the thickness of the A layer and press workability, Figure 6 is a diagram showing the relationship between the thickness of the C layer, the average chromium concentration, and spot weldability, and Figure 7 is a diagram showing the relationship between the thickness of the C layer and the average chromium concentration and spot weldability. The figure shows the relationship between the thickness of the C layer, the average chromium concentration, and chemical conversion treatment properties. Figure 8 shows the relationship between the chromium weight ratio and corrosion resistance when nickel is added in addition to chromium to the surface treatment layer. It is a diagram.

Claims (1)

【特許請求の範囲】 1 鋼板素地上に、厚さ2μm以上のクロム拡散
鋼板層と、平均クロム濃度10〜35wt%で厚さ1
〜55μmの鉄拡散クロム含有層と、平均クロム濃
度5wt%以下で厚さ3μm以上のクロム拡散鉄めつ
き層とが順次形成されてなる表面処理層が設けら
れており、 その表面処理層は平均クロム濃度10〜30wt%
で厚さ6〜60μmであり、 クロム濃度が前記クロム拡散鉄めつき層の表面
から前記鉄拡散クロム含有層の内部にかけて連続
的に上昇し、その鉄拡散クロム含有層の内部から
前記鋼板素地にかけて連続的に低下していること
を特徴とする三層構造の被覆層を有する表面処理
鋼板。 2 前記鉄拡散クロム含有層がクロム単味からな
る層中に鉄が拡散している特許請求の範囲第1項
記載の表面処理鋼板。 3 前記鉄拡散クロム含有層が、クロムと、鉄、
ニツケル、ニオブ、アルミニウム、銅、コバル
ト、モリブデン、チタン、シリコンの金属元素群
から選ばれた1種以上の元素とからなる層中に鉄
が拡散している特許請求の範囲第1項記載の表面
処理鋼板。 4 鋼板表面上に厚さ1〜55μmのクロム含有層
を形成し、このクロム含有層上に厚さ3μm以上
の鉄めつき層を形成し、その後に熱処理を施すこ
とにより前記鋼板、前記クロム含有層および前記
鉄めつき層間において金属元素を拡散浸透させ、
前記鋼板中にクロムが拡散した厚さ2μm以上の
クロム拡散鋼板層と、前記クロム含有層中に鉄が
拡散した平均クロム濃度10〜35wt%、厚さ1〜
55μmの鉄拡散クロム含有層と、前記鉄めつき層
中にクロムが拡散した平均クロム濃度5wt%以
下、厚さ3μm以上のクロム拡散鉄めつき層とを
形成することを特徴とする三層構造の被覆層を有
する表面処理鋼板の製造方法。 5 前記クロム含有層がクロム単味からなる特許
請求の範囲第4項記載の表面処理鋼板の製造方
法。 6 前記クロム含有層が、クロムと、鉄、ニツケ
ル、ニオブ、アルミニウム、銅、コバルト、モリ
ブデン、チタン、シリコンの金属元素群から選ば
れた1種以上の元素とからなる特許請求の範囲第
4項記載の表面処理鋼板の製造方法。
[Claims] 1. A chromium-diffused steel sheet layer with a thickness of 2 μm or more on a steel sheet base, and a chromium-diffused steel sheet layer with an average chromium concentration of 10 to 35 wt%.
A surface treatment layer is provided in which an iron-diffused chromium-containing layer of ~55 μm and a chromium-diffused iron plating layer with an average chromium concentration of 5 wt% or less and a thickness of 3 μm or more are sequentially formed. Chromium concentration 10-30wt%
The thickness is 6 to 60 μm, and the chromium concentration increases continuously from the surface of the chromium-diffused iron plating layer to the inside of the iron-diffused chromium-containing layer, and from the inside of the iron-diffused chromium-containing layer to the steel sheet base. A surface-treated steel sheet having a three-layered coating layer characterized by a continuously decreasing coating layer. 2. The surface-treated steel sheet according to claim 1, wherein the iron-diffused chromium-containing layer has iron diffused into the layer consisting of only chromium. 3. The iron-diffused chromium-containing layer contains chromium, iron,
The surface according to claim 1, wherein iron is diffused in a layer comprising one or more elements selected from the metal element group of nickel, niobium, aluminum, copper, cobalt, molybdenum, titanium, and silicon. Treated steel plate. 4. Forming a chromium-containing layer with a thickness of 1 to 55 μm on the surface of the steel plate, forming an iron plating layer with a thickness of 3 μm or more on this chromium-containing layer, and then heat-treating the steel plate, the chromium-containing layer. Diffuse and infiltrate the metal element between the layer and the iron plating layer,
A chromium-diffused steel plate layer with a thickness of 2 μm or more in which chromium is diffused in the steel plate, and an average chromium concentration of 10 to 35 wt% and a thickness of 1 to 35 wt% in which iron is diffused in the chromium-containing layer.
A three-layer structure characterized by forming a 55 μm iron-diffused chromium-containing layer and a chromium-diffused iron plating layer with an average chromium concentration of 5 wt% or less and a thickness of 3 μm or more in which chromium is diffused into the iron plating layer. A method for manufacturing a surface-treated steel sheet having a coating layer. 5. The method for manufacturing a surface-treated steel sheet according to claim 4, wherein the chromium-containing layer consists of only chromium. 6. Claim 4, wherein the chromium-containing layer comprises chromium and one or more elements selected from the metal element group of iron, nickel, niobium, aluminum, copper, cobalt, molybdenum, titanium, and silicon. A method for manufacturing the surface-treated steel sheet described above.
JP2856781A 1981-02-28 1981-02-28 Surface treated steel plate having coating layer of three layered structure and its production Granted JPS57143489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2856781A JPS57143489A (en) 1981-02-28 1981-02-28 Surface treated steel plate having coating layer of three layered structure and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2856781A JPS57143489A (en) 1981-02-28 1981-02-28 Surface treated steel plate having coating layer of three layered structure and its production

