JPS6313933A - Valve mechanism of shock absorber - Google Patents

Valve mechanism of shock absorber

Info

Publication number
JPS6313933A
JPS6313933A JP61155716A JP15571686A JPS6313933A JP S6313933 A JPS6313933 A JP S6313933A JP 61155716 A JP61155716 A JP 61155716A JP 15571686 A JP15571686 A JP 15571686A JP S6313933 A JPS6313933 A JP S6313933A
Authority
JP
Japan
Prior art keywords
valve
speed
piston
damping force
speed range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61155716A
Other languages
Japanese (ja)
Other versions
JP2587039B2 (en
Inventor
Kazuo Nakazato
中里 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Seisakusho Co Ltd filed Critical Showa Seisakusho Co Ltd
Priority to JP61155716A priority Critical patent/JP2587039B2/en
Priority to KR1019870007006A priority patent/KR930001688B1/en
Publication of JPS6313933A publication Critical patent/JPS6313933A/en
Application granted granted Critical
Publication of JP2587039B2 publication Critical patent/JP2587039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/02Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally
    • B60G13/06Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type
    • B60G13/08Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To increase the damping force within a low-speed range by providing, in addition to the main valve that opens an oil passage when a piston speed is in the medium-and-high-speed range, a sub valve that opens an oil passage when a piston speed is in the low-speed range at a speed higher than a fixed speed within said low-speed range. CONSTITUTION:When a piston 8 slides up and down and attains, within its low-speed range, to a speed higher than a fixed value, the pressure within a groove 17e, which is interconnected by means of a slit 18a with an oil chamber S1, increases, and then, the bore diameter parts of a slit valve 18 and a back-up valve 19 are warped downwards so that a passage 20 is opened here, and the hydraulic oil in the oil chamber S1 flows through the passage 20 and an oil hole 8b provided on the piston 8 into an oil chamber S2. Because the passage 20 is additionally opened, a damping force that rises rapidly is generated there, and subsequently, as the piston 8 increases its speed within the low-speed range, the damping force is also raised. Hereby, without varying the damping force characteristics in the medium-and-high-speed range, the damping force in the low-speed range can be increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は自動車、自動二輪車等に使用する!a街器のバ
ルブ構造に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is used for automobiles, motorcycles, etc.! a Regarding the valve structure of street appliances.

(従来の技術) 自動車等に使用する緩衝器としては、ピストンのストロ
ーク速度が遅い場合(例えば0.1m/s以下)の場合
には減衰力を低くして乗心地性を高め、ピストンのスト
ローク速度が中・高速の場合には減衰力を高くし操安性
を向上させるという特性が要求され、このため、第19
図に示す如くザックスタイプと称されるバルブ構造が知
られてい゛る。
(Prior art) When the stroke speed of the piston is slow (for example, 0.1 m/s or less), shock absorbers used in automobiles, etc. lower the damping force to improve riding comfort, and reduce the stroke speed of the piston. When the speed is medium or high, characteristics such as high damping force and improved maneuverability are required, and for this reason, the 19th
As shown in the figure, a valve structure called the Sachs type is known.

このザックスタイプのバルブ構造を第19図に従って説
明すると、シリンダ(100)内に挿入されるピストン
ロッド(101)の軸部(102)にピストン(103
)を固着し、このバルブ内には図面上方よりスプリング
(108) 、バルブシー) (107) 、板バルブ
(1013)・・・及びバルブシートが設けられ、ピス
トン速度(図では上方への移動速度)が遅い場合(例え
ば0.1*/s以下)には、板バルブ(10B)は殆ど
撓まず、板バルブ(10B)とバルブシー) (107
)とは当接したたままで、油室(Sl)内の作動油は矢
印で示すようにバルブガイド(104)の脚部の間、ス
リッ) (105a)及びピストン(103)に形成し
た油孔(103a)を介して油室(S2)に流入し、こ
のときの減衰力はスリット(105a)に依存して発生
するようにしている。またピストン速度が中・高速とな
った場合には、油室(Sθ内圧の上昇により板バルブ(
10G)内径部が下方に積み、バルブシー) (1G7
)との間に油路を開成し、前記低速域での油路の他にバ
ルブシー) (10?)に形成した油孔(107a)及
び板バルブ(toll)とバルブシート(107)間に
開成された油路を介して作動油が油室(S2)内に流入
するようにしている。
To explain this Sachs type valve structure according to FIG.
), and a spring (108), a valve seat (107), a plate valve (1013), etc., and a valve seat are installed in this valve from the top in the drawing, and the piston speed (in the drawing, upward movement speed) is installed. When the speed is slow (for example, 0.1*/s or less), the plate valve (10B) hardly bends, and the plate valve (10B) and valve sea) (107
) remains in contact with the oil chamber (Sl), and the hydraulic oil in the oil chamber (Sl) flows between the legs of the valve guide (104) as shown by the arrow, through the oil hole formed in the slit (105a) and the piston (103). (103a) into the oil chamber (S2), and the damping force at this time is generated depending on the slit (105a). Also, when the piston speed becomes medium or high, the oil chamber (Sθ internal pressure increases and the plate valve (
10G) The inner diameter part is stacked downward and the valve seat) (1G7
), and in addition to the oil passage in the low speed range, an oil hole (107a) formed in the valve seat (10?) and an oil hole (107a) formed between the plate valve (toll) and the valve seat (107) are opened. Hydraulic oil flows into the oil chamber (S2) through the oil passage.

