JPS5919893A - Thermal shielding device of fbr type reactor - Google Patents
Thermal shielding device of fbr type reactorInfo
- Publication number
- JPS5919893A JPS5919893A JP57129811A JP12981182A JPS5919893A JP S5919893 A JPS5919893 A JP S5919893A JP 57129811 A JP57129811 A JP 57129811A JP 12981182 A JP12981182 A JP 12981182A JP S5919893 A JPS5919893 A JP S5919893A
- Authority
- JP
- Japan
- Prior art keywords
- reactor vessel
- coolant
- partition wall
- reactor
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は液体ナトリウム等の液体金属を冷却材として使
用する高速増殖炉の熱遮蔽装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a thermal shielding device for a fast breeder reactor that uses liquid metal such as liquid sodium as a coolant.
一般に高速増殖炉は液体ナトリウム等の液体金属を冷却
制として使用する。ところで、このような液体金属の冷
却材は熱伝達能力がきわめて大きいため、この冷却材に
接している原子炉容器の壁の温度はこの冷却材の温度変
化に対してきわめて早く追従する。しかし、原子炉容器
のうち冷却材の液面よシ上方の部分では冷却材の温度変
化には追従しない。このため、原子炉の運転開始、停止
の場合のように冷却材の温度が変化すると原子炉容器の
うち冷却材の液面下の部分と液面上の部分との間に大き
な温度差が生じる。そして、この冷却制の液面近傍の原
子炉容器壁には大きな温度勾配が生じ、過大な熱応力が
発生し、原子炉容器の健全性を損なう不具合があった。Generally, fast breeder reactors use liquid metal such as liquid sodium as a cooling system. By the way, since such a liquid metal coolant has an extremely high heat transfer ability, the temperature of the wall of the reactor vessel that is in contact with the coolant follows the temperature change of the coolant very quickly. However, the portion of the reactor vessel above the coolant liquid level does not follow the temperature change of the coolant. For this reason, when the temperature of the coolant changes, such as when starting or stopping a nuclear reactor, a large temperature difference occurs between the part of the reactor vessel below the coolant liquid level and the part above the liquid level. . A large temperature gradient occurs on the reactor vessel wall near the liquid level in this cooling system, causing excessive thermal stress and impairing the integrity of the reactor vessel.
そこで上記不具合を防止する為の一方法として、以下の
ような方法が考えられている。すなわち中空で内部に気
体を封入した熱遮蔽体を多数個原子炉容器の内面に沿っ
て配列し、これらの熱遮蔽体によって原子炉容器への熱
流束を減少して熱応力を軽減し、特に原子炉の運転開始
、停止時における冷却材温度変化による原子炉容器壁の
温度勾配を緩和し原子炉容器の健全性を確保する構成で
ある@
〔背景技術の問題点〕
上記構成によると熱遮蔽体の内外で大きな温度差が発生
し7これにより熱遮蔽体自体に熱応力が発生し熱遮蔽体
自体の健全性が損われる恐れがあった。Therefore, the following method has been considered as a method for preventing the above-mentioned problems. In other words, a large number of hollow heat shields filled with gas are arranged along the inner surface of the reactor vessel, and these heat shields reduce the heat flux into the reactor vessel to reduce thermal stress. This is a configuration that ensures the integrity of the reactor vessel by alleviating the temperature gradient on the reactor vessel wall due to changes in coolant temperature when the reactor starts and stops operating. A large temperature difference occurs between the inside and outside of the body.7 This causes thermal stress to occur in the heat shield itself, and there is a fear that the integrity of the heat shield itself may be impaired.
本発明の目的とするところは、冷却材から原子炉容器へ
の熱流束を減少し冷却材の温度が変化した場合に生じる
原子炉容器の熱応力を軽減して原子炉容器の健全性を確
保し、かつ熱遮蔽体自体に発生する熱応力を大巾に低減
させ信頼性の高い高速増殖炉の熱遮蔽装置を得ることに
ある。It is an object of the present invention to ensure the integrity of the reactor vessel by reducing the heat flux from the coolant to the reactor vessel and reducing the thermal stress in the reactor vessel that occurs when the temperature of the coolant changes. The object of the present invention is to provide a highly reliable heat shielding device for a fast breeder reactor by greatly reducing the thermal stress generated in the heat shield itself.
