JPS63139601A - Surface machining for linbo3 single crystal - Google Patents

Surface machining for linbo3 single crystal

Info

Publication number
JPS63139601A
JPS63139601A JP28543086A JP28543086A JPS63139601A JP S63139601 A JPS63139601 A JP S63139601A JP 28543086 A JP28543086 A JP 28543086A JP 28543086 A JP28543086 A JP 28543086A JP S63139601 A JPS63139601 A JP S63139601A
Authority
JP
Japan
Prior art keywords
cutting
workpiece
single crystal
main shaft
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28543086A
Other languages
Japanese (ja)
Inventor
Sunao Kodera
直 小寺
Shiro Sakai
酒井 司郎
Seiichi Hara
原 成一
Hiroyuki Matsunaga
博之 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28543086A priority Critical patent/JPS63139601A/en
Publication of JPS63139601A publication Critical patent/JPS63139601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turning (AREA)

Abstract

PURPOSE:To improve flatness and surface roughness of a cut surface, by a method wherein surface cutting is effected so that a cutting direction can be specified in a direction in which machinability is most excellent. CONSTITUTION:When a workpiece 2 is secured to a work holder 4, provided the advancing direction of the workpiece 2 is B and a radial direction extending toward the rotation center of a main shaft 1 is A, a cutting direction C is extended in reverse direction to the advancing direction B, and an angle of the cutting direction with an axis Y is set to 60 deg.. The holder 4 is secured to the tip of the main shaft 1, clockwise rotation is exerted on the main shaft 1, and a feed from the outside of the workpiece 2 toward a center is exerted, as shown by an arrow mark, on a bite 3 having a diamond tip 3a. As noted above, by performing a cutting work in a way that the cutting direction c is specified, uniform and excellent flatness and surface roughness can be provided. An angle of the direction C with the axis Y may be set to 180 deg. or 300 deg..

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、LiNb0.単結晶2カツト面の平面仕上
法に関し、良好な平面度・面粗度を得るための旋削加工
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to LiNb0. This paper relates to a method for finishing two cut surfaces of a single crystal, and is concerned with turning processing to obtain good flatness and surface roughness.

(従来の技術〕 第5図は、従来の平面加工法を示す図であり、図におい
て、1は旋盤の主軸、2は主軸1の先端に固定された加
工物(1,i N b Os単結晶Zカット面)である
a2aは前加工面であり、2bは平面度及び良好な面粗
度が要求される旋削加工面である。3は旋削バイトであ
り、通常、その先端にはダイヤモンドチップ3aを有し
ている。バイト3の動きは、そのチップ3aの先端の位
置が旋削加工面2bを形成するよう定められ、図中で示
すように主軸1の回転軸に直角に直線的に送り込まれて
、加工物2の外周から順次前加工面2aを旋削加工して
いく。
(Prior Art) FIG. 5 is a diagram showing a conventional plane machining method. In the figure, 1 is the main shaft of a lathe, 2 is a workpiece (1, a2a is the pre-machined surface, and 2b is the lathe-machined surface that requires flatness and good surface roughness. 3 is the lathe turning tool, which usually has a diamond tip at its tip. 3a.The movement of the cutting tool 3 is such that the position of the tip of the tip 3a forms the turning surface 2b, and the cutting tool 3 is fed linearly at right angles to the rotation axis of the main shaft 1 as shown in the figure. Then, the pre-machined surface 2a is sequentially turned from the outer periphery of the workpiece 2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のL i N b Os単結晶2カット面の平面旋
削法は、このように加工物2の面内に主軸lの回転中心
を有しており、バイト3の直線運動と加工物2の回転と
により、旋削加工面2bを削り出すものである0例えば
従来の報告例(昭和60年度電子通信学会総合全国大会
前刷集995)では面粗度は非常に悪い、さらに詳細に
検討するとLiNbO3単結晶は魚群3mであり、ヘキ
開面(10TT)を有しているため、切削特性が切削方
向による結晶方位依存性を持っている。このため、加工
物2の面内に回転中心を有すると、バイト3のチツブ3
aによる切削方向が、主軸の回転軸を中心に360@回
転することになり、第6図に示すように′・、回転中心
から放射状に数種類の表面状態が異、みる領域が存在す
る。それは、120 ”周期で3分・、+( 割される。
The conventional plane turning method for two-cut surfaces of L i N b Os single crystal has the rotation center of the main axis l within the plane of the workpiece 2, and the linear movement of the cutting tool 3 and the rotation of the workpiece 2 For example, in a previous report (1985 Institute of Electronics and Communication Engineers General Conference Preprint Collection 995), the surface roughness was very poor. The crystal is a 3m school of fish and has a hexagonal plane (10TT), so the cutting characteristics depend on the crystal orientation depending on the cutting direction. Therefore, if the center of rotation is within the plane of the workpiece 2, the tip 3 of the cutting tool 3
The cutting direction a is rotated by 360@ around the rotation axis of the main spindle, and as shown in FIG. It is divided by 3 minutes ·, + ( by 120'' period.