そして、低速域での減衰力の調整はスリット(105a
)の大きさを変えることで行っている。
The damping force in the low speed range can be adjusted using the slit (105a).
) by changing the size of

(発明が解決しようとする問題点) ところで最近では、各種の改良により緩衝器の摺動部分
1例えばピストン外周とシリンダ内周等における摺動摩
擦が極めて小さくなっている。従来にあらては上記の摺
動摩擦がある程度大きく。
(Problems to be Solved by the Invention) Recently, due to various improvements, the sliding friction at the sliding portion 1 of the shock absorber, such as the outer periphery of the piston and the inner periphery of the cylinder, has become extremely small. Conventionally, the above-mentioned sliding friction was large to some extent.

この摺動摩擦がピストン速度の低速域での抵抗となって
おり、これが適当な乗心地性を発揮するものとなってい
たが、最近のように摺動摩擦が極めて小さくなると、却
って低速域での減衰力不足を生じる結果を招いている。
This sliding friction acts as resistance in the low speed range of the piston, and this provides appropriate ride comfort.However, as sliding friction has become extremely small recently, it actually causes damping in the low speed range. This results in a lack of power.

これを従来のバルブ構造によって解決するにはスリット
の面積を小さくすればよいのであるが、単にスリットの
面積を小さくしただけでは、ピストン速度が微低速(例
えば0.01m/s以下)での減衰力不足は改善されず
、また微低速以上のピストン速度の債域において急激に
減衰力が高まり、中拳高速域での減衰力とスムーズに連
続したものとならないという問題がある。
To solve this problem with the conventional valve structure, it is possible to reduce the area of the slit, but simply reducing the area of the slit will cause the piston speed to attenuate at very low speeds (for example, 0.01 m/s or less). There is a problem in that the lack of force is not improved, and the damping force increases rapidly in the range of piston speeds exceeding very low speeds, and does not smoothly continue with the damping force in the medium-high speed range.

(問題点を解決するための手段) 上記問題点を解決すべく本発明に係るバルブ構造は、ピ
ストン速度が中・高速域に入った時に油路を開成する従
来と同様のメインバルブの他に、ピストン速度が低速域
にある場合において、この低速域内での所定速度以上で
油路を開成するサブバルブを設けた。
(Means for Solving the Problems) In order to solve the above problems, the valve structure according to the present invention includes, in addition to the conventional main valve that opens the oil passage when the piston speed enters the medium/high speed range. When the piston speed is in a low speed range, a sub-valve is provided that opens the oil passage at a predetermined speed or higher within the low speed range.

(作用) ピストンが例えば0.O1鳳/S以下の微低速で摺動し
圧縮側の油室の内圧が所定値以上となったときにサブバ
ルブによって油路が開成され、適度の減衰力を発生し、
更にピストン速度が中φ高速域となるメインバルブによ
り別の油路が開成され、操安性に優れた減衰力を発生す
る。
(Function) If the piston is, for example, 0. It slides at a very low speed below O1/S, and when the internal pressure of the oil chamber on the compression side exceeds a predetermined value, the sub-valve opens the oil passage and generates an appropriate damping force.
Furthermore, another oil passage is opened by the main valve whose piston speed is in the medium-φ high-speed range, generating a damping force with excellent maneuverability.

(実施例) 以下に本発明の実施例を添付図面に基いて説明する。(Example) Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明に係るバルブ構造を適用した緩衝器の下
半部の縦断面図であり、緩衝器のアウターシリンダ(1
)下端はキャップ(2)で閉塞され、このキャップ(2
)上に設けたボトムピース(3)にインナーシリンダ(
4)の下端が固着され。
FIG. 1 is a vertical sectional view of the lower half of a shock absorber to which the valve structure according to the present invention is applied, and shows the outer cylinder (1) of the shock absorber.
) The lower end is closed with a cap (2), and this cap (2)
) to the bottom piece (3) installed on the inner cylinder (
4) The lower end is fixed.

インナーシリンダ(4)内には上方からピストンロッド
(5)を挿入し、このピストンロッド(5)下部の小径
軸部(8)にバルブカラー(7)を嵌装し、このバルブ
カラー(7)を位置決め部材として軸部(6)下端にイ
ンナーシリンダ(4)内周面に摺接するピストン(8)
をナツト(θ)により固着し、このピストン(8)にて
インナーシリンダ(4)内を上部油室(Sl)及び下部
油室(S2)に区画し、下部油室(S2)とインナーシ
リンダ(4)及びアウターシリンダ(1)間の油溜り室
(S3)とをボトムピース(3)に形成した油孔(3a
)にて連通している。
A piston rod (5) is inserted into the inner cylinder (4) from above, a valve collar (7) is fitted onto the small diameter shaft portion (8) at the bottom of this piston rod (5), and a valve collar (7) is inserted into the inner cylinder (4) from above. A piston (8) slidingly contacts the inner circumferential surface of the inner cylinder (4) at the lower end of the shaft (6) as a positioning member.
is fixed with a nut (θ), and this piston (8) divides the inside of the inner cylinder (4) into an upper oil chamber (Sl) and a lower oil chamber (S2), and the lower oil chamber (S2) and the inner cylinder ( 4) and an oil reservoir chamber (S3) between the outer cylinder (1) and an oil hole (3a) formed in the bottom piece (3).
).

