JPS60260890A - Shielding plug - Google Patents

Shielding plug

Info

Publication number
JPS60260890A
JPS60260890A JP59116360A JP11636084A JPS60260890A JP S60260890 A JPS60260890 A JP S60260890A JP 59116360 A JP59116360 A JP 59116360A JP 11636084 A JP11636084 A JP 11636084A JP S60260890 A JPS60260890 A JP S60260890A
Authority
JP
Japan
Prior art keywords
shielding
corrugated
annular gap
plug
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59116360A
Other languages
Japanese (ja)
Inventor
暢一 末園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59116360A priority Critical patent/JPS60260890A/en
Publication of JPS60260890A publication Critical patent/JPS60260890A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Closures For Containers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の技術分野〕 本発明は高速増殖炉等の炉容器の上部開口部に嵌合され
てこれを閉塞する遮蔽プラグの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an improvement in a shielding plug that is fitted into and closes an upper opening of a reactor vessel such as a fast breeder reactor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、高速増殖炉の炉容器は、その内部中心部に核燃
料を装荷する炉心を形成しており、この炉心は液体金属
の一次冷却材により浸されている。
In general, the reactor vessel of a fast breeder reactor forms a reactor core in which nuclear fuel is loaded at its interior center, and this reactor core is immersed in a liquid metal primary coolant.

そのために、炉容器の健全性については特に高い信頼性
が要求される。
Therefore, particularly high reliability is required regarding the integrity of the reactor vessel.

しかし、この種の炉容器においては、上記炉心の炉心出
口の冷却材温度が高く、この炉心出口冷却材に接する炉
容器胴が高温となるために、炉容器の設計は厳しい高温
構造設計条件が要求され、非常に難しいものとなってい
る。
However, in this type of reactor vessel, the temperature of the coolant at the core outlet of the reactor core is high, and the reactor vessel shell in contact with this core outlet coolant becomes high temperature, so the design of the reactor vessel requires strict high-temperature structural design conditions. It is demanding and extremely difficult.

このような炉容″器の上部開口部は遮蔽プラグが嵌合さ
れて気密に閉塞されている。
The upper opening of such a furnace vessel is hermetically closed by a shielding plug fitted therein.

従来、この種の遮蔽プラグは炉容器の上部開口部の円形
に適合して円柱萩に形成され、炉容器め上部開口部に気
密に嵌合されるようになっている。
Conventionally, this type of shielding plug is formed into a cylindrical shape that conforms to the circular shape of the upper opening of the furnace vessel, and is adapted to fit air-tightly into the upper opening of the furnace vessel.

遮蔽プラグの下部には熱遮蔽層が形成され、この熱遮蔽
層の外周等には遮蔽胴が配設されている。
A heat shielding layer is formed at the bottom of the shielding plug, and a shielding body is disposed around the outer periphery of the heat shielding layer.

しかし、この熱遮蔽層と遮蔽胴との間には組立上の制限
から、所要の間隙、例えば最低的5 mm程度の間隙が
環状に形成されていた。そして、従来では熱遮蔽層が積
層板構造に構成されているので、この環状間隙よりも圧
損が大きく、環状間隙には有意な自然対流が発生すると
は、考えられていなかった。しかしながら、このような
従来の遮蔽プラグを模擬した実験装置では、上記環状間
隙には自然対流が発生することが確認された。
However, due to assembly limitations, a required gap, for example, a gap of at least about 5 mm, is formed in an annular shape between the heat shield layer and the shield body. Conventionally, the heat shield layer has a laminated plate structure, so the pressure loss is greater than that of the annular gap, and it was not thought that significant natural convection would occur in the annular gap. However, in an experimental device simulating such a conventional shielding plug, it was confirmed that natural convection occurs in the annular gap.

