JPS6313518Y2 - - Google Patents

Info

Publication number
JPS6313518Y2
JPS6313518Y2 JP1981130802U JP13080281U JPS6313518Y2 JP S6313518 Y2 JPS6313518 Y2 JP S6313518Y2 JP 1981130802 U JP1981130802 U JP 1981130802U JP 13080281 U JP13080281 U JP 13080281U JP S6313518 Y2 JPS6313518 Y2 JP S6313518Y2
Authority
JP
Japan
Prior art keywords
gap
heat conduction
temperature difference
conduction path
annulus gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981130802U
Other languages
Japanese (ja)
Other versions
JPS5836399U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981130802U priority Critical patent/JPS5836399U/en
Publication of JPS5836399U publication Critical patent/JPS5836399U/en
Application granted granted Critical
Publication of JPS6313518Y2 publication Critical patent/JPS6313518Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【考案の詳細な説明】 本考案は、液体金属使用機器のカバーガス空間
にてアニユラス間隙を形成する内側部材または外
側部材の熱応力を抑制する構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure for suppressing thermal stress in an inner member or an outer member forming an annulus gap in a cover gas space of a device using liquid metal.

本考案において、アニユラス間隙とは液体金属
冷却型高速増殖炉における原子炉容器と遮蔽プラ
グとの間や各種回転プラグの間、および内部に液
体金属の自由液面が存在している冷却系内機器、
例えば機械式ナトリウムポンプ、の上方部に形成
される狭い円筒状の間隙部をいう。したがつて、
アニユラス間隙部を形成する内側部材または外側
部材とは、原子炉容器の上部壁部材、各種炉上部
遮蔽プラグ、冷却系内機器における容器上部壁部
材、および該容器上部壁部材と対面する内ケーシ
ングなどの部材等を意味する。本考案は、原子炉
等におけるこれら部材にかかる熱応力を抑制し、
これら部材の熱湾曲や過大な熱応力の発生を防止
することができる構造に関するものである。
In this invention, the annulus gap is defined as the space between the reactor vessel and the shielding plug in a liquid metal-cooled fast breeder reactor, between various rotating plugs, and in the equipment in the cooling system where a free surface of liquid metal exists inside. ,
For example, it refers to the narrow cylindrical gap formed in the upper part of a mechanical sodium pump. Therefore,
The inner or outer members that form the annulus gap include the upper wall member of the reactor vessel, various upper reactor shielding plugs, the upper wall member of the vessel in cooling system equipment, and the inner casing facing the upper wall member of the vessel. means the members, etc. The present invention suppresses thermal stress applied to these components in nuclear reactors, etc.
The present invention relates to a structure that can prevent these members from thermally bending or from generating excessive thermal stress.

ナトリウム冷却型原子炉容器を例にとつて説明
すると、第1図に示すように、炉心1を収容し液
体ナトリウム2で満たされる原子炉容器3の上部
カバーガス相には、大回転プラグ4、小回転プラ
グ5、および炉上部機構6などの機器が据付けら
れており、それらの周囲にはそれぞれアニユラス
間隙7が形成される。このようなアニユラス間隙
は、図示したものの他に、機械式ポンプの上扮、
プール型ナトリウム冷却高速炉の中間熱交換器用
貫通孔などにも形成されるが、いずれの場合でも
間隙の下端は高温であるのに対して、間隙の上端
は低温である。
Taking a sodium-cooled reactor vessel as an example, as shown in Fig. 1, a large rotary plug 4, a small Equipment such as a rotating plug 5 and a furnace upper mechanism 6 are installed, and an annulus gap 7 is formed around each of them. In addition to what is shown in the diagram, such an annulus gap may be used for mechanical pumps,
It is also formed in through holes for intermediate heat exchangers in pool-type sodium-cooled fast reactors, but in either case, the lower end of the gap is at a high temperature, while the upper end of the gap is at a low temperature.