また、前記ピストン(8)の上部には本発明に係るバル
ブ構造を適用したバルブ機構(lO)を、ポトムビース
(3)の上部には本発明に係るバルブ構造を適用したボ
トムバルブ機構(30)を設けている。
Further, a valve mechanism (lO) to which the valve structure according to the present invention is applied is installed on the upper part of the piston (8), and a bottom valve mechanism (30) to which the valve structure according to the invention is applied to the upper part of the potum bead (3). has been established.

バルブ機構(10)は第2図の拡大断面図に示すように
、ピストン(8)上面に突出した7ラング部(8a)と
ピストンロッド(5)の段部に取付けた支持板(11)
との間にバルブガイド(12)を設け、このバルブガイ
ド(12)内にメインバルブ(13)及びサブバルブ(
14)を配設している。
As shown in the enlarged cross-sectional view of Fig. 2, the valve mechanism (10) includes a seven-rung portion (8a) protruding from the upper surface of the piston (8) and a support plate (11) attached to the stepped portion of the piston rod (5).
A valve guide (12) is provided between the main valve (13) and the sub valve (
14) are installed.

メインバルブ(13)は複数枚の板バルブから構成され
、このメインバルブ(13)の外周部はバルブガイド(
12)の脚部内側に当接し、またメインバルブ(13)
の内径は前記バルブカラー(7)よりも大径とされ、こ
れらの間に隙間を形成している。そしてメインバルブ(
13)の内周部上面はバルブシート(15)の内周部下
面に当接し、このバルブシート(15)には油孔(15
a)が形成され且つスプリング(te)にて下方に付勢
されている。
The main valve (13) is composed of a plurality of plate valves, and the outer periphery of this main valve (13) is connected to a valve guide (
12), and also the main valve (13).
The inner diameter of the bulb collar (7) is larger than that of the bulb collar (7), and a gap is formed between them. and the main valve (
The upper surface of the inner periphery of the valve seat (13) comes into contact with the lower surface of the inner periphery of the valve seat (15), and this valve seat (15) has an oil hole (15).
a) is formed and is urged downward by a spring (te).

一方サブバルブ(14)はセパレータ(17)、スリー
2トバルブ(1B)及びバックアップバルブ(18)か
らなり、セパレータ(17)は底面図である第3図(A
)及び第3図(A)の■−■線断面図である第3図(B
)に示すように、全体形状が略円環状をなし内径孔には
内方へ突出する突部(17a)を設け、この突部(17
a)をバルブカラー(7)に当接し、上面外周部には突
条(17b)を形成し、この突条(1?b)にてメイン
バルブ(13)の下面外周部を支持し、下面外周部には
突条(17c)を形成し、更に内径部には下方への厚肉
部(17d)を形成し、この厚肉部(17d)と突条(
17c)との間にグループ(17e)を形成している。
On the other hand, the sub-valve (14) consists of a separator (17), a three-way valve (1B), and a backup valve (18).
) and Figure 3 (B), which is a sectional view taken along the line ■-■ of Figure 3 (A).
), the overall shape is approximately annular, and the inner diameter hole is provided with a protrusion (17a) that protrudes inward.
a) is brought into contact with the valve collar (7), a protrusion (17b) is formed on the outer circumference of the upper surface, the protrusion (1?b) supports the outer circumference of the lower surface of the main valve (13), and the lower surface of the main valve (13) is supported. A protrusion (17c) is formed on the outer peripheral part, and a downwardly extending thick part (17d) is formed on the inner diameter part, and this thick part (17d) and the protrusion (17c) are formed on the inner diameter part.
17c) to form a group (17e).

厚肉部(17d)の下端は突条(17c)の下端よりも
下方に位置し、厚肉部(17d)下端にスリットバルブ
(18)の上面内周部を当接している。
The lower end of the thick portion (17d) is located below the lower end of the protrusion (17c), and the inner peripheral portion of the upper surface of the slit valve (18) is in contact with the lower end of the thick portion (17d).

スリットバルブ(18)は底面図である第4図(A)及
び第4図(A)のIV−■線断面図である第4図CB)
に示すように、円環状板バルブの外周部に等間隔でスリ
ッ) (18a)・・・を形成しており、このスリット
バルブ(1B)下面に重ねられたバックアップバルブ(
19)は板バルブから構成されている。
The slit valve (18) is shown in Fig. 4 (A) which is a bottom view and Fig. 4 CB which is a sectional view taken along line IV-■ in Fig. 4 (A)).
As shown in the figure, slits (18a)... are formed at equal intervals on the outer circumference of the annular plate valve, and a backup valve (18a) is stacked on the bottom surface of the slit valve (1B).
19) consists of a plate valve.

以」−の如き構成からなるバルブ機構(10)の作用を
第2図、第5図乃至第8図に基いて説明する。
The operation of the valve mechanism (10) having the following construction will be explained based on FIGS. 2 and 5 to 8.

