JPS63138741A - Annealing device for compound semiconductor substrate - Google Patents

Annealing device for compound semiconductor substrate

Info

Publication number
JPS63138741A
JPS63138741A JP28424586A JP28424586A JPS63138741A JP S63138741 A JPS63138741 A JP S63138741A JP 28424586 A JP28424586 A JP 28424586A JP 28424586 A JP28424586 A JP 28424586A JP S63138741 A JPS63138741 A JP S63138741A
Authority
JP
Japan
Prior art keywords
annealing
electric field
substrate
compound semiconductor
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28424586A
Other languages
Japanese (ja)
Inventor
Nakahiko Yamaguchi
山口 中彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28424586A priority Critical patent/JPS63138741A/en
Publication of JPS63138741A publication Critical patent/JPS63138741A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To shift the distribution of carriers in a compound semiconductor substrate to the interface side, and to shallow an implantation layer by mounting an annealing furnace annealing the substrate and an electric field applier, which is installed inside or outside the annealing furnace and vertically applies an electric field to the substrate. CONSTITUTION:A P-type or N-type impurity implanted in a compound semiconductor substrate 13 is activated through annealing, and a P-type or N-type conductive layer is each formed. The device is provided with an annealing furnace 1 annealing the substrate 13 and an electric field applier 3, which is set up inside or outside the annealing furnace 1 and vertically applies an electric field to the substrate 13. Accordingly, carrier concentration near the interface at the annealing time when protective films 15 are shaped on the compound semiconductor substrate 13 or at the annealing time when no protective film 15 is formed is increased, thus improving the electrical characteristics of an ion implantation layer 14-particularly, carrier distribution is concentrated near the interface, then acquiring shallow carrier distribution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、化合物半導体基板のアニール装置に係り、特
に、化合物半導体基板に注入されたp型あるいはn型不
純物をアニールにより活性化させてそれぞれp型あるい
はn型導電層を形成するアニール装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an annealing apparatus for compound semiconductor substrates, and in particular, it activates p-type or n-type impurities implanted into a compound semiconductor substrate by annealing, The present invention relates to an annealing apparatus for forming a p-type or n-type conductive layer.

〔従来の技術〕[Conventional technology]

ガリウム・砒素(G a A s )などの化合物半導
体基板にイオン注入により不純物イオン、例えばシリコ
ン(Si) 、を注入する場合、不純物イオンにより結
晶欠陥が誘起され、これらの結晶欠陥を回復させるため
、通常、概略温度800℃、時間10分程度の保護膜付
アニールが行われている。ここで、保護膜はアニール中
に基板原子の抜は出しを防止するために設けるものであ
り、通常、窒化シリコン(SiNx)や酸化シリコン(
Sin2)などが用いられている。なお、この種の技術
が記載されている公知文献として、生駒、他3名著″化
合物半導体(1)、(2)”、株式会社、工業調査会、
1984年発行、がある。
When impurity ions, such as silicon (Si), are implanted into a compound semiconductor substrate such as gallium arsenic (GaAs), crystal defects are induced by the impurity ions, and in order to recover these crystal defects, Normally, protective film annealing is performed at a temperature of about 800° C. for about 10 minutes. Here, the protective film is provided to prevent the extraction of substrate atoms during annealing, and is usually made of silicon nitride (SiNx) or silicon oxide (
Sin2) etc. are used. In addition, known documents describing this type of technology include "Compound Semiconductors (1), (2)" by Ikoma et al., Kogyo Research Association Co., Ltd.,
Published in 1984.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記した従来技術においては、アニール過程中に基板内
に空孔が発生し、これらの空孔が単体で、あるいはこれ
らと注入不純物が結合した欠陥として、あるいはこれら
と基板原子が結合した欠陥として、アクセプタやドナー
として作用するため。
In the above-mentioned conventional technology, vacancies are generated in the substrate during the annealing process, and these vacancies are present as single defects, as defects in which these vacancies are combined with implanted impurities, or as defects in which these vacancies are combined with substrate atoms. To act as an acceptor or donor.