近年、このような上下間に比較的大きな温度差
のある間隙で、第2図に示すようなカバーガスの
自然対流が発生することが各種の試験研究によつ
て明らかにされてきた。この対流は間隙周方向の
一個所で上昇流となり、他の場所で下降流とな
る。このため、上昇流の付近では周囲壁が高温の
ガスによつて加熱され、他方下降流付近では冷却
されたガスの流下によつて周囲壁が冷却される。
この間隙周囲壁に対して同時におこる加熱と冷却
は、アニユラス間隙形成部材の周方向に大きな温
度差を生じさせる。本考案者等の行つた実験で
は、この温度差(上昇流の生じる個所での温度と
下降流が生じる個所での温度差との差)の高さ方
向の変化は、第3図のようになる。すなわち、間
隙の高さ方向の中央付近に温度差のピーク
ΔT〓,naxがあらわれる。原子炉の運転中にこのよ
うな大きな温度差が生じると、貫通孔内の機器
は、垂直方向に引いた中心軸に対して熱湾曲を起
こして変形したり、過大な熱応力を受け破損する
ことさえある。
In recent years, various tests and studies have revealed that natural convection of cover gas as shown in FIG. 2 occurs in such a gap where there is a relatively large temperature difference between the upper and lower sides. This convection becomes an upward flow at one location in the circumferential direction of the gap, and a downward flow at another location. Therefore, in the vicinity of the upward flow, the surrounding wall is heated by the high temperature gas, while in the vicinity of the downward flow, the surrounding wall is cooled by the flow of the cooled gas.
The simultaneous heating and cooling of the gap surrounding wall causes a large temperature difference in the circumferential direction of the annulus gap forming member. In experiments conducted by the present inventors, the change in the height direction of this temperature difference (the difference between the temperature at the point where the upward flow occurs and the temperature difference at the point where the downward flow occurs) is as shown in Figure 3. Become. That is, a peak of temperature difference ΔT〓 ,nax appears near the center of the gap in the height direction. If such a large temperature difference occurs during reactor operation, the equipment inside the through-hole may become thermally bent and deformed with respect to the vertically drawn center axis, or be damaged by excessive thermal stress. Sometimes even.

従来は、このような温度差をなくするために、
間隙の内部にバツフル板やフイン状をなした対流
防止用の邪魔板を設置し、これによつてガスの自
然対流を防止する機構が提案されてきた。しか
し、このような機構は、すでに原子炉の一次系中
に据付けられている機器の間隙には使用すること
が極めて困難であり、また機器が貫通孔の中で上
下動や回転動をする場合は、このような板を取付
けることによつて新たな機械的故障が発生しない
とも限らない。
Conventionally, in order to eliminate such temperature differences,
A mechanism has been proposed in which a convection prevention baffle plate in the form of a full plate or a fin is installed inside the gap, thereby preventing natural convection of gas. However, such a mechanism is extremely difficult to use in gaps between equipment already installed in the primary system of the reactor, and when equipment moves up and down or rotates inside the through hole. However, installing such a plate does not necessarily mean that new mechanical failures will not occur.

本考案の目的は、上記のような従来技術の欠点
を解消し、邪魔板等を用いないでアニユラス間隙
部分のカバーガス自然対流に起因する熱応力を抑
制しうるような構造を提供することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a structure that can suppress thermal stress caused by natural convection of the cover gas in the annulus gap without using a baffle plate or the like. be.

かかる目的を達成するため、本考案者等は、こ
れまで各種の調査・試験を実施し、アニユラス間
隙部における周方向の温度差の大小に関係する
様々な要因について研究を重ねてきた。それによ
ると、この温度差ΔT〓は、円筒の内外壁の肉厚の
大小に依存することが判明した。即ち、温度差
ΔT〓は厚肉の壁であるほど小さくなり、薄くなる
ほど大きくなる。これは、第2図で説明すると、
周方向2個所に離れて形成される高温側10と低
温側11の間の壁を伝わる熱伝導が厚肉であるほ
ど大きくなるためである。このことから、第2図
で内筒9の内部に高い熱伝導率をもつた物質を充
填すると、高温側と低温側との熱伝導がより良好
となり、温度差ΔT〓はより小さくなることが予想
される。第4図は、これを確認するため、高さ約
2.8m、直径1.6m、幅15mmの二重間隙12を形成
し、ステンレス製内壁13内の充填物14を保温
材にしたとき(λ=1.0の実験線、λ…熱伝導率)
と、保温材の400〜500倍の熱伝導率をもつた金属
状物質(スチールボール)にしたとき(λ=400
〜500の実験線)の周方向温度差ΔT〓をΔT〓/
ΔTl(ここで、ΔTlは間隙の上下端の平均温度差)
の形で表わしたものである。同図から充填物の熱
伝導率が高いと同じΔTlでは温度差の最大値(第
3図で示したΔT〓,nax)が小さくなることが判る。
In order to achieve this objective, the inventors of the present invention have conducted various investigations and tests, and have repeatedly studied various factors related to the magnitude of the circumferential temperature difference in the annulus gap. According to the results, it was found that this temperature difference ΔT depends on the thickness of the inner and outer walls of the cylinder. That is, the thicker the wall, the smaller the temperature difference ΔT〓 becomes, and the thinner the wall, the larger the temperature difference ΔT〓 becomes. This can be explained using Figure 2.
This is because the thicker the wall, the greater the heat conduction through the wall between the high temperature side 10 and the low temperature side 11, which are formed at two locations apart in the circumferential direction. From this, it can be seen in Fig. 2 that if the inside of the inner cylinder 9 is filled with a substance with high thermal conductivity, the heat conduction between the high temperature side and the low temperature side will be better, and the temperature difference ΔT will be smaller. is expected. To confirm this, Figure 4 shows a height of approximately
When a double gap 12 of 2.8 m, diameter 1.6 m, and width 15 mm is formed, and the filling 14 inside the stainless steel inner wall 13 is used as a heat insulating material (experimental line of λ = 1.0, λ...thermal conductivity)
When a metallic substance (steel ball) has a thermal conductivity 400 to 500 times that of a heat insulating material (λ = 400
~500 experimental line) circumferential temperature difference ΔT〓 is ΔT〓/
ΔT l (where ΔT l is the average temperature difference between the upper and lower ends of the gap)
It is expressed in the form of From the same figure, it can be seen that when the thermal conductivity of the filling is high, the maximum value of the temperature difference (ΔT〓 , nax shown in FIG. 3) becomes smaller for the same ΔT l .

実際の原子炉では、貫通孔に形成される間隙の
直径Dは大型炉になるほど大きくなる。特に、第
1図に示す原子炉容器上部の大回転プラグやそれ
に相当する固定プラグでは、原子炉容器の直径に
比例する。一般に、このように直径Dが大きくな
つてゆくと、間隙周囲のΔT〓,naxも近似的にそれ
に比例して大きくなる傾向にある。したがつて、
大型炉ほど、より多くの工夫を加えてΔT〓,nax
低減化させる必要がある。第5図は、これまでの
各種試験装置で得られたデータを整理し、間隙直
径Dの増加がΔT〓,nax/ΔTlにどのような影響を
与えるかを示したものである。これらのデータは
全て高さを1.5〜20m、間隙幅15〜25mmの互いに
ほぼ等しい間隙の断面寸法をもち、直径Dのみが
異なる試験装置で得られたデータをプロツトした
ものである。図中、aで示した範囲は、内筒の中
の充填物を全て保温材もしくはそれにほぼ等しい
熱伝導率をもつた低熱伝導性物質にしたときのも
のであるが、大まかな傾向としては上述したよう
に、ΔT〓,nax/ΔTl、即ち同一の間隙上下温度差
ΔTlに対する最大温度差ΔT〓,naxは直径Dの増大
とともに大きくなる。しかし、充填物を、その熱
伝導率λが保温材の400〜500倍、あるいは2300倍
といつた高熱伝導性物質にすると、図中b(スチ
ールボール)、c(グラフアイト)で示したように
ΔT〓,nax/ΔTlは大幅に低減でき、直径Dの増加
にも効果的に対処できることが判る。
In an actual nuclear reactor, the diameter D of the gap formed in the through hole increases as the reactor becomes larger. In particular, in the case of a large rotating plug at the top of the reactor vessel shown in FIG. 1 and a corresponding fixed plug, the diameter is proportional to the diameter of the reactor vessel. Generally, as the diameter D increases in this way, ΔT〓 ,nax around the gap also tends to increase approximately in proportion to it. Therefore,
The larger the furnace, the more measures need to be taken to reduce ΔT〓 ,nax . FIG. 5 summarizes the data obtained with various test devices so far and shows how an increase in the gap diameter D affects ΔT〓 ,nax / ΔTl . All of these data are plots of data obtained using test equipment having approximately the same gap cross-sectional dimensions of 1.5 to 20 m in height and 15 to 25 mm in gap width, but differing only in diameter D. In the figure, the range indicated by a is the range when the filling in the inner cylinder is entirely made of heat insulating material or a low thermal conductivity material with approximately the same thermal conductivity, but the general tendency is as described above. As described above, ΔT〓 ,nax / ΔTl , that is, the maximum temperature difference ΔT〓 ,nax for the same gap upper and lower temperature difference ΔTl increases as the diameter D increases. However, if the filling is made of a highly thermally conductive material whose thermal conductivity λ is 400 to 500 times or 2300 times that of the insulation material, as shown by b (steel balls) and c (graphite) in the figure, It can be seen that ΔT〓 , nax /ΔT l can be significantly reduced, and an increase in the diameter D can be effectively dealt with.

本考案は、このような調査・試験結果に鑑み、
アニユラス間隙形成部材の熱伝導性をより良好な
らしめ、これによつて周方向の温度差を小さくす
るよう工夫したものである。即ち本考案は、アニ
ユラス間隙を形成する内側部材および外側部材の
少なくとも一方の部材に、高熱伝導性物質からな
り該部材の周方向または径方向に連続して延びる
熱伝導路を設けたことを特徴とするアニユラス間
隙形成部材の熱応力抑制機構である。本考案はそ
の原理からして、直径の大きな大型炉のアニユラ
ス間隙部での熱応力の緩和に特に好適である。そ
こでより具体的に述べるとまず、間隙を形成する
内筒については、熱伝導ができるだけ良好になる
ように、内部の構造物と内筒壁との間を溶接、ネ
ジ止めなどで固定するほか、内部構造物にはでき
るだけ熱伝導率の高いアルミニウム、銅、グラフ
アイトなどを多用し、内部構造物の間にできる間
隙部にも高熱伝導物質(例えばアルミニウム粉、
銅粉、グラフアイト片など)を充填する。外筒に
ついても同様の対策を施す。このようにして、従
来は主にアニユラス間隙を形成する内外筒壁の周
方向熱伝導によつていた熱伝導を、壁以外の熱伝
導路を設けることによつて、より多くの熱の流れ
を生じさせ、もつてΔT〓,naxを大幅に低減させる
ことができる。
This invention was developed based on the results of such surveys and tests.
This design is designed to improve the thermal conductivity of the annulus gap forming member, thereby reducing the temperature difference in the circumferential direction. That is, the present invention is characterized in that at least one of the inner member and outer member forming the annulus gap is provided with a heat conduction path made of a highly thermally conductive material and extending continuously in the circumferential or radial direction of the member. This is a thermal stress suppression mechanism for the annulus gap forming member. In view of its principle, the present invention is particularly suitable for alleviating thermal stress in the annulus gap of large-diameter large furnaces. To be more specific, first of all, regarding the inner cylinder that forms the gap, in order to make the heat conduction as good as possible, in addition to fixing the internal structure and the inner cylinder wall by welding, screwing, etc. We use materials with high thermal conductivity such as aluminum, copper, and graphite as much as possible for internal structures, and we also use high thermal conductive materials (e.g. aluminum powder,
(copper powder, graphite pieces, etc.). Similar measures will be taken for the outer cylinder. In this way, by providing a heat conduction path other than the walls, the heat conduction, which conventionally was mainly based on circumferential heat conduction between the inner and outer cylinder walls that form the annulus gap, can be improved. , thereby significantly reducing ΔT〓 ,nax .

以下、本考案の実施例について説明する。大回
転プラグや固定プラグでは内部の放射線遮蔽体に
ステンレス鋼や炭素鋼のブロツクを用いる場合が
ある。従来は、第6図に示すように、これらの放
射線遮蔽体14が周囲壁15と熱的に離れている
ため、周囲壁と放射線遮蔽体との間の熱伝導は良
好ではなかつた。これを改良するため第7図Aに
示すような対策を施す。この第7図Aでは、第6
図で大回転プラグ4の中心側に据付けられている
小回転プラグ5や炉上部機構6については図示す
るを省略し、本考案に係わる部分のみを示してあ
る。第7図Aから判るように、放射線遮蔽体14
と外壁15との隙間に高熱伝導物質16を充填す
るとともに、放射線遮蔽体14の上部もしくは下
部にも高熱伝導物質でできた板を置く。このよう
にすると、第7図Bに示すように、従来は周囲壁
15に沿つた熱の流れqのみであつたものが、新
たに高熱伝導物質16および放射線遮蔽体14を
通る熱の流れq′が加わるために、全体の熱流が大
きくなり、結果的にΔT〓,naxが小さくなる。なお、
第7図Bにおいて、符号Hは高温域を、また符号
Cは低温域をそれぞれ表わしている。
Examples of the present invention will be described below. Large rotating plugs and fixed plugs sometimes use stainless steel or carbon steel blocks as internal radiation shields. Conventionally, as shown in FIG. 6, these radiation shields 14 were thermally separated from the surrounding wall 15, so the heat conduction between the surrounding wall and the radiation shield was not good. In order to improve this problem, measures as shown in FIG. 7A are taken. In this Figure 7A, the 6th
In the figure, the small rotation plug 5 and the furnace upper mechanism 6 installed on the center side of the large rotation plug 4 are omitted from illustration, and only the parts related to the present invention are shown. As can be seen from FIG. 7A, the radiation shield 14
A high heat conductive material 16 is filled in the gap between the radiation shield 14 and the outer wall 15, and a plate made of a high heat conductive material is also placed above or below the radiation shield 14. In this way, as shown in FIG. 7B, the conventional flow of heat only q along the surrounding wall 15 is now changed to the flow q of heat passing through the highly thermally conductive material 16 and the radiation shield 14. ′ increases the overall heat flow, and as a result, ΔT〓 ,nax becomes smaller. In addition,
In FIG. 7B, the symbol H represents a high temperature region, and the symbol C represents a low temperature region.

第8図は、大回転プラグ4に取付けられる熱遮
蔽板について施した対策の例である。熱遮蔽板2
1と熱遮蔽筒22を熱的に接触させると共に、必
要に応じて熱遮蔽板21自体の半径方向の熱伝導
を改良するため、ステンレス製の熱遮蔽板23の
中にアルミニウムなどの高熱伝導物質24をはさ
みこむ。また、半径方向の熱の流れをスムーズに
するため、第9図に示すように、熱遮蔽板21を
その中心に近い位置で互いに接触させるようにす
るとよい。このようにすることにより、熱遮蔽板
の周囲に生じていた大きな温度差を大幅に低減す
ることができる。同図中、符号25は小回転プラ
グ用熱遮蔽板、符号26は炉上部機構用貫通孔で
あり、矢印は熱の流れを示してある。
FIG. 8 is an example of measures taken for the heat shield plate attached to the large rotation plug 4. Heat shield plate 2
1 and the heat shield cylinder 22, and if necessary, to improve the radial heat conduction of the heat shield plate 21 itself, a high thermal conductive material such as aluminum is placed inside the stainless steel heat shield plate 23. Insert 24. Further, in order to smooth the flow of heat in the radial direction, it is preferable that the heat shield plates 21 are brought into contact with each other at a position close to the center thereof, as shown in FIG. 9. By doing so, the large temperature difference that has been occurring around the heat shield plate can be significantly reduced. In the figure, numeral 25 is a heat shield plate for the small rotation plug, numeral 26 is a through hole for the furnace upper mechanism, and arrows indicate heat flow.