ここで第7図は低速域から高速域に至るまでのピストン
速度と減衰力との関係を示すグラフ、第8図は第7図の
低速域の部分(点線Aで囲んだ部分)を拡大して示した
グラフであり、第8図にあっては横軸(ピストン速度)
の間隔を第7図よりも大きくとっているため、減衰力曲
線は第7図のものよりも横に寝ている。また第7図及び
第8図において実線は従来のバルブによる減衰力曲線を
2点線は本発明のバルブによる減衰力曲線を示している
Here, Figure 7 is a graph showing the relationship between piston speed and damping force from low speed range to high speed range, and Figure 8 is an enlarged view of the low speed range part of Figure 7 (the area surrounded by dotted line A). In Figure 8, the horizontal axis (piston speed)
The damping force curve is more horizontal than the one in FIG. 7 because the distance between the two is larger than that in FIG. 7. Further, in FIGS. 7 and 8, the solid line shows the damping force curve of the conventional valve, and the two-dot line shows the damping force curve of the valve of the present invention.

先ずピストン(8)の摺動(図中上方への移動)開始直
後には油室(Sl)内圧はスリットバルブ(18)及び
バックアップバルブ(18)の内径部を撓ませるに至ら
ず、第2図に示すように油室(Sl)と油室(S2)と
は連通していない。
First, immediately after the piston (8) starts sliding (moving upward in the figure), the internal pressure of the oil chamber (Sl) does not bend the inner diameter portions of the slit valve (18) and the backup valve (18), and the second As shown in the figure, the oil chamber (Sl) and the oil chamber (S2) do not communicate with each other.

この後ピストン(8)の速度が若干速くなる(0.01
m/s以下)と油室(Sl)とスリー7 ) (18a
)を介して連通ずるグループ(17e)内の圧力が上昇
し、第5図に示すようにスリットバルブ(18)及びバ
ックアップバルブ(18)の内径部が下方に撓み、ここ
に流路(20)が開成され、油室(Sl)内の作動油は
流路(20)及びピストン(8)に形成した油孔(8b
)を介して油室(S2)に流入し、波路(20)が開成
されることで、第8図に示すように急激に立上がる減衰
力が発生し、この後ピストン(8)が低速域内でその速
度を増すことで減衰力も高くなる。
After this, the speed of the piston (8) increases slightly (0.01
m/s or less), oil chamber (Sl) and three 7) (18a
) The pressure within the group (17e) that communicates with each other increases, and as shown in FIG. is opened, and the hydraulic oil in the oil chamber (Sl) flows through the flow path (20) and the oil hole (8b) formed in the piston (8).
) flows into the oil chamber (S2) through the oil chamber (S2) and opens the wave path (20), which generates a damping force that rises rapidly as shown in Figure 8, after which the piston (8) moves into the low speed range. By increasing the speed, the damping force also increases.

そして、ピストン(8)の速度が0.1m/sを超えた
所定速度となると、メインバルブ(13)上面に作用す
る油圧によって第6図に示す如く、メインバルブ(13
)内径部が下方に撓み、バルブシー) (15)との間
に流路(21)を開成する。この時点が所謂ブローオフ
ポイントと称される点であり、第7図の点(a)にて示
している。
When the speed of the piston (8) reaches a predetermined speed exceeding 0.1 m/s, the hydraulic pressure acting on the upper surface of the main valve (13) causes the main valve (13
) The inner diameter portion bends downward to open a flow path (21) between the valve seat (15) and the valve seat (15). This point is the so-called blow-off point, and is indicated by point (a) in FIG.

このように流路(21)が開成すると油室(Sl)内の
作動油は前記波路(20)の他に流路(21)を介して
油室(S2)内に流入し、ブローオフポイント以降の減
衰力は第7図に示すように従来と同様になる。
When the flow path (21) is opened in this way, the hydraulic oil in the oil chamber (Sl) flows into the oil chamber (S2) through the flow path (21) in addition to the wave path (20), and from the blow-off point onwards. The damping force is the same as the conventional one, as shown in FIG.

第9図及び第10図はセパレータ(17)及びスリット
バルブ(18)の別個を示すものであり、第9図(A)
はセパレータ(17)の底面図、第9図(B)は第9図
(A)のIX−IX線断面図であり、セパレータ(17
)の下面外周部に形成した突条(17c)の適当箇所に
溝(17f)・・・を形成し、この溝(17f)によっ
て油室(S+)内の作用油をグループ(17e)内に導
くようにしている。したがってこのセパレータ(17)
を用いれば、前記スリットバルブ(18)を省略し。
Figures 9 and 10 show the separator (17) and slit valve (18) separately, and Figure 9 (A)
is a bottom view of the separator (17), and FIG. 9(B) is a sectional view taken along the line IX-IX in FIG. 9(A).
A groove (17f) is formed at an appropriate location on the protrusion (17c) formed on the outer periphery of the lower surface of ), and this groove (17f) allows the working oil in the oil chamber (S+) to flow into the group (17e). I'm trying to guide you. Therefore this separator (17)
If this is used, the slit valve (18) can be omitted.

バックアップバルブ(18)を直接セパレータ(17)
下面に当接することができる。
Connect the backup valve (18) directly to the separator (17)
It can come into contact with the bottom surface.