本発明による高速増殖炉の熱遮蔽装置は、原子炉容器内
面と所定の間隔をもって設けられた筒状の仕切壁と、こ
の仕切壁と上記原子炉容器内面との間に配列され仕切壁
から原子炉容器内面に同って段階的にその厚さを増す複
数の熱遮蔽体とを具備した構成である。The heat shielding device for a fast breeder reactor according to the present invention includes a cylindrical partition wall provided at a predetermined distance from the inner surface of the reactor vessel, and a cylindrical partition wall arranged between the partition wall and the above-mentioned inner surface of the reactor vessel. This structure includes a plurality of heat shields whose thickness increases in stages along the inner surface of the furnace vessel.
すなわち仕切壁と原子炉容器内面との間に設ける遮蔽体
の厚さを仕切壁から原子炉容器内面に向って段階的に厚
くする構成である。That is, the thickness of the shield provided between the partition wall and the inner surface of the reactor vessel is gradually increased from the partition wall toward the inner surface of the reactor vessel.
したがって各遮蔽体の内外の温度差を小さくすることが
でき、熱応力の発生を低減させることができ、それによ
って熱過渡条件となるプラント起動、停止時における昇
降温度差を制限する必要もなく原子炉の運転制御性を簡
略化することができる。Therefore, it is possible to reduce the temperature difference between the inside and outside of each shield, reducing the occurrence of thermal stress, and thereby eliminating the need to limit the temperature difference between rising and falling temperatures during plant startup and shutdown, which are thermal transient conditions. The operational controllability of the furnace can be simplified.
第1図ないし第8図t−参照して本発明の一実施例を説
明する。An embodiment of the present invention will be described with reference to FIGS. 1 to 8.
図中1は原子炉容器であって、この原子炉容器1内には
炉心槽2が収容されている。そして、この炉心槽2内に
は炉心3が収容されている。In the figure, 1 is a reactor vessel, and a reactor core barrel 2 is accommodated within this reactor vessel 1 . A reactor core 3 is housed within this reactor core barrel 2 .
また、4は冷却材流入管であって、この冷却材流入管4
を介して低温の冷却材5が炉心槽2内下部に供給される
。そしてこの低温の冷却月5は炉心3を上方に流れて加
熱される。そして、高温となった冷却材5は原子炉容器
1内上部に流出し、さらに冷却材流出管6を介して原子
炉容器1外に流出するように構成されている。そして、
この冷却材流出管6から流出した高温の冷却材は中間熱
交換器(図示せず)で二次冷却材と熱交換され、低温と
なった冷却材は冷却材流入管4を介してふたたび炉心槽
2内下部に流入し、この径路を循環するように構成され
ている0また、この原子炉容器1の上端は遮蔽プラグ7
によって閉塞されている。この遮蔽プラグ7は固定プラ
グFas大回転プラグ7bおよび小回転プラグ7cとか
ら構成され、小回転グラグアcには炉心上部機構8や燃
料交換機9が取付けられている。そして、上記原子炉容
器1内の冷却材5の液面より上の部分はカバーガス空間
10が形成され、このカバーガス空間10内にはカバー
ガスたとえばアルゴンガスが封入されている。そして、
この原子炉容器1の内側には熱遮蔽装置が設けられてお
り、以下この熱遮蔽装置について説明する。11はその
仕切壁であって、円筒状をガし、原子炉容器1内面と所
定の間隔をもって同心状に配置されている。そして、こ
の仕切壁1ノの下端は原子炉容器1と炉心槽2との間を
区画する隔壁12にまで達し、この仕切壁11の下端と
原子炉容器1の内面との間は閉塞されている。また、こ
の仕切壁11の上端は冷却材5の液面よシ上方のカバー
ガス空間10Kまで達している。なお、この仕切壁1ノ
の下部には小径の流入孔(図示せず)が形成され、この
仕切壁11と原子炉容器1との間の間隙内にも冷却材5
が流入している。そして、この仕切壁11と原子炉容器
1の内面との間には多数の単位遮蔽体13・・・が配列
されている。Further, 4 is a coolant inflow pipe, and this coolant inflow pipe 4
A low-temperature coolant 5 is supplied to the lower part of the core tank 2 through the reactor. This low-temperature cooling moon 5 then flows upward through the reactor core 3 and is heated. The coolant 5 that has reached a high temperature flows out into the upper part of the reactor vessel 1 and further flows out of the reactor vessel 1 via the coolant outflow pipe 6. and,
The high temperature coolant flowing out from the coolant outflow pipe 6 is heat exchanged with the secondary coolant in an intermediate heat exchanger (not shown), and the coolant that has become low temperature is returned to the reactor core via the coolant inflow pipe 4. The upper end of the reactor vessel 1 is configured to flow into the lower part of the tank 2 and circulate through this path.