Publications (2)

Publication Number Publication Date
JPS57143489A JPS57143489A (en) 1982-09-04
JPS6314072B2 true JPS6314072B2 (en) 1988-03-29

Family

ID=12252203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2856781A Granted JPS57143489A (en) 1981-02-28 1981-02-28 Surface treated steel plate having coating layer of three layered structure and its production

Country Status (1)

Country Link
JP (1) JPS57143489A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5206386B2 (en) * 2008-12-15 2013-06-12 Jfeスチール株式会社 Corrosion promotion test method and corrosion amount prediction method for organic coated steel for civil engineering
CN103764388B (en) * 2011-12-29 2016-08-17 奥秘合金设计有限公司 The rustless steel of metallurgical binding
US8557397B2 (en) * 2011-12-29 2013-10-15 Arcanum Alloy Design Inc. Metallurgically bonded stainless steel
DE212012000088U1 (en) * 2011-12-29 2013-11-26 Arcanum Alloy Design Inc. Metallurgically bonded stainless steel
WO2016130548A1 (en) 2015-02-10 2016-08-18 Arcanum Alloy Design, Inc. Methods and systems for slurry coating
MX2017010892A (en) * 2015-03-31 2017-12-07 Nippon Steel & Sumitomo Metal Corp Surface-treated metal sheet, coated member and method for producing coated member.
WO2017201418A1 (en) 2016-05-20 2017-11-23 Arcanum Alloys, Inc. Methods and systems for coating a steel substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4866039A (en) * 1971-12-13 1973-09-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4866039A (en) * 1971-12-13 1973-09-11

Also Published As

Publication number Publication date
JPS57143489A (en) 1982-09-04

Similar Documents

Publication Publication Date Title
JPH04214895A (en) Surface treated steel sheet excellent in plating performance and weldability and manufacture thereof
JPH05320952A (en) High strength cold rolled steel sheet excellent in corrosion resistance after coating
JPS6314072B2 (en)
JP2991929B2 (en) Cr-Ni diffusion treated steel sheet excellent in workability and corrosion resistance and its manufacturing method
JP5906633B2 (en) Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance after painting
JPS5937746B2 (en) Surface treated steel sheet and its manufacturing method
JP3111903B2 (en) Manufacturing method of galvanized steel sheet
JPS6314071B2 (en)
JPS63186860A (en) Manufacture of surface-treated steel sheet excellent in rust resistance and weldability
JPS61270398A (en) Composite plated steel sheet having high corrosion resistance and its manufacture
JPH05239605A (en) Galvanizing method for high tensile strength steel sheet
JPH0649925B2 (en) Method for producing plated base steel sheet with excellent corrosion resistance for can manufacturing
JP3111904B2 (en) Manufacturing method of galvanized steel sheet
JPS61124580A (en) Production of solar heat absorption plate
JPH03197693A (en) Very thin sn plated steel sheet for can and its production
JP2004002931A (en) Aluminum plated steel sheet having excellent resistance weldability and worked parts obtained by using the same
JP3191687B2 (en) Galvanized steel sheet
JPH10212563A (en) Production of galvanized steel sheet
JP3198742B2 (en) Manufacturing method of galvannealed steel sheet with excellent press formability, spot weldability and paint adhesion
JP3368846B2 (en) Method for producing galvanized steel sheet excellent in press formability, spot weldability and adhesion
JP3534038B2 (en) Alloyed hot-dip galvanized steel sheet with excellent spot weldability, its production method and evaluation method
JP3270318B2 (en) Steel plate for welded cans with excellent weldability, corrosion resistance, appearance and adhesion
JP3191660B2 (en) Galvanized steel sheet and method for producing the same
JPH05171392A (en) Method for galvanizing high-strength steel sheet
JP3111910B2 (en) Galvanized steel sheet with excellent press formability and adhesion