原子炉関連施設において、比較的小さな直径を
もつ、例えば機械式ポンプの上部の放射線遮蔽体
とポンプ外ケーシングとの間隙などでは、第10
図に示すように、間隙を形成する外側部材30の
外壁に高熱伝導物質でできたリング31を熱伝導
路として固定用バンド32等で圧着させ、これに
よつてΔT〓,naxの低減を計ることができる。リン
グ31は、必要に応じて多段構成にしてもかまわ
ない。このような構成は、すでに原子炉の中に組
込まれて使用されていて、その改造が困難なポン
プにも容易に適用でき、かつ高い信頼性をもつ。
In nuclear reactor-related facilities, the 10th
As shown in the figure, a ring 31 made of a highly thermally conductive material is crimped with a fixing band 32 or the like as a heat conduction path to the outer wall of the outer member 30 forming the gap, thereby reducing ΔT〓 ,nax . be able to. The ring 31 may have a multi-stage configuration if necessary. Such a configuration can be easily applied to a pump that is already used in a nuclear reactor and is difficult to modify, and has high reliability.

また、ポンプの内部については、第11図に示
すように、内筒40内に充填する放射線遮蔽体4
1をグラフアイトなどの高熱伝導性物質で製作す
るか、放射線遮蔽体41を低い熱伝導率の物質で
しか製作できないときは、部分的に高熱伝導物質
の板42を組込んで熱伝導路を形成させる。
In addition, regarding the inside of the pump, as shown in FIG.
1 is made of a highly thermally conductive material such as graphite, or when the radiation shield 41 can only be made of a material with low thermal conductivity, a plate 42 of a highly thermally conductive material is partially incorporated to form a heat conduction path. Let it form.

本考案は上記のような構成であるから、邪魔板
等を用いないでアニユラス間隙部分のカバーガス
自然対流に起因する熱応力を抑制でき、アニユラ
ス間隙部分において機器が上下動や回転動をする
場合であつても何ら支障がない。また、間隙直径
の大きな大型炉にも対応しうるし、既設のポンプ
にも適用できるなど、アニユラス間隙形成部材の
熱湾曲や過大な熱応力の発生を防止できる点で、
甚だすぐれたものである。
Since the present invention has the above-mentioned configuration, it is possible to suppress the thermal stress caused by the natural convection of the cover gas in the annulus gap without using a baffle plate, etc., and when the equipment moves vertically or rotates in the annulus gap. There is no problem even if it is. In addition, it is compatible with large furnaces with large gap diameters, and can be applied to existing pumps, as well as preventing thermal curvature of the annulus gap forming member and excessive thermal stress.
This is extremely serious.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原子炉容器と遮蔽プラグの説明図、第
2図はアニユラス間隙でのカバーガス自然対流を
示す説明図、第3図は間隙壁の周方向2ケ所間の
温度差の高さ方向での変化を示す説明図、第4図
は各種充填物と壁温々度差との関係を示す図、第
5図は各種充填物とアニユラス間隙の直径と
ΔT〓,nax/ΔTlとの関係を示す図、第6図は従来
の大回転プラグ内放射線遮蔽体周りの構造を示す
図、第7図Aは本考案の一実施例を示す説明図で
あり、Bはその熱の流れを示す説明図、第8図、
第9図、第10図、第11図はそれぞれ本考案の
他の実施例を示す説明図である。 3……原子炉容器、4……大回転プラグ、5…
…小回転プラグ、6……炉上部機構、7……アニ
ユラス間隙。
Figure 1 is an explanatory diagram of the reactor vessel and shielding plug, Figure 2 is an explanatory diagram showing the natural convection of the cover gas in the annulus gap, and Figure 3 is the height direction of the temperature difference between two points in the circumferential direction of the gap wall. Figure 4 is a diagram showing the relationship between various filling materials and wall temperature difference. Figure 5 is a diagram showing the relationship between various filling materials and the diameter of the annulus gap and ΔT〓 ,nax /ΔT l FIG. 6 is a diagram showing the structure around the radiation shield in the conventional large-rotation plug, FIG. 7A is an explanatory diagram showing an embodiment of the present invention, and B is an explanatory diagram showing the heat flow. Figure, Figure 8,
FIG. 9, FIG. 10, and FIG. 11 are explanatory views showing other embodiments of the present invention, respectively. 3... Reactor vessel, 4... Large rotating plug, 5...
...Small rotating plug, 6... Furnace upper mechanism, 7... Annulus gap.