得られた注入層の電気的特性は、注入不純物で決定され
るものと異なった複雑な特性を示す、このため、界面近
傍の電荷分布が乱され、基板の電気的特性の劣化や特性
値のばらつきが生じるという問題点があった。
The electrical properties of the obtained implanted layer exhibit complex properties different from those determined by the implanted impurities.As a result, the charge distribution near the interface is disturbed, leading to deterioration of the electrical properties of the substrate and changes in the characteristic values. There was a problem that variations occurred.

本発明の目的は、化合物半導体基板の保護膜付アニール
時または保護膜無しのアニール時に界面近傍でのキャリ
ア濃度を高めることにより、イオン注入層の電気的特性
の改善、特にキャリア分布を界面近傍に集中させ、浅い
キャリア分布を得ることのできる、化合物半導体基板の
アニール装置を提供することにある。
The purpose of the present invention is to improve the electrical characteristics of an ion-implanted layer, especially to improve the carrier distribution near the interface, by increasing the carrier concentration near the interface when a compound semiconductor substrate is annealed with a protective film or without a protective film. An object of the present invention is to provide an annealing device for a compound semiconductor substrate that can concentrate carriers and obtain a shallow carrier distribution.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、化合物半導体基板に注入されたp型あるい
はn型不純物をアニールにより活性化させてそれぞれp
型あるいはn型導電層を形成するアニール装置において
、上記基板をアニールするアニール炉と、このアニール
炉の内部あるいは外部に設置されて上記基板に垂直に電
界を印加する電界印加装置とを備えたアニール装置とす
ることにより、達成される。
The above purpose is to activate p-type or n-type impurities implanted into a compound semiconductor substrate by annealing, and to
An annealing apparatus for forming a type or n-type conductive layer, comprising an annealing furnace for annealing the substrate, and an electric field application device installed inside or outside the annealing furnace and applying an electric field perpendicular to the substrate. This can be achieved by using a device.

〔作  用〕[For production]

化合物半導体基板としてGaAs基板を例にとり本発明
の詳細な説明する。アニール中に基板面に垂直方向に、
イオン注入された面から裏側の面に電界を印加すると、
基板界面に負に帯電した砒素イオンが移動しやすくなる
と同時に、ガリウム空孔も移動しやすくなる。ドナーで
ある注入イオン(例えばSi”)が置換したガリウム空
孔の増加と。
The present invention will be described in detail by taking a GaAs substrate as an example of a compound semiconductor substrate. perpendicular to the substrate surface during annealing.
When an electric field is applied from the ion-implanted side to the back side,
At the same time, negatively charged arsenic ions move more easily to the substrate interface, gallium vacancies also move more easily. Increase in gallium vacancies replaced by donor implanted ions (e.g. Si'').

アクセプタである注入イオンが置換した砒素空孔の減少
とが同時に誘起され、高濃度でかつ浅い導電層が実現で
きることになる。
At the same time, a reduction in arsenic vacancies substituted by implanted ions, which are acceptors, is induced, making it possible to realize a highly concentrated and shallow conductive layer.

〔実施例〕〔Example〕

以下1図面により本発明の詳細な説明する。 The present invention will be explained in detail below with reference to one drawing.

第1図は本発明の一実施例を説明する図であって、1は
アニール炉、2は石英ガラス管、3は電界印加装置、4
はリード線取出口、5は電界印加用電源である。電界印
加装置3により、高温アニール時に化合物半導体基板に
電界を印加する。電界の極性1強度は外部に設けた電界
印加用電源5により制御する。
FIG. 1 is a diagram illustrating an embodiment of the present invention, in which 1 is an annealing furnace, 2 is a quartz glass tube, 3 is an electric field application device, and 4 is a diagram for explaining an embodiment of the present invention.
5 is a lead wire outlet, and 5 is a power source for applying an electric field. The electric field applying device 3 applies an electric field to the compound semiconductor substrate during high temperature annealing. The polarity 1 strength of the electric field is controlled by an external electric field application power source 5.