また、第1O図(A)は別個に係るスリットバルブ(1
8)の底面図、第1O図(B)は第1O図(A)のx−
X線断面図であり、このスリットバルブ(18)にあっ
ては、セパレータ(17)のグループ(17e)内に作
動油を導入する微低速用のスリット(18a)の他に、
内径部に前記スリット(18a)よりも小面植の極微低
速用のスリ7) (18b)を形成している。
In addition, Fig. 1O (A) shows a separate slit valve (1
8) bottom view, Fig. 1O (B) is x- of Fig. 1O (A)
This is an X-ray cross-sectional view, and this slit valve (18) has, in addition to a very low speed slit (18a) for introducing hydraulic oil into the group (17e) of the separator (17),
An extremely low speed slit 7) (18b) with a smaller surface than the slit (18a) is formed on the inner diameter portion.

このスリ7) (18b)を設けることで前記実施例に
あっては第11図の点線で示すように、極微低速域にお
いては流路(20)が急激に開成するため減衰力が急激
に立上がったが、スリ7) (18b)を設けることで
僅かに流路が開成されていることとなり、減衰力は一点
鎖線で示すように若干緩やかに立上る。尚第11図の実
線は従来のバルブ構造による減衰力曲線である。このよ
うに極微低速における減衰力の立上りを緩やかにするこ
とで乗心地性は更に改善される。
By providing this slot 7) (18b), in the embodiment described above, as shown by the dotted line in FIG. However, by providing the slot 7) (18b), the flow path is slightly opened, and the damping force rises slightly as shown by the dashed line. The solid line in FIG. 11 is a damping force curve according to the conventional valve structure. In this way, the ride comfort is further improved by slowing down the rise of the damping force at extremely low speeds.

第12図は前記ボトムバルブ機構(3o)の拡大断面図
であり、ボトムピース(3)とインナーシリンダ(4)
下端間に保持したバルブガイド(31)内にメインバル
ブ(32)及びサブバルブ(33)を配設し、メインバ
ルブ(32)の上面はスプリング(30で下方に付勢さ
れるバルブシー) (35)で支持し、またサブバルブ
(33)は前記と同様にグループ(38e)を有するセ
パレータ(311i)、スリット(37a)を形成した
スリットバルブ(37)及びバックアップバルブ(38
)にて構成し、その作用はピストン(8)の低速域での
減衰力が従来よりも高くなる。ただし、ピストン(8)
J一部に設けたバルブ機構(10)にあっては緩衝器の
伸び行程の際に第7図、第8図に示す減衰力特性を発揮
するが、ボトムバルブ機構(3o)にあっては緩衝器の
圧縮行程の際に第7図、第8図に示す減衰力特性を発揮
する。
FIG. 12 is an enlarged sectional view of the bottom valve mechanism (3o), showing the bottom piece (3) and the inner cylinder (4).
A main valve (32) and a sub-valve (33) are arranged in a valve guide (31) held between the lower ends, and the upper surface of the main valve (32) is a spring (valve seat urged downward by 30) (35). The sub-valve (33) is supported by a separator (311i) having a group (38e) as described above, a slit valve (37) having a slit (37a) formed therein, and a backup valve (38).
), and its effect is that the damping force of the piston (8) in the low speed range is higher than that of the conventional one. However, piston (8)
The valve mechanism (10) installed in part J exhibits the damping force characteristics shown in Figures 7 and 8 during the shock absorber's extension stroke, but the bottom valve mechanism (3o) exhibits the damping force characteristics shown in Figures 7 and 8. During the compression stroke of the shock absorber, the damping force characteristics shown in FIGS. 7 and 8 are exhibited.

第13図はサブバルブの構造が異なる別実施例の断面図
であり、サブバルブ(40)は環状セパレータ(41)
、遮閉バルブ(42)、グループバルブ(43)及びバ
ックアップバルブ(44)からなり、遮閉バルブ(42
)とバックアップバルブ(44)間にグループバルブ(
43)を挟持している。
FIG. 13 is a sectional view of another embodiment in which the structure of the sub-valve is different, in which the sub-valve (40) has an annular separator (41).
, a shutoff valve (42), a group valve (43) and a backup valve (44).
) and the backup valve (44) between the group valve (
43) is held in between.

グループバルブ(43)は第14図(A)の底面図及び
第14図(A)のW−Xlt線断面図である第14図(
B)に示すように、外周部から内方に向って複数のスリ
ット(43a)を形成し、このスリット(43a)につ
ながるグループ(43b)を径方向内側に形成している
。尚、他の部材については前記実施例と同一であるため
同一の番号を付している。
The group valve (43) is shown in FIG.
As shown in B), a plurality of slits (43a) are formed inward from the outer circumference, and groups (43b) connected to the slits (43a) are formed radially inward. Note that the other members are the same as those in the previous embodiment, and are therefore given the same numbers.

以上において、ピストン速度が極微低速の場合には第1
3図に示すように、油室(S+)及び油室(S2)は連
通せず、ピストン速度が微低速となるとグループ(43
b)内に導入された作動油の圧で第15図に示すように
バックアップバルブ(40の内径部が下方に撓み、ここ
に流路(20)が開成し、この時点で第7図及び第8図
に示したように急激に立りっだ減衰力が発生する。
In the above, when the piston speed is extremely low, the first
As shown in Figure 3, the oil chamber (S+) and the oil chamber (S2) do not communicate, and when the piston speed becomes very low, the group (43
b) As shown in FIG. 15, the inner diameter part of the backup valve (40) is bent downward due to the pressure of the hydraulic oil introduced into the valve, and a flow path (20) is opened here, and at this point, as shown in FIG. As shown in Figure 8, a sudden damping force is generated.

