JPS61184489A - Shielding plug - Google Patents

Shielding plug

Info

Publication number
JPS61184489A
JPS61184489A JP60023626A JP2362685A JPS61184489A JP S61184489 A JPS61184489 A JP S61184489A JP 60023626 A JP60023626 A JP 60023626A JP 2362685 A JP2362685 A JP 2362685A JP S61184489 A JPS61184489 A JP S61184489A
Authority
JP
Japan
Prior art keywords
shielding
plug
heat
gap
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60023626A
Other languages
Japanese (ja)
Inventor
牧島 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60023626A priority Critical patent/JPS61184489A/en
Publication of JPS61184489A publication Critical patent/JPS61184489A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Closures For Containers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、液体金属冷部型高速増殖炉の遮蔽プラグに係
わり、特に遮蔽プラグの熱遮蔽板と、この熱遮蔽板を包
囲する遮蔽胴との環状間隙部に発生する自然対流に起因
する熱応力、熱変形を抑制することのできる遮蔽プラグ
に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a shielding plug for a liquid metal cold section type fast breeder reactor, and in particular to a heat shielding plate of the shielding plug and a shielding shell surrounding the heat shielding plate. The present invention relates to a shielding plug that can suppress thermal stress and thermal deformation caused by natural convection occurring in an annular gap.

[発明の技術的背題とその問題点] 一般に、液体金属冷却型原子炉の炉容器は、その内部に
炉心および炉心の冷却を行う一次冷却材を有しているた
め、その健全性に関して高い信頼性が要求される。しか
るに、液体金属冷却型原子炉においては炉心出口の冷W
材温度が高く、したがって炉心出口冷却材に接する炉容
器胴の温度は高温となり、炉容器の設計には厳しい高温
構造設計条件が要求され、非常に難しいものとなってい
る。
[Technical background of the invention and its problems] In general, the reactor vessel of a liquid metal cooled nuclear reactor has a reactor core and a primary coolant for cooling the core inside, so its integrity is high. Reliability is required. However, in liquid metal cooled reactors, the cold W at the core exit
The material temperature is high, and the temperature of the reactor vessel shell in contact with the core outlet coolant is therefore high, making the design of the reactor vessel extremely difficult as it requires strict high-temperature structural design conditions.

一方、第8図に示すように上述の炉容器1の上方開口端
を閉塞して搭載される遮蔽プラグ4.5の熱遮蔽層21
と、遮蔽胴25との間には環状の間隙部が形成されてい
る。
On the other hand, as shown in FIG. 8, the heat shielding layer 21 of the shielding plug 4.5 is mounted to close the upper open end of the above-mentioned furnace vessel 1.
An annular gap is formed between the shield body 25 and the shield body 25 .

この間隙部は、遮蔽胴25の製作公差等の製作に関わる
制限と、熱変形による相互干渉の防止上から、自然対流
発生を阻止できるギャップにするのは、非常に困難であ
る。
It is very difficult to form this gap into a gap that can prevent the generation of natural convection due to manufacturing restrictions such as manufacturing tolerances of the shielding body 25 and from the viewpoint of preventing mutual interference due to thermal deformation.

したがって、間R部には第2図に矢符で模式的に示すよ
うな自然対流が発生し、炉容器1周方向に不均一な温度
分布が生じ、この結果、炉容器1や遮蔽胴25に熱応力
や、熱変形が発生する原因、となる。また、自然対流発
生により、熱遮蔽層21の断熱性能が低下する結果、遮
蔽プラグ4.5の上面温度上昇や、遮蔽プラグ4.5の
冷却容憬が増大する等の原因となる。さらに、前記熱遮
蔽層21は、遮蔽胴25内で、地震時の移動口が大きく
、遮蔽胴25への衝突など耐震性の問題が生じる原因と
もなっている。
Therefore, natural convection as shown schematically by arrows in FIG. This causes thermal stress and thermal deformation. Furthermore, natural convection reduces the heat insulating performance of the heat shielding layer 21, resulting in an increase in the temperature of the upper surface of the shielding plug 4.5 and an increase in the cooling capacity of the shielding plug 4.5. Further, the heat shielding layer 21 has a large movement opening within the shielding shell 25 during an earthquake, which causes earthquake resistance problems such as collisions with the shielding shell 25.