第2図は、第1図中の電界印加装置3の一実施例図であ
って、6はアルミナ製の電極ホルダ、7はモリブデン製
の負電極、8はモリブデン製の正電極、9は石英ガラス
製の負電極スペーサ、10は石英ガラス製の正電極スペ
ーサ、11は化合物半導体基板、12は固定治具である
。正電極スペーサ10と負電極スペーサ9は、放電防止
のために設置されているものである1本装置によるアニ
ール工程は、まず、予めイオン注入され、保護膜付の化
合物半導体基板を、イオン注入された基板面が正電極側
となるように、設定する。基板に対する電界Eの印加方
向を第3図に示す。ここで、13は化合物半導体基板、
14はイオン注入層、15は保護膜。
FIG. 2 is an embodiment of the electric field application device 3 in FIG. 1, in which 6 is an alumina electrode holder, 7 is a molybdenum negative electrode, 8 is a molybdenum positive electrode, and 9 is a quartz electrode. A negative electrode spacer made of glass, 10 a positive electrode spacer made of quartz glass, 11 a compound semiconductor substrate, and 12 a fixing jig. The positive electrode spacer 10 and the negative electrode spacer 9 are installed to prevent discharge.The annealing process using this device first involves removing ions from a compound semiconductor substrate that has been previously ion-implanted and has a protective film attached to it. Set the substrate so that the surface of the substrate facing the positive electrode is the positive electrode side. FIG. 3 shows the direction in which the electric field E is applied to the substrate. Here, 13 is a compound semiconductor substrate,
14 is an ion implantation layer, and 15 is a protective film.

16はイオン注入した側の面である。Reference numeral 16 denotes the ion-implanted side surface.

次に、クロムと酸素を不純物として添加した半絶縁性G
aAs基板を例にとり、具体的数値例を挙げて説明する
。なお、インジウム添加の基板の場合にも、同様の結果
を得ている。第4図は、n型不純物として2*Si+イ
オンを加速エネルギ30keV、ドープ量3X10”a
n−”で注入し、保護膜としてプラズマCVD (Ch
emical VaporDeposition、化学
的気相析出)法によりS i N x膜を積層した後、
800℃、 10分の温度条件、電界強度5500V/
am (平行に配置された正、負両電極間電圧Vを両極
板間距離口で割算したもの)の電界条件でアニールした
時のキャリアプロファイルであり、電界印加の効果を示
すため、電界を印加しない時のキャリアプロファイルも
示しである。ここで保護膜の膜厚は1500オングスト
ローム、積層温度は380℃である。測定は電解エッチ
形のC−■プロファイラにより行った。測定の結果、第
4図に示されるように、5500V/anの電界を印加
した場合には実線の曲線で示される結果が、また、電界
を印加しない場合には破線の曲線で示される結果が得ら
れた。これらの結果から、電界印加の場合の方が、注入
の深さが平均的に0.01−浅くなることが判明した。
Next, semi-insulating G with chromium and oxygen added as impurities
Taking an aAs substrate as an example, this will be explained by giving a specific numerical example. Note that similar results were obtained in the case of an indium-doped substrate. Figure 4 shows 2*Si+ ions as n-type impurities at an acceleration energy of 30 keV and a doping amount of 3×10”a.
n-” and plasma CVD (Ch
After laminating the SiNx film using the chemical vapor deposition method,
Temperature conditions: 800℃, 10 minutes, electric field strength: 5500V/
This is the carrier profile when annealing under the electric field condition of am (the voltage V between the positive and negative electrodes arranged in parallel divided by the distance between the two electrodes). The carrier profile when no voltage is applied is also shown. Here, the thickness of the protective film is 1500 angstroms, and the lamination temperature is 380°C. The measurement was carried out using an electrolytic etch type C-■ profiler. As a result of the measurement, as shown in Figure 4, when an electric field of 5500 V/an is applied, the result is shown by the solid line curve, and when no electric field is applied, the result is shown by the broken line curve. Obtained. From these results, it was found that the implantation depth was on average 0.01 mm shallower when an electric field was applied.