Claims (1)

【実用新案登録請求の範囲】 1 アニユラス間隙を形成する内側部材および外
側部材の少なくとも一方の部材に、ステンレス
鋼,炭素鋼,グラフアイト,アルミニウム、お
よび銅から選択された高熱伝導性物質からなり
該部材の周方向または径方向に連続して延びる
熱伝導路を設けたことを特徴とするアニユラス
間隙形成部材の熱応力抑制機構。 2 熱伝導路が板状をなしている実用新案登録請
求の範囲第1項記載の機構。 3 熱伝導路がリング状をなしている実用新案登
録請求の範囲第1項記載の機構。 4 リング状の熱伝導路をアニユラス間隙を形成
する外側部材の外周面に1段または多段に設け
た実用新案登録請求の範囲第3項記載の機構。
[Claims for Utility Model Registration] 1. At least one of the inner and outer members forming the annulus gap is made of a highly thermally conductive material selected from stainless steel, carbon steel, graphite, aluminum, and copper. A thermal stress suppression mechanism for an annulus gap forming member, characterized in that a heat conduction path is provided that extends continuously in the circumferential direction or radial direction of the member. 2. The mechanism according to claim 1 of the utility model registration claim, in which the heat conduction path is plate-shaped. 3. The mechanism according to claim 1 of the utility model registration claim, in which the heat conduction path is ring-shaped. 4. The mechanism according to claim 3, wherein a ring-shaped heat conduction path is provided in one or more stages on the outer peripheral surface of the outer member forming the annulus gap.
JP1981130802U 1981-09-02 1981-09-02 Thermal stress suppression mechanism of annulus gap forming member Granted JPS5836399U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981130802U JPS5836399U (en) 1981-09-02 1981-09-02 Thermal stress suppression mechanism of annulus gap forming member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981130802U JPS5836399U (en) 1981-09-02 1981-09-02 Thermal stress suppression mechanism of annulus gap forming member

Publications (2)

Publication Number Publication Date
JPS5836399U JPS5836399U (en) 1983-03-09
JPS6313518Y2 true JPS6313518Y2 (en) 1988-04-16

Family

ID=29924410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981130802U Granted JPS5836399U (en) 1981-09-02 1981-09-02 Thermal stress suppression mechanism of annulus gap forming member

Country Status (1)

Country Link
JP (1) JPS5836399U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557408A (en) * 1984-07-25 1985-12-10 Arnoldus Biemans Needle threading devices

Also Published As

Publication number Publication date
JPS5836399U (en) 1983-03-09

Similar Documents

Publication Publication Date Title
Jackson Nuclear reactors
US3005105A (en) Shipping cask for radioactive materials
JPS6313518Y2 (en)
JPS5814639B2 (en) Genshiro Yodanetsu Sochi
JPS6331078B2 (en)
JPS60237389A (en) Tank type fast breeder reactor
JPS6249953B2 (en)
JPS61184489A (en) Shielding plug
JPS6255635B2 (en)
JPS5946592A (en) Thermal shielding device of reactor container
US4676947A (en) Device for thermal protection of a component of a fast-neutron nuclear reactor
JPS60233595A (en) Fast breeder reactor
JPS61114187A (en) Upper shielding body for fast breeder reactor
JPH023158B2 (en)
JPS5845595A (en) Reactor
JPH0481155B2 (en)
JPS5940294A (en) Nozzle structure of reactor container
JPS61215989A (en) Protective device for reactor wall of fast breeder reactor
JPS58215589A (en) Upper core mechanism of reactor
JPS59155784A (en) Fast breeder
Guneratne IMPROVEMENTS IN OR RELATING TO TEMPERATURE MEASURING DEVICES FOR NUCLEAR REACTOR FUEL ELEMENTS
JPS6238676B2 (en)
JPS5919893A (en) Thermal shielding device of fbr type reactor
JPS6151593A (en) Shielding plug device for fast breeder reactor
Schabert DEVICE FOR MONITORING AN INSULATING TUBE WHICH IS LOCATED INSIDE A PRESSURE TUBE OF A NUCLEAR REACTOR