そして、ピストン速度が更に速くなるとメインバルブ(
13)が下方に撓み、別の流路を開成(ブローオフポイ
ント)シ、以後は従来と同様の減衰力特性を発揮する。
When the piston speed increases further, the main valve (
13) is bent downward to open another flow path (blow-off point), and thereafter exhibits the same damping force characteristics as the conventional one.

尚、前記遮閉バルブ(42)及びバックアップバルブ(
42)は共に板バルブにて構成されており、遮閉バルブ
(42)の剛性をバックアップバルブ(42)と同等か
これ以下とすれば、微低速時に遮閉バルブ(42)とグ
ループバルブ(43)間に流路(20)を開成すること
もできる。
In addition, the shutoff valve (42) and the backup valve (
42) are both composed of plate valves, and if the rigidity of the shut-off valve (42) is equal to or less than that of the backup valve (42), the shut-off valve (42) and group valve (43) will be closed at very low speeds. ) It is also possible to open a flow path (20) between them.

第16図はサブバルブの構造を異ならせた更なる別実施
例を示す断面図であり、サブバルブ(50)は環状セパ
レータ(51)、遮閉バルブ(52)、スリットバルブ
(53)、グループバルブ(54)及びバックアップバ
ルブ(55)からなり、スリットバルブ(53)とバッ
クアップバルブ(55)間にグループバルブ(54)を
挟持し、スリットバルブ(53)上面に遮閉バルブ(5
2)を重ねている。
FIG. 16 is a cross-sectional view showing another embodiment in which the sub-valve structure is different, and the sub-valve (50) includes an annular separator (51), a shutoff valve (52), a slit valve (53), and a group valve ( 54) and a backup valve (55), a group valve (54) is sandwiched between the slit valve (53) and the backup valve (55), and a shutoff valve (5) is installed on the top surface of the slit valve (53).
2) is repeated.

また第17図(A)はグループバルブ(54)の別例の
底面図、第17図(B)は第17図(A) (7)XV
 II −XV IIX線断面図あり、このグループバ
ルブ(50は薄肉の外側リング(54a)と厚肉の内側
リング(54b)を連結部(54d)において一体化し
てなり、内部に円弧状のグループ(54c)を形成して
いる。
Also, Fig. 17(A) is a bottom view of another example of the group valve (54), and Fig. 17(B) is Fig. 17(A) (7)XV
II - 54c).

尚、外側リング(54a)及び内側リンク(54b)を
等厚としてもよい。
Note that the outer ring (54a) and the inner link (54b) may have the same thickness.

以上においてピストン速度が極微低速の場合には第16
図に示すように油室(Sθと油室(S2)とは連通せず
、ピストン速度が微低速となると第18図に示すように
グループ(54c)内の油圧によって流路(20)が開
閉し、第7図、第8図に示したと同様に急激に減衰力が
発生する。
In the above, if the piston speed is extremely low, the 16th
As shown in the figure, the oil chamber (Sθ) and the oil chamber (S2) do not communicate with each other, and when the piston speed becomes very low, the flow path (20) is opened and closed by the oil pressure in the group (54c) as shown in FIG. However, a damping force suddenly occurs as shown in FIGS. 7 and 8.

第19図は第16図に示したサブバルブ(50)のグル
ープバルブを内側リング(60)と外側リング(8])
に2分割した例を示し、内側リング(60)は第20図
(A) 、 (B)に示すように内径部に突出部を設け
たリング状をなし、外側リング(B1)は単純なリング
状をなし、その作用は第22図に示すようにピストン速
度が微低速となると内側リング(60)が油圧で下方に
撓み油路が形成される。
Figure 19 shows the group valve of the sub-valve (50) shown in Figure 16 between the inner ring (60) and the outer ring (8).
The inner ring (60) has a ring shape with a protrusion on the inner diameter as shown in Fig. 20 (A) and (B), and the outer ring (B1) is a simple ring. As shown in FIG. 22, when the piston speed becomes very low, the inner ring (60) is bent downward by hydraulic pressure to form an oil passage.

尚、図示例にあっては、各種形状のスリットバルブ及び
グループバルブを示したが、これらを組合せることで図
示しない別実施例を構成することもできる。
Although the illustrated example shows slit valves and group valves of various shapes, other embodiments (not shown) can be constructed by combining these.

(発明の効果) 以上に説明した如く、本発明によればメインバルブとサ
ブバルブによって減衰力を発生するバルブを構成し、特
にサブバルブについては、ピストン低速域での所定値で
波路を開成し、九該所定値に達しない速度では流路を開
成しないようにしたので、中・高速域での減衰力特性を
変えることなく、低速域での減衰力を高めることができ
、特に最近の緩衝器の如く1種々の改良によって摺動摩
擦が少なくなってきている緩衝器に適用すれば。
(Effects of the Invention) As explained above, according to the present invention, a main valve and a sub-valve constitute a valve that generates a damping force, and in particular, the sub-valve opens a wave path at a predetermined value in a low piston speed range, and Since the flow path is not opened at speeds that do not reach the predetermined value, it is possible to increase the damping force in the low speed range without changing the damping force characteristics in the medium and high speed ranges. If applied to shock absorbers, the sliding friction of which has been reduced through various improvements.