また、第6図においてD部とE部との段差が10分の数
ミクロン程度生じ、平面度も低下する。
Further, in FIG. 6, a difference in level between portions D and E occurs on the order of several tenths of a micron, and the flatness also decreases.

このことは、切削加工2bの平面度・面粗度を良好に仕
上げる場合には、特に大きな問題であった。
This was a particularly big problem when finishing the cutting process 2b with good flatness and surface roughness.

この発明は、上記のような問題点を解消するためになさ
れたものであり、旋削面を一様でかつ平面度・面粗度を
良好に仕上げる、LiNb0.、単結晶Zカット面の平
面旋削法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and is a LiNb0. , the purpose is to obtain a surface turning method for single crystal Z-cut surfaces.

〔問題点を解決するための手段〕[Means for solving problems]

一シしα港酢番佑1仁と年たヰ#÷。 Isshi α Minato Subanyu 1 Jin and year number ÷.

この発明に係るL i N b Os単結晶の平面加工
法は、LiNb0.単結晶の結晶方位依存性を考慮し、
バイトの切削方向を+Y方向を基準とし、反時計回りに
60°、  180°、  300°、各±5°のいず
れかの方向としたものである。
The method for planar processing of LiNbOs single crystal according to the present invention is a method for flattening LiNbOs single crystal. Considering the crystal orientation dependence of single crystal,
The cutting direction of the cutting tool is set to any one of 60°, 180°, 300°, and ±5° counterclockwise with the +Y direction as a reference.

〔作用〕[Effect]

この発明においてはバイトによる切削方向を、LiNb
0.単結晶Zカット面の最も被削性のよい方向に一定と
なるように設定しているため、切削後、切削加工面は一
様でかつ良好な平面度、面粗度となる。
In this invention, the cutting direction by the cutting tool is set to LiNb
0. Since it is set to be constant in the direction of the single crystal Z-cut surface with the best machinability, after cutting, the cut surface has uniform and good flatness and surface roughness.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図は本発明の一実施例によるLiNb0゜単結晶の平面
加工法を示す図であり、図において、第5図と同一符号
は相当部分を示している。この実施例においては、切削
方向を一定にする方法として、主軸の回転中心が加工物
面内にない、いわゆる軸はずしの断続旋削法をとってい
る。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a diagram showing a planar processing method for a LiNb 0° single crystal according to an embodiment of the present invention, and in the figure, the same reference numerals as in FIG. 5 indicate corresponding parts. In this embodiment, as a method for keeping the cutting direction constant, a so-called off-axis interrupted turning method in which the rotation center of the main spindle is not within the plane of the workpiece is used.

第3図はL i N b Os単結晶のZカット面の平
面旋削における切削方向と表面粗度の関係を示す図であ
る。
FIG. 3 is a diagram showing the relationship between the cutting direction and the surface roughness in plane turning of the Z-cut surface of a L i N b Os single crystal.

第3図より+Yを基準とし、反時計回りに60°。From Figure 3, 60° counterclockwise with +Y as the reference.

180°、  300@近傍を切削方向と定めれば面粗
度が向上することがわかる。しかし加工時における雰囲
気の不安定さにより、上記角度は、±5@程度の範囲を
有すると考えられる。
It can be seen that the surface roughness is improved if the cutting direction is set at around 180° and 300°. However, due to the instability of the atmosphere during processing, the above angle is considered to have a range of approximately ±5@.

次に動作について説明する。LiNbO5単結晶Zカッ
ト面の加工物2は、ワークホルダー4にワックスで固定
され、ワーク未ルダー4は、主軸1の先端に負圧を利用
した真空チャックにより固定されている。バイト3はチ
ップ3aがダイヤモンドであり、いわゆるRバイ゛トを
使用している。
Next, the operation will be explained. A workpiece 2 having a Z-cut surface of a LiNbO5 single crystal is fixed to a work holder 4 with wax, and a workpiece holder 4 is fixed to the tip of the main spindle 1 by a vacuum chuck using negative pressure. The tip 3a of the cutting tool 3 is made of diamond, and a so-called R cutting tool is used.

主軸1には右回転を与え、バイト3には、図中矢印5で
示すように、加工物2の外側から中心への送りを与える
。加工物2のホルダー4への固定は、第2図に示す方法
にて行う、ここでAは回転中心へ向う半径方向、Bは主
軸右回転に伴う加工物2の進行方向である。従って切削
方向は、B方向と反対のC方向になる。実施例では、切
削方向とY軸とのなす角を60度にしている。
The main shaft 1 is given clockwise rotation, and the cutting tool 3 is given a feed from the outside of the workpiece 2 to the center, as shown by an arrow 5 in the figure. The workpiece 2 is fixed to the holder 4 by the method shown in FIG. 2, where A is the radial direction toward the center of rotation, and B is the direction of movement of the workpiece 2 as the main shaft rotates clockwise. Therefore, the cutting direction is the C direction, which is opposite to the B direction. In the embodiment, the angle between the cutting direction and the Y axis is 60 degrees.

上記のような加工を行うことにより、切削方向が一定で
あり、もっとも被削性の良い切削方向に設定しているた
め、一様でかつ良好な平面度・面粗度を得ることができ
る。第4図に、上記加工方法により平面旋削を行った加
工表面の写真を示す。
By performing the above processing, the cutting direction is constant and is set to the cutting direction with the best machinability, so uniform and good flatness and surface roughness can be obtained. FIG. 4 shows a photograph of a machined surface subjected to plane turning using the above-mentioned processing method.

なお上記実施例では、切削方向とY軸のなす角を60°
としたが、180°、  300”としても同様の効果
を奏する。
In the above example, the angle between the cutting direction and the Y axis is 60°.
However, the same effect can be obtained even if the angle is 180° and 300''.

また、切削の方法として軸はすしの断続切削法を用いた
が、切削の方向を一定とするバイト回転型のフライカッ
ト切削法、及び往復運動型の形削り法においても同様の
効果を奏する。
Furthermore, although the interrupted shaft cutting method was used as the cutting method, a similar effect can be achieved by a cutting tool rotating type fly-cut cutting method in which the direction of cutting is constant, and a reciprocating motion type shaping method.

また、以上の説明においては、この発明を平面の切削法
に利用した場合として述べたが、本発明の思想を広く研
削・研磨の機械加工にも利用できることは言うまでもな
い、更に、この加工法は平面に限らず、球面、非球面等
の一般の回転面の高精度加工にも利用できることも言う
までもない。
In addition, in the above explanation, the present invention has been described as a case where the present invention is applied to a flat surface cutting method, but it goes without saying that the idea of the present invention can also be widely applied to machining such as grinding and polishing. Needless to say, it can be used not only for flat surfaces but also for high-precision machining of general rotating surfaces such as spherical and aspherical surfaces.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によればl、1Nbos単結晶
の平面加工法においてバイトによる切削方向をもっとも
被削性のよい方向に一定となるよう設定して平面切削を
行う構成にしたから、切削後、切削加工面は一様でかつ
平面度・面粗度が良好に仕上げることができるという効
果がある。
As described above, according to the present invention, in the planar processing method for l,1N bos single crystal, the cutting direction by the cutting tool is set to be constant in the direction with the best machinability, and the planar cutting is performed. After that, there is an effect that the cut surface can be finished uniformly and with good flatness and surface roughness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるLiNb0゜単結晶
の平面加工法を示す図、第2図はワークホルダに工作物
を取り付ける方向を示した図、第3図は切削方向と面粗
度の関係を示した図、第4図は被削性の良い切削方向に
切削した時の表面写真、第5図は従来の平面加工法を示
す図、第6図は従来の加工法によるLiNbO5の表面
写真である。 1は旋盤の主軸、2は加工物、3は旋削バイト、3aは
ダイヤモンドチップ、4はワークホルダ、5は移動方向
Figure 1 is a diagram showing a planar processing method for a LiNb0° single crystal according to an embodiment of the present invention, Figure 2 is a diagram showing the direction in which a workpiece is attached to a work holder, and Figure 3 is a diagram showing the cutting direction and surface roughness. Figure 4 is a photograph of the surface when cutting in the cutting direction with good machinability, Figure 5 is a diagram showing the conventional planar machining method, and Figure 6 is a photograph of the surface of LiNbO5 produced by the conventional machining method. This is a photo of the surface. 1 is the main shaft of the lathe, 2 is the workpiece, 3 is the turning tool, 3a is the diamond tip, 4 is the work holder, and 5 is the direction of movement.