すなわち、第4図の模式図に示すにうに、熱遮蔽層Aと
遮蔽1)iBとぐ画成される環状間隙Cには軸方向に沿
って上昇、下降する自然対流が発生ずる。したがって、
このような従来の遮蔽プラグを上部開口部に嵌合せしめ
る炉容器には、周方向に不均一な温度分布を生じ、その
結果、炉容器に熱応力や変形を発生させる原因の1つと
なっていた。
That is, as shown in the schematic diagram of FIG. 4, natural convection that rises and falls along the axial direction occurs in the annular gap C defined between the heat shield layer A and the shield 1)iB. therefore,
In a furnace vessel in which such a conventional shielding plug is fitted into the upper opening, uneven temperature distribution occurs in the circumferential direction, which is one of the causes of thermal stress and deformation in the furnace vessel. Ta.

また、環状間隙Cにおけるカバーガス対流により、放射
化された冷却材蒸気がこの環状間隙Cへ何着され、遮蔽
プラグ上部には放射線線量率の高い区域が局所的に発イ
していた。
Furthermore, due to cover gas convection in the annular gap C, activated coolant vapor was deposited in the annular gap C, and a region with a high radiation dose rate was locally emitted above the shielding plug.

また、環状間icでの自然対流を防止するために、この
環状間隙Cを狭小にすると、今度は熱遮蔽層Aの熱膨張
の際に、熱遮蔽層Aが外径方向に伸びて遮蔽胴Bを押圧
して応力を発生せしめる恐れがあった。勿論、このよう
な応力により原子炉容器等の健全性が害されるものでは
ないが、万全の安全対策を講する立場からはかような応
力の発生を抑制することが望ましい。
In addition, if this annular gap C is narrowed in order to prevent natural convection between the annular ICs, when the heat shield layer A thermally expands, the heat shield layer A will extend in the outer radial direction and the shield body There was a risk that B would be pressed and stress would be generated. Of course, such stress does not harm the integrity of the reactor vessel, etc., but from the standpoint of taking thorough safety measures, it is desirable to suppress the generation of such stress.

〔発明の目的〕[Purpose of the invention]

本発明は上述した事情を考慮してなされたもので、熱遮
蔽層と遮蔽胴とで画成される環状間隙における自然対流
の発生を抑制し、熱遮蔽層が熱膨張により遮蔽胴を外径
方向に押圧する応力を低減せしめる遮蔽プラグを提供す
ることを目的とする。
The present invention was made in consideration of the above-mentioned circumstances, and suppresses the occurrence of natural convection in the annular gap defined by the heat shielding layer and the shielding body, and the heat shielding layer expands the shielding body by thermal expansion. It is an object of the present invention to provide a shielding plug that reduces the stress of pressing in the direction.

〔発明の概要〕[Summary of the invention]

上述した目的を達成するために本発明に係る遮蔽プラグ
は次のように構成される。
In order to achieve the above-mentioned object, the shielding plug according to the present invention is constructed as follows.

原子炉容器の開口部に気密に嵌合されてこの開口部を密
閉する遮蔽プラグにおいて、熱遮蔽層と遮蔽胴との間に
環状間隙を形成し、この環状間隙に、波形段部を速成し
た波形板の複数を介在せしめ、これら波形板の波形段部
の連続方向を上記環状間隙の周方向にそれぞれ一致させ
ると共に、その周方向で隣接する上記波形板相互間に所
要の間隙を設定して構成される。
In a shielding plug that is airtightly fitted into an opening of a reactor vessel to seal the opening, an annular gap is formed between a heat shielding layer and a shielding shell, and a corrugated stepped portion is quickly formed in this annular gap. A plurality of corrugated plates are interposed, the continuous direction of the corrugated step portions of these corrugated plates is aligned with the circumferential direction of the annular gap, and a required gap is set between adjacent corrugated plates in the circumferential direction. configured.

〔発明の実施例〕 。[Embodiments of the invention].

以下、本発明に係る遮蔽プラグの一実施例ついて第1図
ないし第3図を参照して説明する。
Hereinafter, one embodiment of the shielding plug according to the present invention will be described with reference to FIGS. 1 to 3.

第1図Gよ本発明の一実施例の遮蔽プラグを概略的に示
す縦断面図であり、図中符号1は液体金属冷却型原子炉
の炉容器である。この炉容器1内には核燃料が装荷され
る炉心2が形成されると共に、例えばナトリウム等の冷
却材3がこの炉心2を浸すように収容されている。炉容
器1の上部開口部は遮蔽プラグ4を気密に嵌合させて密
閉されている。遮蔽プラグ4は燃料交換方式により1重
、2重または3重回転方式があるが、いずれの方式につ
いても本発明は適用できるので、ここでは1重回転方式
について説明する。
FIG. 1G is a vertical sectional view schematically showing a shielding plug according to an embodiment of the present invention, and reference numeral 1 in the figure is a reactor vessel of a liquid metal cooled nuclear reactor. A reactor core 2 to which nuclear fuel is loaded is formed within the reactor vessel 1, and a coolant 3 such as sodium, for example, is accommodated so as to submerge the reactor core 2. The upper opening of the furnace vessel 1 is hermetically sealed with a shielding plug 4 fitted airtightly. The shielding plug 4 can be of single, double or triple rotation type depending on the fuel exchange method, but since the present invention can be applied to any of these types, the single rotation type will be explained here.

遮蔽プラグ4は炉容器1の上部開口部に嵌合されてから
炉容器1に固定される固定プラグ5と、この固定プラグ
5を偏心して軸方向に貝通し、かつ回転可能に取着され
た回転プラグ6とから主に構成され、回転プラグ6には
炉心上部1111i1s6Aを設置している。これら固
定、回転両プラグ5,6の下、方字間、すなわち、両プ
ラグ5,6の下端面と冷却材3の液面との間に形成され
る空間には、炉内カバーガス7が充填される。したがっ
て、原子炉通常運転時に相当な温度、例えば約500℃
前後に加熱された冷却材3の保有熱はこの炉内カバーガ
ス7を通して両プラグ5,6の下面に熱伝導される。こ
のために、固定、回転両プラグ5゜6には軸方向上部に
遮蔽層8A、8B、その下部に熱遮蔽層9A、9Bをそ
れぞれ配隅して熱等を遮蔽するようになっている。これ
ら固定、回転両プラグ5,6の熱遮蔽層9A、9Bは第
2図に示すように複数の薄板10A’、10Bを軸方向
に等間隔をおいて積層した積層仮構、造をなし、各熱遮
散層8A、8B等にそれぞれ吊設されている。
The shielding plug 4 is fitted with a fixed plug 5 which is fitted into the upper opening of the furnace vessel 1 and then fixed to the furnace vessel 1, and the fixed plug 5 is eccentrically passed through the shell in the axial direction and is rotatably attached. It mainly consists of a rotating plug 6, and a core upper part 1111i1s6A is installed in the rotating plug 6. The in-furnace cover gas 7 is in the space formed between the squares under the fixed and rotating plugs 5 and 6, that is, between the lower end surfaces of the plugs 5 and 6 and the liquid level of the coolant 3. Filled. Therefore, during normal operation of the reactor, the temperature is considerable, for example about 500°C.
The heat retained in the coolant 3 heated back and forth is thermally conducted to the lower surfaces of both plugs 5 and 6 through this furnace cover gas 7. For this purpose, both the fixed and rotary plugs 5.6 are provided with shielding layers 8A, 8B at the upper part in the axial direction, and heat shielding layers 9A, 9B at the lower part, respectively, to shield heat and the like. The heat shielding layers 9A and 9B of both the fixed and rotating plugs 5 and 6 have a laminated temporary structure in which a plurality of thin plates 10A' and 10B are laminated at equal intervals in the axial direction, as shown in FIG. They are suspended from the heat shielding layers 8A, 8B, etc., respectively.

これら熱遮蔽層9.A、9Bのうち゛、固定プラグ5の
熱遮蔽層9Aには、その外周と内周との両側に遮蔽胴1
1A’、11Bがそれぞれ環状に周設され、一方、回転
プラグ6の熱遮蔽層9Bには、その外周にのみ遮蔽胴1
1Cが周設されている。固定プラグ5の熱遮蔽層9Aの
外周および内周と、各遮蔽胴11A、11Bとの間には
第1、第2環状間隙1.?A、12Bがそれぞれ設定さ
れている。
These heat shielding layers9. Among A and 9B, the heat shielding layer 9A of the fixed plug 5 has a shielding body 1 on both sides of its outer periphery and inner periphery.
1A' and 11B are respectively provided in an annular manner, and on the other hand, the heat shielding layer 9B of the rotary plug 6 has a shielding body 1 only on its outer periphery.
1C is installed around it. First and second annular gaps 1. ? A and 12B are set respectively.

同様に、回転プラグ6の熱遮蔽層9Bの外周と、遮蔽胴
11Cの内周との間に第3環状間隙12Gが設定されて
いる。
Similarly, a third annular gap 12G is set between the outer periphery of the heat shielding layer 9B of the rotating plug 6 and the inner periphery of the shielding body 11C.

これら、第1、第2、第3各環状間隙12A。These first, second, and third annular gaps 12A.

12B、12Cにはコルゲートパネル13A、13B、
13Gがそれぞれ介挿されている。これら各コルゲート
パネル13A、13B、130は波形段部13aを幅方
向に複数達成するように折曲形成させた波形板からなり
、幅方向に所要の曲率で円弧状に折曲形成されている。
12B, 12C have corrugated panels 13A, 13B,
13G are inserted respectively. Each of these corrugated panels 13A, 13B, and 130 is made of a corrugated plate that is bent to form a plurality of corrugated stepped portions 13a in the width direction, and is bent into an arc shape with a required curvature in the width direction.

すなわち、各コルゲートパネル13A、138,130
は第1、第2、第3の各環状間隙12A、12B、1’
2Cの各曲率に対応させてそれぞれ折曲され、複数の各
コルゲートパネル13A、138.13Gが各環状間隙
12A、12B、1’2Gに一重にそれぞれ配列される
ようになっている。また、各コル、ゲートパネル13A
、13B、13Cは、その波形段部13aの連続方向を
各熱遮蔽層9A、9Bの周方向に一致させており、各波
形段部13aの頂部が各環状間1!Ji12A、12B
、12Gの内、外画周側、例えば第3図に示すように熱
遮蔽層9Aの外周面と遮蔽J]1i11Aの内周面とに
それぞれ圧接されている。すなわら、各コルゲートパネ
ル13A、13B、13Cは熱遮蔽層9A、9Bと遮蔽
胴11A、11B、IICとにより挟持される。
That is, each corrugated panel 13A, 138, 130
are the first, second, and third annular gaps 12A, 12B, 1'
2C, respectively, and a plurality of corrugated panels 13A, 138.13G are arranged in a single layer in each annular gap 12A, 12B, 1'2G. In addition, each col, gate panel 13A
, 13B, 13C, the continuous direction of the corrugated step portion 13a is made to coincide with the circumferential direction of each heat shielding layer 9A, 9B, and the top of each corrugated step portion 13a is located between each annular space 1! Ji12A, 12B
, 12G, for example, as shown in FIG. 3, are pressed against the outer peripheral surface of the heat shielding layer 9A and the inner peripheral surface of the shield J]1i11A. That is, each corrugated panel 13A, 13B, 13C is sandwiched between the heat shielding layer 9A, 9B and the shielding body 11A, 11B, IIC.

これにより、各環状間隙12A、12B、12Gの周方
向は多数の波形段部13aによ、り閉塞されて、多数の
小空間に画成され、周方向へのガスの対流は阻止される
ので、各環状間隙12A、12B、12Cにおける自然
対流は抑制される。これにより、炉容器1の周方向に不
均一な温度分布が生ずるのを防止することができる。ま
た、各環状間隙12A、i2s、12Gを形成する熱遮
蔽層9A、9Bと各遮蔽1ji11A、 11 B、 
Ll、Cとに熱膨張等が発生して、各コルゲートパネル
13A、13B、13Gに圧縮力が作用した場合には、
各コルゲートパネル13A、13B、13Cはその圧縮
力の作用方向に応じて変形し、その圧縮力を吸収するこ
とができる。
As a result, the circumferential direction of each of the annular gaps 12A, 12B, and 12G is closed by a large number of corrugated steps 13a, and a large number of small spaces are defined, and gas convection in the circumferential direction is blocked. , natural convection in each annular gap 12A, 12B, 12C is suppressed. This can prevent uneven temperature distribution from occurring in the circumferential direction of the furnace vessel 1. In addition, the heat shielding layers 9A, 9B forming the respective annular gaps 12A, i2s, 12G and the respective shielding layers 1ji11A, 11B,
When thermal expansion etc. occurs in Ll and C and compressive force acts on each corrugate panel 13A, 13B, 13G,
Each of the corrugated panels 13A, 13B, and 13C deforms depending on the direction in which the compressive force is applied, and can absorb the compressive force.

各コルゲートパネル13A、138,130は各環状間
隙12A、12B、12Cにおいて、周方向で互いに隣
接するコルゲートパネル13A。
Each corrugated panel 13A, 138, 130 is a corrugated panel 13A adjacent to each other in the circumferential direction in each annular gap 12A, 12B, 12C.

13B、130間には所要の取付間隔14をそれぞれ設
定している。したがって、各コルゲートパネル13A、
13B、13Cの波形段部13aがその突出高さ方向に
圧縮力を受りた場合は、その各コルゲートパネル13A
’、 13B、、13Gの幅方向端部が上記取付間隔1
4へそれぞれ伸びることができ、その圧縮力を吸収する
ことができる。
A required mounting interval 14 is set between 13B and 130, respectively. Therefore, each corrugated panel 13A,
When the corrugated step portions 13a of 13B and 13C receive compressive force in the direction of their protruding height, each of the corrugated panels 13A
', 13B, , 13G width direction end is above installation interval 1
4 and can absorb the compressive force.

また、各環状間隙12A、12B、12Cにおける炉内
カバーガス7の自然対流が抑制される結果、このカバー
ガス対流により各環状間隙12A、12B、12Gへ移
行する放射化された冷却材蒸気の付着が抑制される。
Furthermore, as a result of suppressing the natural convection of the in-furnace cover gas 7 in each of the annular gaps 12A, 12B, and 12C, the activated coolant vapor is deposited to transfer to each of the annular gaps 12A, 12B, and 12G due to this cover gas convection. is suppressed.

なお、各コルゲートパネル13A、13B、13Cはそ
の幅方向に直交する方向の、換言すれば軸方向に多数の
素子に分割して、各環状間隙12A、128,120へ
の介挿の容易化を図るように構成してもよい。
In addition, each corrugated panel 13A, 13B, 13C is divided into a large number of elements in a direction perpendicular to its width direction, in other words, in the axial direction, to facilitate insertion into each annular gap 12A, 128, 120. It may be configured as desired.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、原子炉容器の開口部に気
密に嵌合されてこの開口部を密閉する遮蔽プラグにおい
て、熱遮蔽層と遮蔽胴どの間に環状間隙を形成し、この
環状間隙に、波形段部を速成した波形板の複数を介在せ
しめ、これら波形板の波形段部の連続方向を上記環状間
隙の周方向にそれぞれ一致させると共に、周方向で隣接
する波形板相互間に所要の間隙を設定して構成した。し
たがって、本発明によれば、固定、回転両遮蔽プラグに
おける熱遮蔽層と遮蔽胴とで形成される各環状間隙を各
コルゲートパネルで周方向に閉塞し、多数の小空間に画
成しているので、各環状間隙における自然対流を抑制す
ることができる。これにより、各環状間隙における自然
対流に起因する炉容器および遮蔽プラグの周方向の不均
一な温度分布、熱応力および熱変形を抑制し、熱遮蔽層
の熱膨張による応力を低減して、信頼性の高い遮蔽プラ
グを得ることができる。
As explained above, the present invention provides a shielding plug that is airtightly fitted into an opening of a reactor vessel and seals the opening, in which an annular gap is formed between a heat shielding layer and a shield shell, and the annular gap is A plurality of corrugated plates having corrugated stepped portions are interposed therebetween, and the continuous direction of the corrugated stepped portions of these corrugated plates is aligned with the circumferential direction of the annular gap, and the required distance between adjacent corrugated plates in the circumferential direction is made. It was configured by setting the gap between. Therefore, according to the present invention, each annular gap formed between the heat shielding layer and the shielding body in both the fixed and rotating shielding plugs is closed in the circumferential direction by each corrugated panel, thereby defining a large number of small spaces. Therefore, natural convection in each annular gap can be suppressed. This suppresses uneven temperature distribution, thermal stress, and thermal deformation in the circumferential direction of the furnace vessel and shielding plug caused by natural convection in each annular gap, reduces stress caused by thermal expansion of the thermal shielding layer, and improves reliability. A shielding plug with high properties can be obtained.

また、環状間隙における自然対流が抑制される結果、カ
バーガス対流に伴い環状間隙へ移行する放射化された冷
却材蒸気の何名が抑制され、遮蔽プラグ上面の放射線線
量率を軽減することができる効果も奏する。
In addition, as a result of suppressing natural convection in the annular gap, the amount of activated coolant vapor that migrates to the annular gap due to cover gas convection is suppressed, and the radiation dose rate on the top surface of the shielding plug can be reduced. It is also effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明に係る遮蔽プラグの一実施
例をそれぞれ示し、第1図は一実施例の遮蔽プラグを概
略的に示す縦断面図、第2図は固定プラグの熱遮蔽層の
外周部を拡大して示す要部拡大縦断面図、第3図は固定
プラグの熱遮M層の外周面と遮蔽胴の内周面とで画成さ
れる第1環状間隙にコルゲートパネルが介在された状態
を概略的に示す要部拡大横断面図、第4図は各環状間隙
における自然対流の発生を説明するための模式図である
。 1・・・炉容器、2・・・炉心、3・・・冷却材、4・
・・遮蔽プラグ、5・・・固定プラグ、6・・・回転プ
ラグ、7・・・炉内カバーガス、8A、8B・・・遮蔽
層、9A。 9B・・・熱遮蔽層、IIA、IIB、11C・・・遮
蔽胴、12A・・・第1環状間隙、12B・・・第2環
状間隙、12G・・・第3環状間隙、13A、13B、
13C・・・コルゲートパネル、14・・・取付間隔。 出願人代理人 波多野 久 蔓 l 図 蔓 2 図 弗4 図
1 to 3 each show an embodiment of the shielding plug according to the present invention, FIG. 1 is a vertical sectional view schematically showing the shielding plug of the embodiment, and FIG. 2 is a heat shielding of the fixed plug. FIG. 3 is an enlarged vertical cross-sectional view of the main part showing the outer periphery of the layer, and FIG. FIG. 4 is a schematic diagram for explaining the occurrence of natural convection in each annular gap. 1... Reactor vessel, 2... Core, 3... Coolant, 4...
... Shielding plug, 5... Fixed plug, 6... Rotating plug, 7... Furnace cover gas, 8A, 8B... Shielding layer, 9A. 9B... Heat shielding layer, IIA, IIB, 11C... Shielding body, 12A... First annular gap, 12B... Second annular gap, 12G... Third annular gap, 13A, 13B,
13C... Corrugated panel, 14... Installation interval. Applicant's agent Kuzuru Hatano l Figure 2 Figure 4