[発明の目的] 本発明は、以上の事情に鑑みてなされたもので、その目
的とするところは、遮蔽プラグの熱遮蔽層と遮蔽胴との
環状間隙部の自然対流を抑制し、もって熱遮蔽層の断熱
性能の低下を防止するとともに周方向自然対流による炉
容器や遮蔽胴の熱応力を緩和し、さらに熱遮蔽層の耐震
性向上を図ることのできる遮蔽プラグを提供することに
ある。
[Object of the Invention] The present invention has been made in view of the above circumstances, and its purpose is to suppress natural convection in the annular gap between the heat shield layer and the shield body of the shield plug, thereby reducing heat. It is an object of the present invention to provide a shielding plug that can prevent a decrease in the heat insulation performance of the shielding layer, relieve the thermal stress of the furnace vessel and the shielding shell due to circumferential natural convection, and further improve the seismic resistance of the heat shielding layer.

[発明の概要] すなわち、本発明は、遮蔽圏内に熱遮蔽層を収容してな
り原子炉容器の上部開口部を閉塞する遮蔽プラグにおい
て、前記熱遮蔽層と遮蔽胴との間に形成される環状間隙
部に、この環状間隙部を高さ方向に分割する輪状板バネ
を配置した口とを特徴とする遮蔽プラグである。
[Summary of the Invention] That is, the present invention provides a shielding plug that houses a heat shielding layer in a shielding zone and closes an upper opening of a reactor vessel. This is a shielding plug characterized by a mouth in which an annular leaf spring is arranged in the annular gap to divide the annular gap in the height direction.

[発明の実施例] 以下、一実施例の図面を参照して本発明の詳細な説明す
る。
[Embodiments of the Invention] Hereinafter, the present invention will be described in detail with reference to the drawings of one embodiment.

第1図において、炉容器1内には炉心3が設置され、冷
却材2(一般的にはナトリウム)で充たされている。炉
容器1の開口部上端には固定プラグ4が搭載されている
。この固定プラグ4には偏心して回転プラグ5が設けら
れている。この固定プラグ4と回転プラグ5とを総称し
て遮蔽プラグという。この遮蔽プラグは燃料交換方式に
より一重、二重または三重回転方式があるが、どの方式
についても本発明を適用できるので、ここでは−型回転
方式について説明する。この回転プラグ5は回転自在に
設置され、燃料交換器(図示せず)、炉心上部機構6、
その他が据付けられている。
In FIG. 1, a reactor core 3 is installed within a reactor vessel 1 and filled with a coolant 2 (generally sodium). A fixed plug 4 is mounted on the upper end of the opening of the furnace vessel 1. A rotary plug 5 is eccentrically provided on the fixed plug 4. The fixed plug 4 and the rotating plug 5 are collectively referred to as a shielding plug. This shielding plug can be of single, double or triple rotation type depending on the fuel exchange method, but since the present invention can be applied to any type of rotation type, the - type rotation type will be explained here. This rotary plug 5 is rotatably installed, and includes a fuel exchanger (not shown), a core upper mechanism 6,
Others are installed.

原子炉通常運転時には、冷却材2はかなりの高温(一般
に500℃前後)となり炉心カバーガス7を通して遮蔽
プラグ下面を熱する。
During normal operation of the nuclear reactor, the coolant 2 reaches a considerably high temperature (generally around 500° C.) and heats the lower surface of the shielding plug through the core cover gas 7.