第5図は、クロム添加の3インチ径のGaAs基板によ
る。電界印加によりキャリアプロファイルの特性が向上
する領域を示す一例で、アニールは窒素雰囲気中、大気
圧下で行った。イオン注入条件は、加速エネルギが30
〜70keV、ドープ量が1×10°〜3 XIO”a
!1−”、注入したイオンは28Sj+である。第4図
より、アニール温度900℃以上では活性化率が低下し
、良好なキャリアプロファイルが得られなかった。アニ
ール温度が900℃〜600℃の間では、電界強度20
00V/■以上の電界印加で効果が現われ、2000V
/an以下では効果は現われなかった。また、電界を強
くしすぎて、電界強度がほぼ6000V/cm以上では
放電が生じた。アニール温度600℃以下では電界印加
の効果が現われなかった。
FIG. 5 is based on a 3 inch diameter GaAs substrate doped with chromium. This is an example showing a region where carrier profile characteristics are improved by applying an electric field, and annealing was performed in a nitrogen atmosphere at atmospheric pressure. The ion implantation conditions are acceleration energy of 30
~70keV, doping amount 1×10°~3XIO”a
! 1-", the implanted ions were 28Sj+. From Figure 4, when the annealing temperature was 900°C or higher, the activation rate decreased and a good carrier profile could not be obtained. When the annealing temperature was between 900°C and 600°C. Then, the electric field strength is 20
The effect appears when an electric field of 00V/■ or more is applied, and 2000V
No effect was observed below /an. Further, when the electric field was made too strong and the electric field strength was approximately 6000 V/cm or more, discharge occurred. At an annealing temperature of 600° C. or lower, no effect of electric field application appeared.

第4図、第5図に示す実験結果より、半絶縁性G a 
A s基板に対しては、アニール温度範囲600℃〜9
00℃、電界強度2000 V / am以上でキャリ
アの深さ方向の分布形状の界面側へのシフトを制御でき
ることが明らかになった。
From the experimental results shown in Figures 4 and 5, it is clear that semi-insulating Ga
For As substrates, the annealing temperature range is 600℃~9
It has become clear that the shift of the distribution shape of carriers in the depth direction toward the interface side can be controlled at 00°C and an electric field strength of 2000 V/am or higher.

なお、上記実施例においては、アニール保護膜としてS
iNx膜を、基板として半絶縁性GaAs基板を用いた
例について説明したが、本発明はこれらに限定されるも
のではなく、保護膜無しのアニールや、保護膜としてS
io、、SiOxNy、高融点金属あるいはそのシリサ
イドあるいはその窒化物、基板として化合物半導体全般
に対しても十分適用できることは言うまでもない。また
、上記実施例では電界印加装置をアニール炉内に設置す
るとしたが、これは、基板とは離してアニール炉外部に
設置する構成とすることも可能である。
In the above embodiment, S is used as the annealing protective film.
Although the iNx film has been described using an example in which a semi-insulating GaAs substrate is used as the substrate, the present invention is not limited thereto, and annealing without a protective film or S
io, SiOxNy, high melting point metals, silicides thereof, nitrides thereof, and as substrates, it goes without saying that the present invention is fully applicable to all compound semiconductors. Further, in the above embodiment, the electric field application device is installed inside the annealing furnace, but it can also be configured to be installed outside the annealing furnace and separated from the substrate.