Claims (1)

【特許請求の範囲】 1、原子炉容器の開口部に気密に嵌合されてこの開口部
を密閉する遮蔽プラグにおいて、熱遮蔽層と遮蔽胴との
間に環状間隙を形成し、この環状間隙に、波形段部を連
成した波形板の複数を介在せしめ、これら波形板の波形
段部の連続方向を上記環状間隙の周方向にそれぞれ一致
させると共に、その周方向で隣接する上記波形板相互間
に所要の間隙を設定したことを特徴とする遮蔽プラグ。 2、熱遮蔽層部は、板材を積層せしめた積層板構造の間
隙にカバーガスのガス層を形成した特許請求の範囲第1
項に記載の遮蔽プラグ。 3、原子炉容器が液体金属冷却型である特許請求の範囲
第1項に記載の遮蔽プラグ。
[Claims] 1. In a shielding plug that is airtightly fitted into an opening of a reactor vessel to seal the opening, an annular gap is formed between the heat shielding layer and the shielding shell, and the annular gap is A plurality of corrugated plates having interconnected corrugated stepped portions are interposed, and the continuous direction of the corrugated stepped portions of these corrugated plates is aligned with the circumferential direction of the annular gap, and the adjacent corrugated plates are mutually arranged in the circumferential direction. A shielding plug characterized in that a required gap is set between the shielding plugs. 2. The heat shielding layer portion has a gas layer of cover gas formed in the gap of a laminated plate structure in which plate materials are laminated.
Shielding plugs as described in Section. 3. The shielding plug according to claim 1, wherein the reactor vessel is of a liquid metal cooled type.
JP59116360A 1984-06-08 1984-06-08 Shielding plug Pending JPS60260890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59116360A JPS60260890A (en) 1984-06-08 1984-06-08 Shielding plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59116360A JPS60260890A (en) 1984-06-08 1984-06-08 Shielding plug

Publications (1)

Publication Number Publication Date
JPS60260890A true JPS60260890A (en) 1985-12-24

Family

ID=14685030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59116360A Pending JPS60260890A (en) 1984-06-08 1984-06-08 Shielding plug

Country Status (1)

Country Link
JP (1) JPS60260890A (en)

Similar Documents

Publication Publication Date Title
US4000595A (en) Insulation structure for pressure vessel cavity
JPS5814639B2 (en) Genshiro Yodanetsu Sochi
US4411308A (en) Vaulted cover assembly to close a vertical recess in a pressure vessel
JPS60260890A (en) Shielding plug
KR101336835B1 (en) Wet-thermal insulator restricting coolant natural circulation
US2952603A (en) Jacketed fissionable member
JPS6070395A (en) Shielding plug
JPS63168593A (en) Shielding plug
JPS61184489A (en) Shielding plug
JPH0138278B2 (en)
JPS6398594A (en) Furnace-wall protective structure of fast breeder reactor
US4666652A (en) Fast neutron nuclear reactor comprising a suspended sealing slab and main vessel
JPS6249953B2 (en)
JPS5946592A (en) Thermal shielding device of reactor container
JPS604885A (en) Heat insulating device for nuclear reactor vessel
JPS59105593A (en) Shielding plug
JPH0481155B2 (en)
JPS58205889A (en) Nuclear fuel rod
JPS58215589A (en) Upper core mechanism of reactor
JPS61225687A (en) Fast breeder reactor
JPS63210697A (en) Fast breeder reactor
JPS61180190A (en) Heat shielding device for fast breeder reactor
JPS61218989A (en) Tank type fast breeder reactor
JPS60108788A (en) Device for protecting component of fast neutron type reactorfrom heat
JPS58144785A (en) Liquid metal cooled type fast breeder