is blocked by. This shielding plug 7 is composed of a fixed plug Fa, a large rotation plug 7b, and a small rotation plug 7c, and a core upper mechanism 8 and a fuel exchanger 9 are attached to the small rotation Guagua c. A cover gas space 10 is formed above the liquid level of the coolant 5 in the reactor vessel 1, and a cover gas such as argon gas is sealed in the cover gas space 10. and,
A heat shielding device is provided inside the reactor vessel 1, and this heat shielding device will be explained below. The partition wall 11 has a cylindrical shape and is arranged concentrically with the inner surface of the reactor vessel 1 at a predetermined distance. The lower end of this partition wall 1 reaches the partition wall 12 that partitions between the reactor vessel 1 and the reactor core tank 2, and the space between the lower end of this partition wall 11 and the inner surface of the reactor vessel 1 is closed. There is. Further, the upper end of this partition wall 11 reaches the cover gas space 10K above the liquid level of the coolant 5. Note that a small diameter inflow hole (not shown) is formed in the lower part of this partition wall 1, and a coolant 5 is also formed in the gap between this partition wall 11 and the reactor vessel 1.
is flowing in. A large number of unit shielding bodies 13 are arranged between the partition wall 11 and the inner surface of the reactor vessel 1.
これらの単位遮蔽体13・・・は比較的小形の矩形板状
をなし、かつ原子炉容器1の内面に沿うように円弧状に
罎゛曲している。そしてこれらの単位遮蔽体13・・・
は仕切壁11から突設された複数のデルトlr・・・に
よって支持され、原子炉容器1の内面に沿って同一周面
上に配列され、かつ互に離間した複数層たとえば3層に
配置されている。そして、各層における熱抵抗素子13
・・・の合せ目が互に重なり合わないように、これら単
位遮蔽体13・・・の配置は各層において互にずれて配
置されている。さらにこの単位遮蔽体13・・・は仕切
壁1ノから原子炉容器1の内面に向ってその厚さを増し
た構成となっている。そして、これら単位遮蔽体13・
・・は、第4図および第5図に示す如く構成されている
。すなわち、13mは本体であって中空容器状をなし、
完全な気密性が与えられ、内部にはアルゴンガス等の気
体が封入されている。また、この本体13aの内部には
複数枚の輻射防止板13b・・・が設けられている。こ
れら輻射防止板13b・・・の表面は高反射率表面に形
成され、この本体13a内を輻射によって熱が通過する
のを防止するように構成されている。そしてこれら輻射
防止板13b・・・の一部は屈曲され、たとえば上下方
向に連続する断面山形の突条13c・・・が形成され、
これら突条13c・・・の頂部が本体13aの内面や隣
接する輻射防止板13・・・に描接し、これら輻射防止
板13b・・・間および輻射防止板13b・・・と本体
13aの内面との間の間隙を保持するように構成されて
いる。These unit shielding bodies 13 have a relatively small rectangular plate shape, and are curved in an arc shape along the inner surface of the reactor vessel 1. And these unit shielding bodies 13...
are supported by a plurality of delts lr... projecting from the partition wall 11, arranged on the same peripheral surface along the inner surface of the reactor vessel 1, and arranged in a plurality of layers, for example three layers, spaced apart from each other. ing. And thermal resistance element 13 in each layer
The arrangement of these unit shielding bodies 13 is shifted from each other in each layer so that the seams of the unit shielding bodies 13 do not overlap with each other. Furthermore, the unit shielding bodies 13 are configured such that their thickness increases from the partition wall 1 toward the inner surface of the reactor vessel 1. And these unit shielding bodies 13.