次に1本発明アニール装置によりアニール処理して電界
効果トランジスタを作成する一例を、第6図(a)〜(
d)に示す工程順の断面構造図により説明する。第6図
(a)において、半絶縁性G a A s基板17にz
aS4+イオンを、加速エネルギ70keV、ドープ量
1012〜1013an−”の条件で注入する。次に、
第6図(b)に示すように、通常のフォトマスクを用い
たフォトエツチング技術によりゲート位置をマスクする
ためのストライプ状レジストパタン18を形成する。こ
のパタン18をマスクとして19.20の部分に選択的
に28Sj“イオンを加速エネルギ200 k e V
、ドープ量10” 〜10”am−”の条件で注入する
。本注入はゲート・ソース間およびゲート・ドレイン間
の直列抵抗を低減するために行う。レジストパタン18
を除去した後、アニール保護膜SiNxを1000〜1
500オングストロームの厚さに堆積し、本発明による
電界印加アニールを適用し、注入層を活性化する。アニ
ール条件は温度が800℃、アニール時間が10分、印
加電界の強度が5500 V / amである。その後
、保護膜を除去し、第6図(c)に示すソース電極22
、ドレイン電極23をAuGa/Niなどの電極材によ
り形成し、第6図(d)に示すゲート電極24をTi/
Mo/Auなどの3M金属構成などで形成して、トラン
ジスタが完成する。
Next, an example of fabricating a field effect transistor by annealing using the annealing apparatus of the present invention is shown in FIGS.
This will be explained with reference to the cross-sectional structure diagram of the process order shown in d). In FIG. 6(a), z is applied to the semi-insulating Ga As substrate 17.
aS4+ ions are implanted under the conditions of an acceleration energy of 70 keV and a doping amount of 1012 to 1013 an-''.Next,
As shown in FIG. 6(b), a striped resist pattern 18 for masking the gate position is formed by photoetching using a normal photomask. Using this pattern 18 as a mask, 28Sj" ions were selectively accelerated at a portion of 19.20 at an energy of 200 k e V.
, with a doping amount of 10" to 10"am-". This implantation is performed to reduce the series resistance between the gate and source and between the gate and drain. Resist pattern 18
After removing the annealing protective film SiNx,
Deposit to a thickness of 500 angstroms and apply an electric field anneal according to the invention to activate the injection layer. The annealing conditions are a temperature of 800 °C, an annealing time of 10 minutes, and an applied electric field strength of 5500 V/am. After that, the protective film is removed and the source electrode 22 shown in FIG. 6(c) is removed.
, the drain electrode 23 is formed of an electrode material such as AuGa/Ni, and the gate electrode 24 shown in FIG. 6(d) is formed of Ti/Ni.
A transistor is completed by forming a 3M metal composition such as Mo/Au.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、GaAsなどの
化合物半導体基板のキャリアの分布を界面側に移動させ
ることができ、注入層を浅くすることが可能となった。
As described above, according to the present invention, the distribution of carriers in a compound semiconductor substrate such as GaAs can be moved to the interface side, and the injection layer can be made shallow.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例図、第2図は本発明にお
ける電界印加装置の一例を示す図、第3図は電界印加方
向の説明図、第4図は電界印加時と印加しない時とのキ
ャリアプロファイルの比較図、第5図はキャリアプロフ
ァイルが改善される領域を示す図、第6図(a)、(b
)、(c)、(d)は本発明装置による電界効果トラン
ジスタ作成時の断面構造図を工程順に示す図である。 符号の説明 1・・・アニール炉    2・・・石英ガラス3・・
・電界印加装置   4・・・リード線取出口5・・・
電界印加用電源  6・・・電極ホルダ7・・・負電極
      8・・・正電極9・・・負電極スペーサ 
 10・・・正電極スペーサ11、13・・・化合物半
導体基板 12・・・固定治具     14・・・イオン注入層
15・・・保護膜 16・・・イオン注入した側の面 17・・・GaAs基板   18・・・マスクバタン
19、20.21−n型導電層 22・・・ソース電極    23・・・ドレイン電極
24・・・ゲート電極 特許出願人 日本電信電話株式会社 代理人弁理士    中村 純之助 才1 凶 5−4XEPtlJIfiili$ 才2図 1−3図 10−・−正雪掻ズヘ゛−4716−−−イオ〉j主入
IRイ璽り一面矛5 図 了ニールン数序Ttk(’c) 3P6 へ1 (C1) 17−4aAsL抜 18−−−マス2ハ改シ +9.20.21−一人@4−電漕 24・・−ゲート切シーたr
Fig. 1 is a diagram showing an example of the device of the present invention, Fig. 2 is a diagram showing an example of the electric field applying device of the present invention, Fig. 3 is an explanatory diagram of the direction of electric field application, and Fig. 4 is a diagram showing when an electric field is applied and when no electric field is applied. Figure 5 is a diagram showing areas where the carrier profile is improved, Figures 6(a) and (b)
), (c), and (d) are diagrams illustrating cross-sectional structural views in the order of steps when producing a field effect transistor using the apparatus of the present invention. Explanation of symbols 1... Annealing furnace 2... Quartz glass 3...
・Electric field application device 4...Lead wire outlet 5...
Power supply for applying electric field 6... Electrode holder 7... Negative electrode 8... Positive electrode 9... Negative electrode spacer
10... Positive electrode spacers 11, 13... Compound semiconductor substrate 12... Fixing jig 14... Ion implanted layer 15... Protective film 16... Ion implanted side surface 17... GaAs substrate 18...Mask button 19, 20.21-N-type conductive layer 22...Source electrode 23...Drain electrode 24...Gate electrode Patent applicant Junnosuke Nakamura, Patent attorney representing Nippon Telegraph and Telephone Corporation 1 evil 5-4 1 (C1) 17-4aAsL removal 18---Mass 2ha change+9.20.21-One person @4-Electric row 24...-Gate cut seata r