低速域での減衰力不足を招くことがない。This prevents insufficient damping force in the low speed range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るバルブ構造を適用した緩衝器の下
半部の断面図、第2図は同バルブ構造の拡大断面図、第
3図(A)はセパレータの底面図、i3図(B)は第3
図(A) のm−m1断面図、第4図(A)はスリット
バルブの底面図、第4図(B)は第4図(A)のIV−
IV線断面図、第5図及び第6図はバルブ構造の作用を
説明した第2図と同様の断面図、第7図及び第8図はピ
ストン速度と減衰力の関係を示すグラフ、第9図(A)
はセパレータの別例を示す底面図、第9図CB)は第9
図(A)のIX−IX線断面図、第1θ図(A)はスリ
ットパルプの別例を示す底面図、第1θ図(B)は第1
0図(A)のx−X線断面図、第11図は極微低速での
ピストン速度と減衰力との関係を示すグラフ、第12図
は本発明に係るバルブ構造を適用したボトムバルブ構造
の断面図、第13図は別実施例に係るバルブ構造の断面
図、第14図(A)はグループバルブの底面図、第14
図(B)は第14図(A)の双−四線断面図、第15図
はバルブの作用を示す第13図と同様の断面図、第16
図は別実施例に係るバルブ構造の断面図、第17図(A
)はグループバルブの底面図、第17図(B)は第17
図(A)のX17 II −XV IT線断面図、第1
8図はバルブの作用を示す第16図と同様の断面図、i
19図は別実施例に係るバルブ構造の断面図、第20図
(A)は内側リングの平面図、第20図(B)は第20
図(A)(7)XX−XX&a断面図、第21図(A)
は外側リングの平面図、第21図(B)は第21図(A
)のXX[−XXI線断面図、第22図はバルブを説明
した第19図と同様の断面図、第23図は従来のバルブ
構造の断面図である。 尚、図面中(4)はシリンダ、(5)はピストンロッド
、(8)はピストン、(12) 、(31)はバルブガ
イド、 (13)はメインバルブ、 (14)、(33
)、(4,0)。 (50)はサブバルブ、(15)はバルブシート、(1
?) 。 (3B)、(41) 、(51)はセパレータ、(18
)、(37) 、(53)はスリットバルブ、(19)
、(3111)、(44)、(55)はバックアップバ
ルブ、(41) 、(52)は遮閉バルブで′ある。 第1図 第2図 第4図 (A) (B) 第6図 第7図 ピストン逢ハしくm/S) ビ、ストン式!!(m/S) 第9図 (A) (B) 第10図 (A) (B) 第14図 旧) 第17図 (A) (B) 第18図
Fig. 1 is a sectional view of the lower half of a shock absorber to which the valve structure according to the present invention is applied, Fig. 2 is an enlarged sectional view of the same valve structure, Fig. 3 (A) is a bottom view of the separator, and Fig. i3 ( B) is the third
Fig. 4(A) is a bottom view of the slit valve, and Fig. 4(B) is the IV-m1 cross-sectional view of Fig. 4(A).
5 and 6 are cross-sectional views similar to FIG. 2 explaining the action of the valve structure. FIGS. 7 and 8 are graphs showing the relationship between piston speed and damping force. Diagram (A)
Figure 9CB) is a bottom view showing another example of the separator.
Figure (A) is a cross-sectional view taken along line IX-IX, Figure 1θ (A) is a bottom view showing another example of slit pulp, Figure 1θ (B) is a
FIG. 11 is a graph showing the relationship between piston speed and damping force at extremely low speeds, and FIG. 12 is a diagram showing the bottom valve structure to which the valve structure according to the present invention is applied. 13 is a sectional view of a valve structure according to another embodiment, and FIG. 14 (A) is a bottom view of a group valve.
Figure (B) is a bi-quadrature cross-sectional view of Figure 14 (A), Figure 15 is a cross-sectional view similar to Figure 13 showing the action of the valve, and Figure 16 is a cross-sectional view of Figure 14 (A).
The figure is a sectional view of a valve structure according to another embodiment, FIG.
) is the bottom view of the group valve, and Figure 17 (B) is the 17th
X17 II-XV IT line sectional view of figure (A), 1st
Figure 8 is a sectional view similar to Figure 16 showing the action of the valve, i
19 is a sectional view of a valve structure according to another embodiment, FIG. 20(A) is a plan view of the inner ring, and FIG. 20(B) is a sectional view of the
Figure (A) (7) XX-XX&a sectional view, Figure 21 (A)
21(B) is a plan view of the outer ring, and FIG. 21(B) is a plan view of the outer ring.
), FIG. 22 is a sectional view similar to FIG. 19 explaining the valve, and FIG. 23 is a sectional view of a conventional valve structure. In the drawing, (4) is the cylinder, (5) is the piston rod, (8) is the piston, (12), (31) are the valve guides, (13) is the main valve, (14), (33)
), (4,0). (50) is a sub valve, (15) is a valve seat, (1
? ). (3B), (41), (51) are separators, (18
), (37), (53) are slit valves, (19)
, (3111), (44), and (55) are backup valves, and (41) and (52) are shutoff valves. (A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B) ! (m/S) Fig. 9 (A) (B) Fig. 10 (A) (B) Fig. 14 old) Fig. 17 (A) (B) Fig. 18