... is constructed as shown in FIGS. 4 and 5. That is, 13m is the main body, which is shaped like a hollow container,
It is completely airtight, and gas such as argon gas is sealed inside. Moreover, a plurality of radiation prevention plates 13b... are provided inside the main body 13a. The surfaces of these radiation prevention plates 13b are formed to have high reflectance, and are configured to prevent heat from passing through the main body 13a due to radiation. A portion of these radiation prevention plates 13b... are bent to form, for example, protrusions 13c with a chevron-shaped cross section that are continuous in the vertical direction,
The tops of these protrusions 13c are in contact with the inner surface of the main body 13a and the adjacent radiation prevention plates 13, and between the radiation prevention plates 13b and between the radiation prevention plates 13b and the inner surface of the main body 13a. It is configured to maintain a gap between the
以上の如く構成された本発明の一実施例は炉心3の上部
から流出した高温の冷却材は仕切壁11によって遮ぎら
れ、原子炉容器1の内面に直接接触することはない。ま
た、この仕切壁11と原子炉容器1の内面との間には単
位遮蔽体13・・・が配列されているので、熱伝導によ
って原子炉容器1に伝達される熱流束はきわめて少ない
。よって原子炉の起動時や停止時に冷却材5の温度が急
激に変化しても原子炉容器lの温度変化は小さく、よっ
てこの原子炉容器lの液面近傍部分に過大な熱応力が生
じることが防止される。なお、第6図はこのような単位
遮蔽体13・・・を設けたことによる結果についておこ
なった試験の結果を示す。すなわち、第6図の曲線Aは
冷却材5の温度が変化した場合のこの一実施例の原子炉
容器1の液面近傍の温度分布を示す。なお、曲線Bはこ
のような単位遮蔽体13・・・を設けなかった場合の温
度分布を示す。In one embodiment of the present invention configured as described above, the high temperature coolant flowing out from the upper part of the reactor core 3 is blocked by the partition wall 11 and does not come into direct contact with the inner surface of the reactor vessel 1. Moreover, since the unit shielding bodies 13 are arranged between the partition wall 11 and the inner surface of the reactor vessel 1, the heat flux transmitted to the reactor vessel 1 by thermal conduction is extremely small. Therefore, even if the temperature of the coolant 5 suddenly changes when the reactor is started or stopped, the temperature change in the reactor vessel l is small, and therefore excessive thermal stress is generated in the portion of the reactor vessel l near the liquid level. is prevented. Incidentally, FIG. 6 shows the results of a test conducted on the results obtained by providing such unit shielding bodies 13. That is, curve A in FIG. 6 shows the temperature distribution near the liquid level of the reactor vessel 1 in this embodiment when the temperature of the coolant 5 changes. Note that curve B shows the temperature distribution when such unit shielding bodies 13 are not provided.
この第6図から明らかなように、単位遮蔽体13・・・
を設けないものは冷却材の液面を境にして急激な温度変
化が生じているものであるが、この一実施例のものは温
度勾配がゆるやかであシ、原子炉容器1壁の熱応力が軽
減される。As is clear from this FIG. 6, the unit shielding body 13...
In the case where the temperature gradient is not provided, there is a rapid temperature change at the liquid level of the coolant, but in this example, the temperature gradient is gentle, and the thermal stress on the wall of the reactor vessel is reduced. is reduced.
次に冷却材温度が変化した場合について説明する。第7
図の曲線Cは冷却材と原子炉容器1壁との間に生じる温
度勾配を示す。従来のように各単位遮蔽体13・・・の
厚さを同じだとすると仕切壁11寄シの内側単位遮蔽体
13・・・の内周側と外周側とでは大きな温度差(TI
Tz)(図中D−E間)、を生じる。そしてこのとき発
生する熱応力(σ)は上記温度差に比例し
Eα
σ=2(1□)CTx−Tz)・・・・・・・・・(1
)によって算出され大きな熱応力となる。これに対して
本実施例の場合は、単位遮蔽体13・・・の厚さを仕切
壁11から原子炉容器1内面に向って厚くしてあシ第8
図に示すように各単位遮蔽体13・・・の内周側と外周
側との間に生ずる温度差(TI T2)はほぼ均一と
なシ小さな値(図中G−H間)となる。したがって発生
する熱応力も大巾に低減される〇
すなわち仕切壁11と原子炉容器I内壁との間にその厚
さが仕切壁11から原子炉容器1内面に向って厚くなる
ように設けることによυ、上記各熱遮蔽体13・・・の
内周側と外周側との間の温度差をほぼ均一にかつ小さな
値に抑えることができそれによって熱応力の発生を低減
させることができる。それによって熱過渡条件となるプ
ラント起動、停止時尋おける昇降一度差を制限する必要
もなく原子炉の運転制御性を簡略化することができる。Next, a case where the coolant temperature changes will be explained. 7th
Curve C in the figure shows the temperature gradient that occurs between the coolant and the reactor vessel 1 wall. If the thickness of each unit shielding body 13 is the same as in the past, there will be a large temperature difference (TI
Tz) (between DE and E in the figure). The thermal stress (σ) generated at this time is proportional to the above temperature difference and is Eα σ=2(1□)CTx−Tz)・・・・・・・・・(1
), resulting in large thermal stress. On the other hand, in the case of this embodiment, the thickness of the unit shielding bodies 13 is increased from the partition wall 11 toward the inner surface of the reactor vessel 1.
As shown in the figure, the temperature difference (TIT2) generated between the inner circumferential side and the outer circumferential side of each unit shielding body 13 is substantially uniform and takes a small value (between G and H in the figure). Therefore, the generated thermal stress is also greatly reduced.In other words, by providing the space between the partition wall 11 and the inner wall of the reactor vessel I so that its thickness increases from the partition wall 11 toward the inner surface of the reactor vessel 1. Therefore, the temperature difference between the inner circumferential side and the outer circumferential side of each of the heat shields 13 can be suppressed to a substantially uniform and small value, thereby reducing the occurrence of thermal stress. As a result, it is not necessary to limit the difference in elevation during plant startup and shutdown, which is a thermal transient condition, and the operational controllability of the reactor can be simplified.
本発明による高速増殖炉の熱遮蔽装置は、原子炉容器内
面と所定の間隔をもって設けられた筒状の仕切壁と、こ
の仕切壁と上記原子炉容器内、面との間に配列され、仕
切壁から原子炉容器内面に向って段階的にその厚さを増
す複数の熱遮蔽体とを具備した構成である。A heat shielding device for a fast breeder reactor according to the present invention includes a cylindrical partition wall provided at a predetermined distance from the inner surface of a reactor vessel, and a cylindrical partition wall arranged between the partition wall and the inside surface of the reactor vessel. This structure includes a plurality of heat shields whose thickness gradually increases from the wall toward the inner surface of the reactor vessel.
すなわち仕切壁と原子炉容器内面との間に設ける遮蔽体
の厚さを仕切壁から原子炉容器内面に向って段階的に厚
くする構成である。That is, the thickness of the shield provided between the partition wall and the inner surface of the reactor vessel is gradually increased from the partition wall toward the inner surface of the reactor vessel.
したがって各遮蔽体の内外の温度差を小さくすることが
でき、熱応力の発生を低減させることができそれによっ
て熱過渡条件となるプラント起動、停止時における昇降
温度差を制限する必要もなく原子炉の運転制御性を簡略
化することができる等その効果は犬である。Therefore, it is possible to reduce the temperature difference between the inside and outside of each shield, reducing the occurrence of thermal stress, and eliminating the need to limit the temperature difference between rising and falling temperatures during plant startup and shutdown, which is a thermal transient condition. Its effects, such as being able to simplify the driving control of the vehicle, are outstanding.