Claims (1)

【特許請求の範囲】 1、化合物半導体基板に注入されたp型あるいはn型不
純物をアニールにより活性化させてそれぞれp型あるい
はn型導電層を形成するアニール装置において、上記基
板をアニールするアニール炉と、このアニール炉の内部
あるいは外部に設置されて上記基板に垂直に電界を印加
する電界印加装置とを備えたことを特徴とする化合物半
導体基板のアニール装置。 2、前記電界印加装置は、前記基板のイオン注入された
面から裏側の面に向けて電界を印加する極性を備えた電
界印加装置であることを特徴とする特許請求の範囲第1
項記載の化合物半導体基板のアニール装置。 3、前記アニール炉は、その炉内温度を少なくとも60
0℃〜900℃の範囲に制御可能なアニール炉であり、
前記電界印加装置は、平行に配置された正負両電極板間
の電界強度を少なくとも2,000V/cm〜6,00
0V/cmの範囲に制御可能な電界印加装置であること
を特徴とする特許請求の範囲第1項あるいは第2項記載
の化合物半導体基板のアニール装置。
[Claims] 1. An annealing apparatus for activating p-type or n-type impurities implanted into a compound semiconductor substrate by annealing to form a p-type or n-type conductive layer, respectively, an annealing furnace for annealing the substrate. and an electric field application device installed inside or outside the annealing furnace to apply an electric field perpendicularly to the substrate. 2. Claim 1, wherein the electric field application device is an electric field application device with polarity that applies an electric field from the ion-implanted surface of the substrate to the back surface.
An annealing apparatus for a compound semiconductor substrate as described in 1. 3. The annealing furnace has an internal temperature of at least 60°C.
It is an annealing furnace that can be controlled in the range of 0°C to 900°C,
The electric field applying device sets the electric field strength between the positive and negative electrode plates arranged in parallel to at least 2,000 V/cm to 6,000 V/cm.
An annealing device for a compound semiconductor substrate according to claim 1 or 2, characterized in that the device is an electric field applying device that can be controlled within a range of 0 V/cm.
JP28424586A 1986-12-01 1986-12-01 Annealing device for compound semiconductor substrate Pending JPS63138741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28424586A JPS63138741A (en) 1986-12-01 1986-12-01 Annealing device for compound semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28424586A JPS63138741A (en) 1986-12-01 1986-12-01 Annealing device for compound semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS63138741A true JPS63138741A (en) 1988-06-10

Family

ID=17676039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28424586A Pending JPS63138741A (en) 1986-12-01 1986-12-01 Annealing device for compound semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS63138741A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1139394A2 (en) * 2000-03-30 2001-10-04 International Business Machines Corporation Method and device for electric field assisted anneal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984787A (en) * 1972-12-21 1974-08-14
JPS5586123A (en) * 1978-12-23 1980-06-28 Fujitsu Ltd Manufacture of semiconductor device
JPS61178500A (en) * 1985-01-31 1986-08-11 マツクス‐プランク‐ゲゼルシヤフト・ツール・フエルデルング・デル・ヴイツセンシヤフテン・エー・フアウ Conversion of local atomic composition of solid body, manufacture of semiconductor having locally different electroconductivities, polarization of semiconductor p-n junction, semiconductor-constitutional element, condensationfor matter and gas accumulator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984787A (en) * 1972-12-21 1974-08-14
JPS5586123A (en) * 1978-12-23 1980-06-28 Fujitsu Ltd Manufacture of semiconductor device
JPS61178500A (en) * 1985-01-31 1986-08-11 マツクス‐プランク‐ゲゼルシヤフト・ツール・フエルデルング・デル・ヴイツセンシヤフテン・エー・フアウ Conversion of local atomic composition of solid body, manufacture of semiconductor having locally different electroconductivities, polarization of semiconductor p-n junction, semiconductor-constitutional element, condensationfor matter and gas accumulator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1139394A2 (en) * 2000-03-30 2001-10-04 International Business Machines Corporation Method and device for electric field assisted anneal
SG100658A1 (en) * 2000-03-30 2003-12-26 Ibm Dc or ac electric field business anneal
US6822311B2 (en) 2000-03-30 2004-11-23 International Business Machines Corporation DC or AC electric field assisted anneal
EP1139394A3 (en) * 2000-03-30 2006-02-15 International Business Machines Corporation Method and device for electric field assisted anneal

Similar Documents

Publication Publication Date Title
US5180690A (en) Method of forming a layer of doped crystalline semiconductor alloy material
JP2003086816A (en) SiC SUBSTRATE, SiC SEMICONDUCTOR ELEMENT, AND METHOD FOR MANUFACTURING THE SAME
TW200924067A (en) Methods of fabricating crystalline silicon, thin film transistors, and solar cells
JP3721588B2 (en) Method for manufacturing silicon carbide semiconductor device
US8748276B2 (en) Method for manufacturing semiconductor device
JPS63138741A (en) Annealing device for compound semiconductor substrate
JP3054186B2 (en) Method for manufacturing insulated gate semiconductor device
EP0481777A2 (en) Method of manufacturing gate insulated field effect transistors
US20090026497A1 (en) Method for Producing Semiconductor Device
JP2021170608A (en) Manufacturing method of semiconductor element
JP2523679B2 (en) Thin film transistor and manufacturing method thereof
JP3210568B2 (en) Method of manufacturing thin film transistor, method of manufacturing thin film transistor array, and method of manufacturing liquid crystal display device
JP4031021B2 (en) Method for manufacturing thin film transistor
JPS63283068A (en) Manufacture of thin-film transistor
KR100375390B1 (en) Thin film transistor and the method of fabricating the same
JP3357038B2 (en) Method of manufacturing thin film transistor and method of manufacturing liquid crystal display device
JP3241705B2 (en) Method for manufacturing thin film transistor
JP3153202B2 (en) Method for manufacturing semiconductor device
JP3051363B2 (en) Method for manufacturing semiconductor device
JP4001281B2 (en) Method for manufacturing insulated gate type field effect thin film transistor
JP2808753B2 (en) Method for forming conductive layer of InP
CN117373926A (en) Preparation method of gallium oxide longitudinal MOSFET device
JP3041971B2 (en) Method for forming conductive layer of InP
CN116646250A (en) Preparation method of silicon carbide field effect transistor
JPS61170027A (en) Manufacture of group iii-v semiconductor device