JPH0481155B2 - - Google Patents

Info

Publication number
JPH0481155B2
JPH0481155B2 JP60069174A JP6917485A JPH0481155B2 JP H0481155 B2 JPH0481155 B2 JP H0481155B2 JP 60069174 A JP60069174 A JP 60069174A JP 6917485 A JP6917485 A JP 6917485A JP H0481155 B2 JPH0481155 B2 JP H0481155B2
Authority
JP
Japan
Prior art keywords
reflector
sealing material
sealing
steel
plenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60069174A
Other languages
Japanese (ja)
Other versions
JPS61228381A (en
Inventor
Koji Umenishi
Akio Kudo
Shigeru Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60069174A priority Critical patent/JPS61228381A/en
Publication of JPS61228381A publication Critical patent/JPS61228381A/en
Publication of JPH0481155B2 publication Critical patent/JPH0481155B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Furnace Details (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高温ガス炉に係り、特に熱膨張率の異
なる黒鉛構造物の反射体と、鋼製構造物の鋼製プ
レナムとのシール機構に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a high-temperature gas furnace, and particularly to a sealing mechanism between a reflector made of a graphite structure having different coefficients of thermal expansion and a steel plenum of a steel structure. It is.

〔発明の背景〕[Background of the invention]

現在の原子炉はほとんど金属で被覆した燃料棒
を使いているために温度を高くすると燃料棒の金
属被覆が破壊されるので温度をあまり高くするこ
とができず、650℃前後で原子力発電に用いられ
ている。
Most current nuclear reactors use fuel rods coated with metal, so raising the temperature will destroy the metal coating on the fuel rods, so the temperature cannot be raised very high, and is used for nuclear power generation at around 650℃. It is being

一方、高温ガス炉の燃料構造は、直径が1mmに
も満たない黒い球状の粒で、この粒はウランなど
の酸化物や炭化物を芯にして、その外側を特殊な
炭素や珪素の薄い被膜で三重または四重構造に包
み、この被膜はウランを保護すると同時に、核分
裂によるウランから生成される放射能物質が漏れ
るのを防いでいる。
On the other hand, the fuel structure of high-temperature gas reactors consists of black spherical grains with a diameter of less than 1 mm. These grains have a core of oxide or carbide such as uranium, and the outside is covered with a thin coating of special carbon or silicon. Encased in a triple or quadruple layer, this coating protects the uranium and prevents radioactive substances produced from the uranium during nuclear fission from escaping.

炭素や珪素の被膜は、従来の金属被膜より熱に
強いため1000℃以上の温度でも破壊されることが
なく、放射性物質を中に閉じ込めておくことがで
きる。
Carbon and silicon coatings are more resistant to heat than conventional metal coatings, so they do not break down even at temperatures of over 1,000 degrees Celsius, and are able to trap radioactive materials inside.

この様な被覆燃料粒子を黒鉛と一緒に焼き固め
て燃料コンパクトに仕上げ、この燃料コンパクト
を短い円筒状に成型したものを六角形の黒鉛ブロ
ツクにつめて燃料要素を形成し、この燃料要素を
縦横に何層も積み重ねて高温ガス炉の炉心部が構
成される。
These coated fuel particles are baked together with graphite to make a fuel compact, and this fuel compact is molded into a short cylindrical shape and packed into a hexagonal graphite block to form a fuel element. The core of a high-temperature gas reactor is made up of many layers stacked on top of each other.

この高温ガス炉の炉心部は熱に強く、熱伝導の
良い黒鉛が用いられているので、1000℃以上の温
度にも耐えることができる。
The core of this high-temperature gas reactor is made of graphite, which is resistant to heat and has good thermal conductivity, so it can withstand temperatures of over 1,000 degrees Celsius.

他方、高温ガス炉における炉心部の冷却材には
ヘリウムが使われ、このヘリウムは炉心部を冷却
すると共に1000℃前後の高温冷却材となり、蒸気
発生器でその熱を蒸気に代えて原子力発電に用い
られる。
On the other hand, helium is used as a coolant in the core of high-temperature gas reactors.This helium cools the core and becomes a high-temperature coolant of around 1000℃, and the heat is converted into steam in a steam generator to generate nuclear power. used.

第8図は高温ガス炉の概略構成図、第9図は第
8図における反射体の斜視図、第10図は第9図
のX−X線断面図、第11図は反射体と鋼製プレ
ナムの伸び差を説明する斜視図、第12図は反射
体と鋼製プレナムのシール構造を示す斜視図であ
る。
Figure 8 is a schematic configuration diagram of a high-temperature gas furnace, Figure 9 is a perspective view of the reflector in Figure 8, Figure 10 is a sectional view taken along line X-X in Figure 9, and Figure 11 is a reflector and steel structure. FIG. 12 is a perspective view illustrating the difference in expansion of the plenum, and FIG. 12 is a perspective view showing a seal structure between the reflector and the steel plenum.

第8図から第12図において、1は圧力容器、
2,3は圧力容器1内に配置された黒鉛構造物の
反射体および鋼製構造物の鋼製プレナム、4は燃
料体が配置された炉心部、5,6は圧力容器1に
接続された内管および外管、7,8は圧力容器1
内の上室および下室、9は圧力容器1と鋼製プレ
ナム3、反射体2によつて形成されたヘリウム通
路、10は鋼製プレナム3の内の混合室である。
In FIGS. 8 to 12, 1 is a pressure vessel;
2 and 3 are the graphite structure reflector and the steel plenum of the steel structure arranged in the pressure vessel 1, 4 is the reactor core where the fuel body is arranged, and 5 and 6 are connected to the pressure vessel 1. Inner pipe and outer pipe, 7 and 8 are pressure vessel 1
9 is a helium passage formed by the pressure vessel 1, the steel plenum 3, and the reflector 2; 10 is a mixing chamber within the steel plenum 3;

この様な構造において、内管5と外管6の間に
供給された400℃のヘリウムの低温冷却材は実線
の矢印で示す如く上室7へ供給され、ヘリウム通
路9を下降して圧力容器1を冷却すると共に下室
8を経て、炉心部4を冷却し、950℃の高温冷却
材となつて混合室10、内管5内を経て図示して
いない蒸気発生器へ流れる。
In such a structure, the low-temperature coolant of 400°C helium supplied between the inner tube 5 and the outer tube 6 is supplied to the upper chamber 7 as shown by the solid arrow, and descends through the helium passage 9 to the pressure vessel. At the same time, the reactor core 4 is cooled through the lower chamber 8, and becomes a high-temperature coolant at 950° C., which flows through the mixing chamber 10 and the inner pipe 5 to a steam generator (not shown).

以上は高温ガス炉内での低温冷却材、高温冷却
材の一般的な流動状態を説明したものであるが、
高温ガス炉の炉内での冷却材の流れは、第8図に
破線の矢印で示す様に炉心部4を冷却する高温冷
却材の流れと、実線の矢印で示す圧力容器1を冷
却する低温冷却材の流れに分けられる。このと
き、高温冷却材は炉心部4での圧力損失があるた
め、炉心部4出口において高温冷却材と低温冷却
材の間に差圧が生ずる。
The above describes the general flow state of low-temperature coolant and high-temperature coolant in a high-temperature gas reactor.
The flow of coolant inside the high-temperature gas reactor consists of a high-temperature coolant flow that cools the reactor core 4, as shown by the dashed arrow in FIG. 8, and a low-temperature coolant flow that cools the pressure vessel 1, as shown by the solid-line arrow. Divided into coolant streams. At this time, since the high-temperature coolant has a pressure loss in the core 4, a pressure difference is generated between the high-temperature coolant and the low-temperature coolant at the outlet of the core 4.

一方、反射体2は、第9図に示す様に黒鉛ブロ
ツクを積み重ねたブロツク構造であり、各黒鉛ブ
ロツクの温度分布及び熱膨張率のばらつき、加工
公差などによつてその上面に第10図に示す様な
数mmの段差11が生ずる。
On the other hand, the reflector 2 has a block structure in which graphite blocks are stacked as shown in FIG. A step 11 of several mm is generated as shown.

また、反射体2と鋼製プレナム3は第11図の
斜視図に示す様に重ねられているので、反射体2
の黒鉛と、鋼製プレナム3の金属との熱膨張差に
よつて第11図の常温時の実線の位置から昇温時
には二点鎖線の位置へ移動し、半径方向変位差1
2、軸方向変位差13によつて反射体2と鋼製プ
レナム3とのシール面14,15の間に隙間が生
じ、この隙間、あるいは反射体2の段差11から
前述の高温冷却材と低温冷却材の差圧によつて低
温冷却材が高温冷却材に流入したり、あるいは高
温冷却材が低温冷却材に流入して炉心部4出口に
おける高温冷却材の温度が異常に低下する欠点が
ある。
In addition, since the reflector 2 and the steel plenum 3 are stacked on top of each other as shown in the perspective view of FIG.
Due to the difference in thermal expansion between the graphite in the steel plenum 3 and the metal in the steel plenum 3, it moves from the solid line at normal temperature in Fig. 11 to the two-dot chain line when the temperature rises, resulting in a radial displacement difference of 1.
2. Due to the axial displacement difference 13, a gap is created between the sealing surfaces 14 and 15 between the reflector 2 and the steel plenum 3, and from this gap or the step 11 of the reflector 2, the above-mentioned high temperature coolant and low temperature There is a drawback that the temperature of the high-temperature coolant at the core 4 outlet drops abnormally due to the differential pressure of the coolant causing the low-temperature coolant to flow into the high-temperature coolant or the high-temperature coolant to flow into the low-temperature coolant. .

従来、この反射体2と鋼製プレナム3とのシー
ル機構として第12図に示すシール機構が用いら
れていた。
Conventionally, a sealing mechanism shown in FIG. 12 has been used as a sealing mechanism between the reflector 2 and the steel plenum 3.

第12図のシール機構は、反射体2の側面にシ
ール板16を設け、このシール板16を板バネ1
7で押し付ける構造である。
The seal mechanism shown in FIG. 12 has a seal plate 16 provided on the side surface of the reflector 2, and this seal plate 16
It is a structure that is pressed with 7.

ところが、この様なシール機構でシール効果を
得るためには極めて高い加工精度が必要となる。
また、この場合にはシール部の温度はヘリウム通
路9側で約400℃と比較的低温であるが、さらに
高温で使用する場合には板バネ17が応力緩和を
起こしてシール板16の押し付け力が低下し、シ
ール効果が期待できない欠点がある。
However, in order to obtain a sealing effect with such a sealing mechanism, extremely high processing accuracy is required.
Further, in this case, the temperature of the sealing part is relatively low at about 400°C on the helium passage 9 side, but when used at a higher temperature, the leaf spring 17 causes stress relaxation and the pressing force of the sealing plate 16 increases. This has the disadvantage that the sealing effect cannot be expected.

最近、高温ガス炉はさらに高温(950℃)での
運転が計画されていることから高い加工精度が必
要でなく、耐高温性を持たせた高温ガス炉の炉内
シール機構の開発が要求されている。
Recently, high-temperature gas furnaces are planned to operate at even higher temperatures (950°C), so high machining accuracy is no longer required, and the development of a sealing mechanism inside the high-temperature gas furnace that is resistant to high temperatures is required. ing.

〔発明の目的〕[Purpose of the invention]

本発明は従来の欠点を解消しようとするもの
で、その目的とするところは、反射体と鋼製プレ
ナムとのシール面に、熱膨張による伸び差、段
差、圧力差が生じても確実にシールすることがで
きるシール機構を得ようとするものである。
The present invention attempts to eliminate the conventional drawbacks, and its purpose is to ensure a reliable seal even if there is a difference in elongation, step, or pressure due to thermal expansion on the sealing surface between the reflector and the steel plenum. The aim is to obtain a sealing mechanism that can

〔発明の概要〕[Summary of the invention]

本発明は前述の目的を達成するために、反射体
と鋼製プレナムのシール面に反射体側に溝を設け
るとともに、鋼製プレナム側に突起を設け、溝と
突起との間にセラミツクフアイバーのシール材を
介在したものである。
In order to achieve the above-mentioned object, the present invention provides a groove on the sealing surface of the reflector and the steel plenum, and also provides a protrusion on the steel plenum side, and seals a ceramic fiber between the groove and the protrusion. This is with a material interposed.

〔実施例〕〔Example〕

以下本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例に係る反射体と鋼製プ
レナムのシール機構を示した斜視図、第2図aか
らfはシール材の拡大断面図を示すもので、a,
c,eはシール材の圧縮前の状態を示し、b,
d,fはシール材の圧縮後の状態を示す。第3図
はシール材の圧縮率とリーク量比を比較した特性
曲線図、第4図は第1図の他の実施例を示した断
面図、第5図a〜dは反射体の半径方向における
シール機構を示す斜視図および断面図、第6図お
よび第7図はシール材の圧縮率とリーク量比の関
係を示す特性曲線図である。
FIG. 1 is a perspective view showing a sealing mechanism between a reflector and a steel plenum according to an embodiment of the present invention, and FIGS. 2a to 2f are enlarged sectional views of the sealing material.
c, e show the state of the sealing material before compression, b,
d and f indicate the state of the sealing material after compression. Fig. 3 is a characteristic curve diagram comparing the compressibility and leakage ratio of the sealing material, Fig. 4 is a sectional view showing another embodiment of Fig. 1, and Figs. 5 a to d are radial directions of the reflector. 6 and 7 are characteristic curve diagrams showing the relationship between the compressibility of the sealing material and the leakage ratio.

第1図から第4図において、2は反射体、3は
鋼製プレナム、11は段差、14,15は反射体
2と鋼製プレナム3のシール面で従来のものと同
一のものを示す。
1 to 4, 2 is a reflector, 3 is a steel plenum, 11 is a step, and 14 and 15 are sealing surfaces between the reflector 2 and the steel plenum 3, which are the same as the conventional ones.

18は反射体2のシール面15に設けた溝、1
9は鋼製プレナム3のシール面14に設けた突
起、20a,20bはシール材で、シール材20
aは第2図に示す様にセラミツクフアイバー2
1、セラミツククロス22、金属箔23によつて
形成され、シール材20bはセラミツクフアイバ
ー21のみによつて形成されている。
18 is a groove provided in the sealing surface 15 of the reflector 2;
9 is a projection provided on the sealing surface 14 of the steel plenum 3; 20a and 20b are sealing materials;
a is a ceramic fiber 2 as shown in Figure 2.
1. It is formed of ceramic cloth 22 and metal foil 23, and the sealing material 20b is formed only of ceramic fiber 21.

この様な構造において、第1図に示す様に反射
体2のシール面15には溝18,18を穿設し、
この溝18,18にはシール材20b,20bを
配置する。
In such a structure, grooves 18, 18 are bored in the sealing surface 15 of the reflector 2, as shown in FIG.
Seal materials 20b, 20b are arranged in these grooves 18, 18.

一方、鋼製プレナム3のシール面14には突起
19,19を設け、反射体2のシール面15と鋼
製プレナム3のシール面15の間にはシール材2
0aを介在させてシール面14,15を密封する
のである。
On the other hand, protrusions 19 are provided on the sealing surface 14 of the steel plenum 3, and a sealing material 2 is provided between the sealing surface 15 of the reflector 2 and the sealing surface 15 of the steel plenum 3.
The seal surfaces 14 and 15 are sealed by interposing the seal 0a.

ここで、第2図を用いてシール材20aの構造
について述べる。
Here, the structure of the sealing material 20a will be described using FIG. 2.

第2図のa,c,eはシール材20aの圧縮前
の状態を示し、b,d,fはシール材20aの圧
縮後の状態を示す。
In FIG. 2, a, c, and e show the states of the sealing material 20a before compression, and b, d, and f show the states of the sealing material 20a after being compressed.

反射体2は前述した如くブロツク構造となつて
おり、個々のブロツクのシール面15には加工、
据付公差及び熱膨張率のばらつきにより段差11
を生じる。従つて、シール材20aはこの段差1
1に追従できるように第2図に示す様な圧縮性に
富むアルミナシリカ系のセラミツクフアイバー2
1を使用する。セラミツクフアイバー21は圧縮
時においても透過率が大きいためセラミツクフア
イバー21を透過する流れを防止するためにシー
ル材20a内に金属箔23を設置する。
As mentioned above, the reflector 2 has a block structure, and the sealing surface 15 of each block is machined.
Step 11 due to installation tolerance and variation in thermal expansion coefficient
occurs. Therefore, the sealing material 20a covers this step 1.
1, alumina-silica ceramic fiber 2 with high compressibility as shown in Fig. 2 is used.
Use 1. Since the ceramic fiber 21 has a high transmittance even when compressed, a metal foil 23 is installed within the sealing material 20a to prevent the flow from passing through the ceramic fiber 21.

また、反射体2と鋼製プレナム3では熱膨張率
が異なるため、昇温過程で鋼製プレナム3とシー
ル材20aの間で伸び差が生じる。このとき、鋼
製プレナム3とシール材20aの摩擦抵抗が大き
いと反射体2に過大な力が作用するため、摩擦抵
抗の小さいセラミツククロス22でシール材20
aを第2図に示す様に被覆する。このセラミツク
クロス22はシール材20aのセラミツクフアイ
バー21の飛散防止の役割もする。
Furthermore, since the reflector 2 and the steel plenum 3 have different coefficients of thermal expansion, a difference in elongation occurs between the steel plenum 3 and the sealing material 20a during the temperature rising process. At this time, if the frictional resistance between the steel plenum 3 and the sealing material 20a is large, excessive force will act on the reflector 2, so the sealing material 20a will be
A is coated as shown in FIG. This ceramic cloth 22 also serves to prevent the ceramic fibers 21 of the sealing material 20a from scattering.

なお、シール材20bはセラミツクフアイバー
21のみとした。
Note that the sealing material 20b was only the ceramic fiber 21.

この様にシール材20aは反射体2と鋼製プレ
ナム3のシール面14,15の間に配置し、シー
ル材20aの両側面には突起19,19を配置し
てシール面14,15を密封する。
In this way, the sealing material 20a is placed between the reflector 2 and the sealing surfaces 14, 15 of the steel plenum 3, and the protrusions 19, 19 are placed on both sides of the sealing material 20a to seal the sealing surfaces 14, 15. do.

また、溝18,18にはセラミツクフアイバー
21のみのシール材20b,20bを充填し、シ
ール材20b,20bの圧縮反力により突起1
9,19は常に鋼製プレナム3側に押し上げら
れ、シール材20aとシール面14,15との面
接触によるシール効果及びシール材20aのせん
断変形を防止することができる。
Further, the grooves 18, 18 are filled with sealing material 20b, 20b made of only the ceramic fiber 21, and the compression reaction force of the sealing material 20b, 20b causes the protrusion to
9 and 19 are always pushed up toward the steel plenum 3 side, thereby preventing the sealing effect and shearing deformation of the sealing material 20a due to surface contact between the sealing material 20a and the sealing surfaces 14 and 15.

第3図はシール機構の透過流を防止する金属箔
23の有効性を実験したデータであり、実線Aは
第2図a〜fに示す様にシール材20aに金属箔
22を設けた場合のリーク量比を示し、リーク量
比は50%圧縮時の金属箔22を設けたもののリー
ク量を1.0として比較したものである。
Figure 3 shows experimental data on the effectiveness of the metal foil 23 in preventing permeation flow through the seal mechanism, and the solid line A indicates the data obtained when the metal foil 22 is provided on the sealing material 20a as shown in Figures 2 a to f. The leakage ratio is shown, and the leakage ratio is compared with the leakage amount when the metal foil 22 is provided at 50% compression as 1.0.

破線Bは金属箔23を配置しない場合のリーク
量比である。
The broken line B is the leakage ratio when the metal foil 23 is not arranged.

この様にシール材20aに金属箔23を配置す
ることによつて、リーク量比は少なくなり、金属
箔23をシール材20a中に配置することがシー
ル機構に有効であることが確認された。
By arranging the metal foil 23 in the sealing material 20a in this manner, the leakage ratio was reduced, and it was confirmed that arranging the metal foil 23 in the sealing material 20a was effective for the sealing mechanism.

また、金属箔22を配置することによつてシー
ル材20aの圧縮量の変化に対して安定したシー
ル性能が得られる。
Moreover, by arranging the metal foil 22, stable sealing performance can be obtained against changes in the amount of compression of the sealing material 20a.

第4図は第1図の他の実施例を示すもので、反
射体2側に溝18、鋼製プレナム3側に突起19
を設け、溝18と突起19との間に第2図に示す
シール材20aを配置したものである。
FIG. 4 shows another embodiment of FIG. 1, with a groove 18 on the reflector 2 side and a protrusion 19 on the steel plenum 3 side.
A sealing material 20a shown in FIG. 2 is arranged between the groove 18 and the protrusion 19.

第4図のものは反射体2と鋼製プレナム3の熱
膨張差を全てシール材20aの圧縮量により吸収
するものであり、熱膨張差の吸収には限界がある
が、シール材20aのシール長さをより長くする
ことができる。
In the one shown in Fig. 4, the difference in thermal expansion between the reflector 2 and the steel plenum 3 is completely absorbed by the amount of compression of the sealing material 20a.Although there is a limit to the absorption of the difference in thermal expansion, the difference in thermal expansion between the reflector 2 and the steel plenum 3 is absorbed. The length can be made longer.

第5図から第7図のものは反射体2,2間に第
5図aに示すように段差11が発生した場合の半
径方向におけるシール機構を示すものである。
5 to 7 show a sealing mechanism in the radial direction when a step 11 occurs between the reflectors 2 and 2 as shown in FIG. 5a.

第5図aの斜視図に示す様に反射体2と鋼製プ
レナム3の間をシール材20aによつてのみシー
ルすると、シール材20aは圧縮性に富んでいる
が、反射体2,2間に第5図aに示す様に段差1
1がある場合には、第5図bに示す隙間24が反
射体2,2間に生じ、第6図に示す様なリーク量
比を示す。
As shown in the perspective view of FIG. 5a, if the space between the reflector 2 and the steel plenum 3 is sealed only by the sealing material 20a, the sealing material 20a is highly compressible, but As shown in Figure 5a, there is a step 1.
1, a gap 24 shown in FIG. 5b is generated between the reflectors 2, and a leak amount ratio as shown in FIG. 6 is exhibited.

第6図のリーク量比は50%圧縮時で段差が零の
場合のリーク量比を1.0としてそのリーク量比を
曲線Cで示し、曲線Dは段差11が5mm、曲線E
は段差11が10mmの場合のリーク量比を示す。
The leakage ratio in Fig. 6 is shown by curve C, assuming that the leakage ratio is 1.0 when the step 11 is 5 mm at 50% compression, and curve E when the step 11 is 5 mm.
indicates the leakage ratio when the step 11 is 10 mm.

この様に段差11が大きくなるに従つて、リー
ク量は多くなる。
In this way, as the step 11 becomes larger, the amount of leakage increases.

そこで、第5図のc,dに示す様に、この段差
11ができる反射体2側に第5図cに示す様に溝
18を穿設し、この溝18内に第5図dに示す様
にシール材20bを配置したものである。
Therefore, as shown in FIG. 5 c and d, a groove 18 is bored as shown in FIG. The sealing material 20b is arranged as shown in FIG.

これによつて段差11にはシール材20bによ
る緩やかなスロープができ、隙間24の発生を防
止することができる。
As a result, a gentle slope is formed in the step 11 by the sealing material 20b, and the generation of the gap 24 can be prevented.

第7図の曲線Fはシール材20bの50%圧縮時
で段差11が零の場合のリーク量比を1.0とした
場合の曲線で、△は段差11が3mm、▽は段差1
1が5mm、□は段差11が7mmの場合を示す。
Curve F in FIG. 7 is a curve when the leakage ratio is 1.0 when the sealing material 20b is compressed by 50% and the step 11 is 0. △ indicates the step 11 is 3 mm, and ▽ indicates the step 1.
1 indicates 5 mm, and □ indicates the case where the step 11 is 7 mm.

この様に第5図c,dで示す様に反射体2に溝
18を設け、この溝18にシール材20bを充填
することによつて、段差11の大、小に係らずリ
ーク量は少なくなり、これによつて反射体2の半
径方向のリーク量が少なくなるシール機構が得ら
れる。
By providing the grooves 18 in the reflector 2 and filling the grooves 18 with the sealing material 20b as shown in FIGS. As a result, a sealing mechanism is obtained in which the amount of leakage in the radial direction of the reflector 2 is reduced.

この様に高温ガス炉におけるシール機構は反射
体2と鋼製プレナム3の温度950℃前後であるこ
とから、従来のガスケツト、O−リング等のシー
ル手段を用いることができないが、本発明のシー
ル機構としては主としてセラミツクフアイバー2
1を用いているために、シール面14,15ある
いは段差11への追従性に優れ、反射体2、鋼製
プレナム3の加工精度はそれほど厳しい加工精度
は要求されない。
As described above, since the temperature of the reflector 2 and steel plenum 3 is around 950°C in the sealing mechanism in a high-temperature gas furnace, conventional sealing means such as gaskets and O-rings cannot be used, but the seal of the present invention The mechanism is mainly ceramic fiber 2.
1, the reflector 2 and the steel plenum 3 are not required to have very strict processing accuracy.

〔発明の効果〕〔Effect of the invention〕

本発明は反射体と鋼製プレナムのシール面に反
射体側に溝を設けるとともに、鋼製プレナム側に
突起を設け、溝と突起との間にセラミツクフアイ
バーのシール材を介在したので、シール面に熱膨
張による伸び差、段差、圧力差が生じても確実に
シールすることができ、しかもこのシール機構が
加工、据付公差を吸収することができるので高温
ガス炉を安価に製作することができる。
In the present invention, a groove is provided on the sealing surface of the reflector and the steel plenum, and a protrusion is provided on the steel plenum side, and a ceramic fiber seal material is interposed between the groove and the protrusion. It is possible to reliably seal even if there is a difference in elongation, a step, or a pressure difference due to thermal expansion, and since this sealing mechanism can absorb processing and installation tolerances, the high-temperature gas furnace can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る反射体と鋼製プ
レナムのシール機構を示した斜視図、第2図aか
らfはシール材の拡大断面図を示すもので、a,
c,eはシール材の圧縮前の状態を示し、b,
d,fはシール材の圧縮後の状態を示す、第3図
はシール材の圧縮率とリーク量比を比較した特性
曲線図、第4図は第1図の他の実施例を示した断
面図、第5図a〜dは反射体の半径方向における
シール機構を示す斜視図および断面図、第6図お
よび第7図はシール材の圧縮率とリーク量比の関
係を示す特性曲線図、第8図は高温ガス炉の概略
構成図、第9図は第8図における反射体の斜視
図、第10図は第9図X−X線断面図、第11図
は反射体と鋼製プレナムの伸び差を説明する斜視
図、第12図は反射体と鋼製プレナムの従来のシ
ール構造を示す斜視図である。 1……圧力容器、2……反射体、3……鋼製プ
レナム、14,15……シール面、18……溝、
19……突起、20a,20b……シール材。
FIG. 1 is a perspective view showing a sealing mechanism between a reflector and a steel plenum according to an embodiment of the present invention, and FIGS. 2a to 2f are enlarged sectional views of the sealing material.
c, e show the state of the sealing material before compression, b,
d and f show the state of the sealing material after compression. Figure 3 is a characteristic curve diagram comparing the compression rate and leakage ratio of the sealing material. Figure 4 is a cross section showing another example of Figure 1. Figures 5a to 5d are perspective views and sectional views showing the sealing mechanism in the radial direction of the reflector, Figures 6 and 7 are characteristic curve diagrams showing the relationship between the compressibility of the sealing material and the leakage ratio; Figure 8 is a schematic diagram of the high-temperature gas reactor, Figure 9 is a perspective view of the reflector in Figure 8, Figure 10 is a sectional view taken along the line X-X in Figure 9, and Figure 11 is the reflector and steel plenum. FIG. 12 is a perspective view showing a conventional seal structure between a reflector and a steel plenum. 1... Pressure vessel, 2... Reflector, 3... Steel plenum, 14, 15... Seal surface, 18... Groove,
19...Protrusion, 20a, 20b...Sealing material.

Claims (1)

【特許請求の範囲】[Claims] 1 圧力容器内に黒鉛構造物の反射体と鋼製構造
物の鋼製プレナムを配置し、反射体と鋼製プレナ
ムの外側には低温冷却材を流し、内側には高温冷
却材を流す高温ガス炉において、前記反射体と鋼
製プレナムのシール面に反射体側に溝を設けると
ともに鋼製プレナム側に突起を設け、溝と突起と
の間にセラミツクフアイバーのシール材を介在し
たことを特徴とする高温ガス炉。
1 A reflector made of graphite structure and a steel plenum made of steel structure are arranged in a pressure vessel, and low-temperature coolant is flowed on the outside of the reflector and steel plenum, and high-temperature gas is poured inside with high-temperature coolant. In the furnace, a groove is provided on the reflector side and a projection is provided on the steel plenum side in the sealing surface of the reflector and the steel plenum, and a ceramic fiber sealing material is interposed between the groove and the projection. High temperature gas furnace.
JP60069174A 1985-04-03 1985-04-03 High-temperature gas reactor Granted JPS61228381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60069174A JPS61228381A (en) 1985-04-03 1985-04-03 High-temperature gas reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60069174A JPS61228381A (en) 1985-04-03 1985-04-03 High-temperature gas reactor

Publications (2)

Publication Number Publication Date
JPS61228381A JPS61228381A (en) 1986-10-11
JPH0481155B2 true JPH0481155B2 (en) 1992-12-22

Family

ID=13395091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60069174A Granted JPS61228381A (en) 1985-04-03 1985-04-03 High-temperature gas reactor

Country Status (1)

Country Link
JP (1) JPS61228381A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6415966B2 (en) * 2014-12-22 2018-10-31 イビデン株式会社 Reactor structure
EP3166113B1 (en) * 2015-04-02 2020-03-11 Clear Inc. Small load-following nuclear power generation system using heat deformation of reflector caused by thermal expansion phenomenon
JP5967790B1 (en) * 2015-04-02 2016-08-10 株式会社クリア Load-following small nuclear power generation system using thermal deformation of reflector due to thermal expansion phenomenon

Also Published As

Publication number Publication date
JPS61228381A (en) 1986-10-11

Similar Documents

Publication Publication Date Title
US3009869A (en) Fuel element for nuclear reactors
US3022240A (en) Nuclear reactor fuel element
US4000595A (en) Insulation structure for pressure vessel cavity
US3466226A (en) Nuclear fuel element
JPS62265597A (en) Auxiliary cooling system of radiating vessel
US2984613A (en) Fuel element for nuclear reactors
US3212989A (en) Nuclear fuel element with carbon jacket
SU841066A1 (en) Heat insulating element of power-generating nuclear reactor
US3413195A (en) Fuel or fertile element for nuclear reactors
JPH0481155B2 (en)
US2952603A (en) Jacketed fissionable member
US3224944A (en) Ceramic-matrix-type fuel element with graphite fabric affixed to exterior surface
US4175002A (en) Nuclear fuel pellet with oppositely bottomed holes
US3625823A (en) Nuclear fuel rod
US3274069A (en) Fuel rods for nuclear reactors
US3421979A (en) Nuclear reactor fuel elements
JP5607876B2 (en) Design of fuel rods using internal spacer elements and methods of using them
JPH0273192A (en) Nuclear fuel element
JPH0245797A (en) Particle bed type fuel element
US3072553A (en) Nuclear reactor
JPH023153B2 (en)
CN116403737A (en) Modularized high-safety heat pipe reactor core structure
JPS58161877A (en) Nuclear fuel element
JPS6168586A (en) Core support plate structure of high-temperature gas cooling type reactor
JPH102981A (en) Core block for helium gas cooling type nuclear reactor