Claims (1)

【特許請求の範囲】[Claims] (1)LiNbO_3単結晶のZカット面を平面加工す
る平面加工法において、 切削方向を、+Y方向を基準とし反時計まわりに60°
、180°、300°各±5°のいずれかの方向とした
ことを特徴とするLiNbO_3単結晶の平面加工法。
(1) In the plane processing method that planes the Z-cut surface of LiNbO_3 single crystal, the cutting direction is set at 60° counterclockwise with the +Y direction as the reference.
, 180°, 300°, each of ±5°.
JP28543086A 1986-11-28 1986-11-28 Surface machining for linbo3 single crystal Pending JPS63139601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28543086A JPS63139601A (en) 1986-11-28 1986-11-28 Surface machining for linbo3 single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28543086A JPS63139601A (en) 1986-11-28 1986-11-28 Surface machining for linbo3 single crystal

Publications (1)

Publication Number Publication Date
JPS63139601A true JPS63139601A (en) 1988-06-11

Family

ID=17691421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28543086A Pending JPS63139601A (en) 1986-11-28 1986-11-28 Surface machining for linbo3 single crystal

Country Status (1)

Country Link
JP (1) JPS63139601A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232101A (en) * 1989-03-03 1990-09-14 Mitsubishi Electric Corp Mirror like surface cutting method for germanium monocrystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232101A (en) * 1989-03-03 1990-09-14 Mitsubishi Electric Corp Mirror like surface cutting method for germanium monocrystal

Similar Documents

Publication Publication Date Title
JPS63139601A (en) Surface machining for linbo3 single crystal
JPH10329013A (en) Carrier for double polishing and double lapping
JPS63118000A (en) Method for working surface of linbo3 single crystal
JPH1133918A (en) Grinding wheel for working inside and outside diameter of substrate for magnetic recording medium, and method for working inside and outside diameter
JPH11300501A (en) Cutting method and cutting tool of optical part
JPS59232702A (en) Diamond cutting tool
JPS61114813A (en) Cutting method
JPS63237803A (en) Diamond tip
JPH07124813A (en) Forming method of fresnel shape
JPS62264858A (en) Surface grinding method
SU1701489A1 (en) Method of tooling spherical surfaces
JPS59166464A (en) Polishing surface plate and method of manufacturing it
SU779046A1 (en) Device for correcting the cut angle of crystal elements
JP2550210B2 (en) Dressing gear
JPS62224565A (en) Method of grinding diamond
JPH02232101A (en) Mirror like surface cutting method for germanium monocrystal
JPH0449A (en) Ball screw shaft
JPS61197102A (en) Manufacture of object having fine groove
JPS62107956A (en) Metal working method by industrial robot apparatus
JPH0742563Y2 (en) Single crystal diamond cutting edge
JPH06170711A (en) Processing method for forming cylindrical or oval cylindrical curved surface and device thereof
JPH0970706A (en) Twist drill, and grinding method for it
JPS6328552A (en) Nonspherical face machining method
JPS59201756A (en) Polishing carrier
JPH03245965A (en) Working jig