遮蔽プラグ下部には、カバーガス7を利用したガス層と
、板材による積層板構造からなる熱遮蔽層21が配設さ
れている。熱遮蔽層21は、第3図に示すように、複数
枚の厚さの薄い(たとえば5n)熱遮蔽板22と、熱遮
蔽板22の間にはさまれた厚さの比較的厚い(たとえば
30關)熱遮蔽板23と、熱遮蔽層21の上端および下
端に位置して、厚さの比較的厚い(たとえば30n)熱
遮蔽板24と、熱遮蔽板22.23.24間を適当なギ
ャップに保持固定するスペーサ28およびロッド29に
より構成されている。
A gas layer using cover gas 7 and a heat shielding layer 21 having a laminated plate structure made of plate materials are disposed below the shielding plug. As shown in FIG. 3, the heat shield layer 21 includes a plurality of thin (for example, 5n) heat shield plates 22 and a relatively thick (for example, 5 nm) heat shield layer sandwiched between the heat shield plates 22. 30) The heat shield plate 23 is located at the upper and lower ends of the heat shield layer 21, and the relatively thick (for example, 30 nm) heat shield plate 24 is connected between the heat shield plates 22, 23, and 24. It is composed of a spacer 28 and a rod 29 that are held and fixed in the gap.

第4図は、熱遮蔽板23外周付近の詳細図である。熱遮
蔽板23外周には、全周にわたって遮蔽胴25とのギャ
ップを閉塞するように輪状バネ27がボルト等により取
付けられている。一方、熱遮蔽板23外周と相対する遮
蔽胴25内周面には、周方向に分割された耐震サポート
26がボルト等により取付けられている。
FIG. 4 is a detailed view of the vicinity of the outer periphery of the heat shield plate 23. An annular spring 27 is attached to the outer periphery of the heat shield plate 23 by bolts or the like so as to close the gap with the shield body 25 over the entire circumference. On the other hand, seismic supports 26 divided in the circumferential direction are attached to the inner peripheral surface of the shielding body 25 facing the outer periphery of the heat shielding plate 23 by bolts or the like.

耐震サポート26の厚さHは、次のように設定する。す
なわち、熱遮蔽板22.23.24を1枚ずつ下から順
次積層していき、熱遮蔽板23が据付いたら、熱遮蔽板
23と遮蔽r!A25内周との距離を実測する。周方向
に沿って複数点実測した後、はぼその距離が一様になる
ように熱遮蔽板23の位置決めをする。しかる後、前記
距離を再度実測し、熱遮蔽板23と耐震サポート26と
の距離が熱変形によっても相互干渉しない程度に小さく
なるように、耐震サポート26の厚さ1]を設定する。
The thickness H of the seismic support 26 is set as follows. That is, the heat shield plates 22, 23, and 24 are stacked one by one from the bottom, and once the heat shield plate 23 is installed, the heat shield plate 23 and the shield r! Measure the distance to the inner circumference of A25. After actually measuring a plurality of points along the circumferential direction, the heat shielding plate 23 is positioned so that the distance between the edges is uniform. Thereafter, the distance is actually measured again, and the thickness 1 of the seismic support 26 is set so that the distance between the heat shield plate 23 and the seismic support 26 is small enough to prevent mutual interference even due to thermal deformation.

なお、本実施例では、輪状バネ27を熱遮蔽板23側に
、耐震サポート26を遮蔽胴25側に取付けた例を示し
たが、この逆でも、または、同一側に取付けても良い。
In this embodiment, an example is shown in which the annular spring 27 is attached to the heat shielding plate 23 side and the seismic support 26 is attached to the shielding body 25 side, but they may be attached on the same side or vice versa.

また、輪状バネ27の断面形状は、第4図に示すものの
外に、第5図〜第7図に示すものでも良い。
Further, the cross-sectional shape of the annular spring 27 may be as shown in FIGS. 5 to 7 in addition to that shown in FIG. 4.

さらに、熱遮蔽板23、輪状バネ27および耐震サポー
ト26は゛、軸方向に数段取付けても良い。
Furthermore, the heat shield plate 23, the annular spring 27, and the seismic support 26 may be installed in several stages in the axial direction.

次に上記のように構成された本発明による遮蔽プラグの
作用および効果について説明する。以上のように構成さ
れた遮蔽プラグにおいて、熱遮蔽層21と遮蔽胴25と
の間隙部31に輪状バネ27を取付けたことにより、間
隙部31は高さ方向に仕切られる。この時、軸方向温度
条件および間隙幅が同一ならば、間隙の高さが短い程自
然対流が発生しにくくなることが判っている。したがっ
て、自然対流が工学的に無視できるような間隙高さとな
るように、輪状バネ27を複数個取付けることは容易で
ある。
Next, the operation and effects of the shielding plug according to the present invention configured as described above will be explained. In the shielding plug configured as described above, the annular spring 27 is attached to the gap 31 between the heat shield layer 21 and the shield body 25, so that the gap 31 is partitioned in the height direction. At this time, it has been found that if the axial temperature conditions and gap width are the same, the shorter the gap height is, the less likely natural convection will occur. Therefore, it is easy to attach a plurality of annular springs 27 so that the gap height is such that natural convection can be ignored from an engineering point of view.

一方遮蔽1N25に耐震サポート26が取付いているの
で、地震時の熱遮蔽層21は熱遮蔽板23がわずかなギ
ャップを移動するだけで耐震サポート26に支持され、
また熱遮蔽板22、熱遮蔽板24は、ロッド29で支持
されることになる。なお、熱遮蔽板23の地震時移動口
が制限されるので、輪状バネ27のストロークは極端に
大きくする必要はなく、この状態で輪状バネ27の健全
性が維持される。
On the other hand, since the seismic support 26 is attached to the shield 1N25, the heat shield layer 21 during an earthquake is supported by the seismic support 26 by just moving the heat shield plate 23 through a small gap.
Further, the heat shield plate 22 and the heat shield plate 24 are supported by rods 29. Note that since the movement opening of the heat shield plate 23 during an earthquake is limited, the stroke of the annular spring 27 does not need to be extremely large, and the soundness of the annular spring 27 is maintained in this state.

[発明の効果1 以上述べたように、本発明によれば遮蔽プラグの熱遮蔽
層と遮蔽胴との間隙部に発生する自然対流を有効に抑制
でき、自然対流に起因する炉容器および遮蔽胴の周方向
の大きな温度分布、熱応力および熱変形を緩和し、信頼
性の高い遮蔽プラグを得ることができる。
[Effect of the Invention 1] As described above, according to the present invention, natural convection occurring in the gap between the heat shielding layer of the shielding plug and the shielding shell can be effectively suppressed, and the natural convection caused by the natural convection can be suppressed. The large circumferential temperature distribution, thermal stress and thermal deformation can be alleviated, and a highly reliable shielding plug can be obtained.

また、熱遮蔽層内の自然対流を抑制することにより、遮
蔽プラグの上面温度上昇や遮蔽プラグ冷W容量増大等に
つながる断熱性能低下を防止でき、信頼性の高い遮蔽プ
ラグを得ることができる。さらに、実施例のように耐震
サポートを配置するときには、熱遮蔽層の遮蔽胴内での
地震時移動量を小さくおさえることができるので、耐震
性の優れた遮蔽プラグを得ることができる。
Furthermore, by suppressing natural convection within the heat shielding layer, it is possible to prevent a decrease in insulation performance that would lead to an increase in the temperature of the upper surface of the shielding plug, an increase in the cooling capacity of the shielding plug, etc., and a highly reliable shielding plug can be obtained. Furthermore, when the seismic support is arranged as in the embodiment, the amount of movement of the heat shielding layer within the shielding shell during an earthquake can be kept small, so a shielding plug with excellent earthquake resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の適用された原子炉を概略的
に示す縦断面図、第2図は遮蔽プラグの熱遮蔽層と遮蔽
胴との間隙部に発生する自然対流を模式的に示す斜視図
、第3図および第4図は本発明の要部を示す縦断面図、
第5図〜第7図は輪状バネの断面形状の変形例を示す因
、第8図は従来の原子炉を示す縦断面図である。 1・・・・・・・・・炉容器 2・・・・・・・・・冷却材 3・・・・・・・・・炉心 4・・・・・・・・・固定プラグ 5・・・・・・・・・回転プラグ 21・・・・・・・・・熱遮蔽層 22.23.24・・・熱遮蔽板 25・・・・・・・・・遮蔽胴 26・・・・・・・・・耐震サポート 27・・・・・・・・・輪状バネ 代理人弁理士   則 近 憲 佑 (ばか1名) 第1図 第2図 第3r!7I 第5図   第6図   第7図 第8図
FIG. 1 is a longitudinal sectional view schematically showing a nuclear reactor to which an embodiment of the present invention is applied, and FIG. 2 is a schematic diagram showing natural convection occurring in the gap between the heat shielding layer of the shielding plug and the shielding shell. 3 and 4 are longitudinal sectional views showing essential parts of the present invention,
5 to 7 show modified examples of the cross-sectional shape of the annular spring, and FIG. 8 is a longitudinal sectional view showing a conventional nuclear reactor. 1...Reactor vessel 2...Coolant 3...Core 4...Fixing plug 5... ...... Rotating plug 21 ... Heat shielding layer 22.23.24 ... Heat shielding plate 25 ...... Shielding body 26 ... ...Earthquake support 27 ...... Ring-shaped spring representative patent attorney Noriyuki Chika (one idiot) Figure 1 Figure 2 Figure 3r! 7I Figure 5 Figure 6 Figure 7 Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)遮蔽胴内に熱遮蔽層を収容してなり原子炉容器の
上部開口部を閉塞する遮蔽プラグにおいて、前記熱遮蔽
層と遮蔽胴との間に形成される環状間隙部に、この環状
間隙部を高さ方向に分割する輪状板バネを配置したこと
を特徴とする遮蔽プラグ。
(1) In a shielding plug that houses a heat shielding layer in the shielding shell and closes the upper opening of the reactor vessel, the annular gap formed between the heat shielding layer and the shielding shell has an annular shape. A shielding plug characterized by having an annular leaf spring arranged to divide the gap in the height direction.
(2)輪状板バネは、環状間隙部の高さ方向に間隔をお
いて複数個設置されている特許請求の範囲第1項記載の
遮蔽プラグ。
(2) The shielding plug according to claim 1, wherein a plurality of annular leaf springs are installed at intervals in the height direction of the annular gap.
JP60023626A 1985-02-12 1985-02-12 Shielding plug Pending JPS61184489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60023626A JPS61184489A (en) 1985-02-12 1985-02-12 Shielding plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60023626A JPS61184489A (en) 1985-02-12 1985-02-12 Shielding plug

Publications (1)

Publication Number Publication Date
JPS61184489A true JPS61184489A (en) 1986-08-18

Family

ID=12115803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60023626A Pending JPS61184489A (en) 1985-02-12 1985-02-12 Shielding plug

Country Status (1)

Country Link
JP (1) JPS61184489A (en)

Similar Documents

Publication Publication Date Title
US2902422A (en) Nuclear reactor fuel rod assembly
JPS5814639B2 (en) Genshiro Yodanetsu Sochi
US2983663A (en) Fuel element for nuclear reactors
JPS61184489A (en) Shielding plug
US4110160A (en) Fuel assembly spacer within the coolant duct
US4097331A (en) Coolant mass flow equalizer for nuclear fuel
JPS63168593A (en) Shielding plug
JPH0273192A (en) Nuclear fuel element
JPS6256476B2 (en)
JP3021431B1 (en) Core tank with shield
JPS60260890A (en) Shielding plug
JPS6070395A (en) Shielding plug
JPH02293693A (en) Nuclear fuel element
JPS61218989A (en) Tank type fast breeder reactor
JPS58205889A (en) Nuclear fuel rod
JPS6367591A (en) Fuel aggregate for fast breeder reactor
JPS61225687A (en) Fast breeder reactor
JPS61180190A (en) Heat shielding device for fast breeder reactor
JPH0566553B2 (en)
JPS62157587A (en) Nuclear fuel aggregate
JPS63253291A (en) Nuclear fuel aggregate and wrapper tube for nuclear reactor
JPS5924290A (en) Nuclear fuel assembly
JPS59208489A (en) Fast breeder reactor
JPH0799398B2 (en) Nuclear fuel element
JPS61228381A (en) High-temperature gas reactor