第1図ないし第8図は本発明の一実施例を示す図で第1
図はループ形高速増殖炉の縦断面図、第2図は第1図の
■−■断面図、第3図は第2図の■−■断面図、第4図
は単位熱遮蔽体の横断面図、第5図は第4図のv−■断
面図、第6図は冷却材の液面近傍の原子炉容器の温度分
布を示す線図、第7図および第8図は原子炉容器半径方
向の温度分布を示す線図である。
1・・・原子炉容器、11・・・仕切壁、13・・・単
位熱遮蔽体。
第 1 図
第2s
第3図
第7図
壁
1.500
(’C)
(0C)Figures 1 to 8 are diagrams showing one embodiment of the present invention.
The figure is a vertical cross-sectional view of a loop fast breeder reactor, Figure 2 is a cross-sectional view taken along ■-■ in Figure 1, Figure 3 is a cross-sectional view taken along ■-■ in Figure 2, and Figure 4 is a cross-sectional view of a unit heat shield. 5 is a sectional view taken along the line v-■ in FIG. 4, FIG. 6 is a diagram showing the temperature distribution of the reactor vessel near the coolant liquid level, and FIGS. 7 and 8 are the reactor vessel. FIG. 3 is a diagram showing temperature distribution in the radial direction. DESCRIPTION OF SYMBOLS 1... Reactor vessel, 11... Partition wall, 13... Unit heat shielding body. Figure 1 Figure 2s Figure 3 Figure 7 Wall 1.500 ('C) (0C)
Claims (1)
仕切壁と、この仕切壁と上記原子炉容器内面との間に配
列され仕切壁から原子炉容器内面に向って段階的にその
厚さを増す複数の熱遮蔽体とを具備したことを特徴とす
る高速増殖炉の熱遮蔽装置。A cylindrical partition wall provided at a predetermined distance from the inner surface of the reactor vessel, and arranged between the partition wall and the inner surface of the reactor vessel, the thickness of which is gradually increased from the partition wall toward the inner surface of the reactor vessel. 1. A heat shielding device for a fast breeder reactor, comprising: a plurality of heat shielding bodies that increase the heat shielding temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57129811A JPS5919893A (en) | 1982-07-26 | 1982-07-26 | Thermal shielding device of fbr type reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57129811A JPS5919893A (en) | 1982-07-26 | 1982-07-26 | Thermal shielding device of fbr type reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5919893A true JPS5919893A (en) | 1984-02-01 |
Family
ID=15018801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57129811A Pending JPS5919893A (en) | 1982-07-26 | 1982-07-26 | Thermal shielding device of fbr type reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5919893A (en) |
-
1982
- 1982-07-26 JP JP57129811A patent/JPS5919893A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3962032A (en) | Fast nuclear reactor | |
JPS62265597A (en) | Auxiliary cooling system of radiating vessel | |
US3132998A (en) | Nuclear reactors | |
JPS5919893A (en) | Thermal shielding device of fbr type reactor | |
US3099616A (en) | Steam cooled reactor and fuel channel | |
US4116765A (en) | Liquid metal cooled nuclear reactor | |
US3493758A (en) | Radiation shielding and cooling for nuclear reactor utilizing molten metal | |
US3769161A (en) | Reactor vessel supporting device | |
JP3221989B2 (en) | Fast reactor core | |
JP3021431B1 (en) | Core tank with shield | |
JPS58191990A (en) | Thermal shielding device for fast breeder | |
US3151035A (en) | Nuclear reactor fuel elements | |
Costes | Reactor vessel supporting device | |
JPS60108788A (en) | Device for protecting component of fast neutron type reactorfrom heat | |
JPS6130237B2 (en) | ||
JPH01185485A (en) | Thermal protecting device of reactor vessel | |
JPH023158B2 (en) | ||
JPH0525317B2 (en) | ||
JPS61180190A (en) | Heat shielding device for fast breeder reactor | |
JPS5970996A (en) | Thermal shield device for fast breeder | |
JPS5972095A (en) | Thermal shield device for fast breeder | |
JPS62245187A (en) | Fast breeder reactor | |
JPS62245189A (en) | Nuclear reactor | |
Taylor | IMPROVEMENTS RELATING TO NUCLEAR REACTORS AND IN THE OPERATION THEREOF | |
JPS58144785A (en) | Liquid metal cooled type fast breeder |