Claims (5)

【特許請求の範囲】[Claims] (1)バルブガイド内にメインバルブ及びサブバルブを
配設し、サブバルブはピストン速度が低速域内での所定
速度以上で流路を開成し、メインバブルはピストン速度
が中・高速域内での所定速度以上で流路を開成すること
を特徴とする緩衝器のバルブ構造。
(1) A main valve and a sub-valve are arranged in the valve guide, and the sub-valve opens a flow path when the piston speed is above a predetermined speed within a low speed range, and the main bubble opens a flow path when the piston speed is above a predetermined speed within a medium/high speed range. A valve structure of a shock absorber characterized by opening a flow path.
(2)前記メインバルブとサブバルブ間にはセパレータ
が介在していることを特徴とする特許請求の範囲第1項
記載の緩衝器のバルブ構造。
(2) The valve structure of a shock absorber according to claim 1, wherein a separator is interposed between the main valve and the sub-valve.
(3)前記サブバルブは、板状のスリットバルブと板状
のバックアップバルブを重ねてなることを特徴とする特
許請求の範囲第1項又は第2項のいずれかに記載の緩衝
器のバルブ構造。
(3) The shock absorber valve structure according to claim 1 or 2, wherein the sub-valve is formed by stacking a plate-shaped slit valve and a plate-shaped backup valve.
(4)前記サブバルブは、スリットとこのスリットにつ
ながるグループを形成したグループバルブを板状の遮閉
バルブと板状のバックアップバルブで挟持してなること
を特徴とする特許請求の範囲第1項又は第2項のいずれ
かに記載の緩衝器のバルブ構造。
(4) The sub-valve is formed by sandwiching a slit and a group valve forming a group connected to the slit between a plate-shaped shutoff valve and a plate-shaped backup valve. The valve structure of the shock absorber according to any of Item 2.
(5)前記サブバルブは、グループバルブの両面を板状
のスリットバルブと板状のバックアップバルブにて挟持
し、更にスリットバルブのグループバルブと接する面と
は反対側面に遮閉バルブを重ねてなることを特徴とする
特許請求の範囲第1項又は第2項のいずれかに記載の緩
衝器のバルブ構造。
(5) The sub-valve is formed by sandwiching both sides of a group valve between a plate-shaped slit valve and a plate-shaped backup valve, and further stacking a shutoff valve on the side of the slit valve opposite to the side that contacts the group valve. A valve structure for a shock absorber according to claim 1 or 2, characterized in that:
JP61155716A 1986-07-01 1986-07-01 Shock absorber valve structure Expired - Fee Related JP2587039B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61155716A JP2587039B2 (en) 1986-07-01 1986-07-01 Shock absorber valve structure
KR1019870007006A KR930001688B1 (en) 1986-07-01 1987-07-01 Valve mechanism of shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61155716A JP2587039B2 (en) 1986-07-01 1986-07-01 Shock absorber valve structure

Publications (2)

Publication Number Publication Date
JPS6313933A true JPS6313933A (en) 1988-01-21
JP2587039B2 JP2587039B2 (en) 1997-03-05

Family

ID=15611927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61155716A Expired - Fee Related JP2587039B2 (en) 1986-07-01 1986-07-01 Shock absorber valve structure

Country Status (2)

Country Link
JP (1) JP2587039B2 (en)
KR (1) KR930001688B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2728641A1 (en) * 1994-12-22 1996-06-28 Fichtel & Sachs Ag TELESCOPIC SHOCK ABSORBER

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620846A (en) * 1979-07-25 1981-02-26 Kayaba Ind Co Ltd Damping valve for hydraulic shock absorber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620846A (en) * 1979-07-25 1981-02-26 Kayaba Ind Co Ltd Damping valve for hydraulic shock absorber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2728641A1 (en) * 1994-12-22 1996-06-28 Fichtel & Sachs Ag TELESCOPIC SHOCK ABSORBER

Also Published As

Publication number Publication date
KR880001455A (en) 1988-04-23
KR930001688B1 (en) 1993-03-11
JP2587039B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
JPH0353078Y2 (en)
JP6838220B2 (en) Buffer
JPH09280294A (en) Valve structure of hydraulic buffer
JP2010151301A (en) Damping force variable damper
JPS6313933A (en) Valve mechanism of shock absorber
JP5798813B2 (en) Shock absorber
JPH08291836A (en) Hydraulic damping device
JP3233380B2 (en) Hydraulic shock absorber
JPS58211038A (en) Hydraulic damper
JPS6131555Y2 (en)
JP2006283923A (en) Hydraulic damper for vehicle
CN212775313U (en) Shock absorber valve system
JP3191229B2 (en) Damping valve
JP2533356Y2 (en) Shock absorber valve mechanism
JP2578561Y2 (en) Shock absorber valve device
JP2519900B2 (en) Damping force generator for shock absorber
JP2017190806A (en) shock absorber
JPH0439479Y2 (en)
JP2562422Y2 (en) Hydraulic damper damping valve
JPH0141950Y2 (en)
JPH0425547Y2 (en)
JP2003014028A (en) Hydraulic shock absorber
JPH06307484A (en) Valve structure of buffer device
JPS5926818B2 (en) hydraulic shock absorber
JPS6228333B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees