JPS63133666A - Solid-state image sensing device and its manufacture - Google Patents

Solid-state image sensing device and its manufacture

Info

Publication number
JPS63133666A
JPS63133666A JP61282429A JP28242986A JPS63133666A JP S63133666 A JPS63133666 A JP S63133666A JP 61282429 A JP61282429 A JP 61282429A JP 28242986 A JP28242986 A JP 28242986A JP S63133666 A JPS63133666 A JP S63133666A
Authority
JP
Japan
Prior art keywords
photodiode
solid
light
silicon
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61282429A
Other languages
Japanese (ja)
Inventor
Fumiaki Emoto
文昭 江本
Sakaki Horii
堀居 賢樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP61282429A priority Critical patent/JPS63133666A/en
Publication of JPS63133666A publication Critical patent/JPS63133666A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Abstract

PURPOSE:To obtain a solid-state image sensing device whose sensitivity in the region of short wavelengths from the visible spectrum, i.e., the so-call blue sensitivity, is improved by a method wherein a semiconductor layer where a lattice is matched to a crystal of a photodiode and a which can transmit the light better than a material for the photodiode is laminated on the photodiode. CONSTITUTION:A semiconductor layer 9 where a lattice is matched to a crystal of a photodiode and which can transmit the light better than a material for the photodiode is laminated on the photodiode. For example, a photoelectric transducer part of a CCD solid-state image sensing device is composed of a P-well 16, an n-type silicon layer 18 and a mixed crystal layer 9 of silicon and carbon (Si1-XCX); the constituent ratio of silicon to carbon inside the mixed crystal layer 9 is changed continuously from the ratio of carbon at 100% to the ratio of silicon to carbon at 50% to 50%. Through this constitution, the semiconductor layer 9 which can easily transmit the light does not generate a carrier even when it is illuminated by the light; is addition, the light in the region of short wavelengths from the visible spectrum can penetrate into a deep part; the carrier is generated where no interface with an oxide film exists; a device is difficult to be influenced by the interface level with the oxide film; the blue sensitivity is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ビデオカメラ、電子スチルカメラおよび監視
用カメラなどに用いることができる固体撮像装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solid-state imaging device that can be used in video cameras, electronic still cameras, surveillance cameras, and the like.

従来の技術 近年、固体撮像装置は、Pn接合ホトダイオードを用い
て光電変換し、その信号電荷を、上記ホトダイオードに
蓄積し、そして上記信号電荷をMOSスイッチを用いて
CODの転送チャンネルに転送する構造のものが、量産
されている。
BACKGROUND OF THE INVENTION In recent years, solid-state imaging devices have developed a structure in which a Pn junction photodiode is used for photoelectric conversion, the signal charge is stored in the photodiode, and the signal charge is transferred to a COD transfer channel using a MOS switch. Things are being mass produced.

以下、図面を参照しながら上述したような従来の固体撮
像装置を説明する。第3図は従来の固体撮像装置の断面
図である。n形半導体層1とP形半導体層7とから構成
されているホトダイオードは、光が照射されると光電変
換して信号電荷を生成する。生成された信号電荷はn形
半導体層1の表面に蓄積される。蓄積された信号電荷を
MOSスイッチのゲート4に電圧を印加してn形半導体
層6に転送する。n形半導体層6は、電荷結合素子のチ
ャンネル層である。
Hereinafter, a conventional solid-state imaging device as described above will be explained with reference to the drawings. FIG. 3 is a sectional view of a conventional solid-state imaging device. A photodiode made up of an n-type semiconductor layer 1 and a p-type semiconductor layer 7 performs photoelectric conversion when irradiated with light to generate signal charges. The generated signal charges are accumulated on the surface of the n-type semiconductor layer 1. The accumulated signal charges are transferred to the n-type semiconductor layer 6 by applying a voltage to the gate 4 of the MOS switch. The n-type semiconductor layer 6 is a channel layer of a charge coupled device.

発明が解決しようとする問題点 しかしながら上記のような構成では、シリコンの光浸入
深さが、可視光域のうち短波長側では浅くなる。そのた
めに酸化膜3とn形半導体層1の界面準位などの影響で
、可視光域のうち短波長側の感度、いわゆる青感度が、
悪いという問題がある。
Problems to be Solved by the Invention However, in the above configuration, the depth of light penetration into silicon becomes shallow on the short wavelength side of the visible light range. Therefore, due to the influence of the interface state between the oxide film 3 and the n-type semiconductor layer 1, the sensitivity in the short wavelength side of the visible light range, so-called blue sensitivity,
The problem is that it's bad.

本発明は、上記欠点に鑑み青感度が改善された固体撮像
装置を提供するものである。
In view of the above drawbacks, the present invention provides a solid-state imaging device with improved blue sensitivity.

問題点を解決するための手段 上記問題点を解決するために本発明の固体撮像装置はホ
トダイオードの上に上記ホトダイオードを形成している
半導体に比べて、より光の浸入深さの深い半導体からな
る層が形成されている。またこの光の浸入深さの深い半
導体層の形成は低温テエビタキシャル成長ができる分子
線エピタキシャル成長法(MBK)、光エピタキシャル
成長法または気相エピタキシャル成長法(有機金属気相
エピタキシャル成長法など)を用いて行なう。
Means for Solving the Problems In order to solve the above problems, the solid-state imaging device of the present invention is made of a semiconductor that allows light to penetrate deeper than the semiconductor that forms the photodiode above the photodiode. layers are formed. In addition, the formation of the semiconductor layer with a deep penetration depth of light is performed using molecular beam epitaxial growth (MBK), photoepitaxial growth, or vapor phase epitaxial growth method (organic metal vapor phase epitaxial growth method, etc.) that allows low-temperature epitaxial growth. .

作用 上記の構成によって、光の浸入深さの深い半導体層は光
を受けてもキャリアを生成せず、さらに可視光域の短波
長側の光でも深く浸入することができ酸化膜との界面が
ないところでキャリアが生成されるので、酸化膜との界
面準位の影響を受けにくくなり青感度が改善される。ま
た、低温のエピタキシャル成長法を用いることで、それ
以前に注入されている不純物の拡散を小さくすることが
できる。
Effect With the above structure, the semiconductor layer where light penetrates deep does not generate carriers even when it receives light, and even light with short wavelengths in the visible light range can penetrate deeply, so that the interface with the oxide film is Since carriers are generated in areas where they are not present, they are less susceptible to the influence of interface states with the oxide film, and blue sensitivity is improved. Furthermore, by using a low-temperature epitaxial growth method, it is possible to reduce the diffusion of previously implanted impurities.

実施例 以下、本発明の一実施例について図面を参照しながら説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例におけるCCD固体撮像装置
の断面図を示すものである。
FIG. 1 shows a sectional view of a CCD solid-state imaging device according to an embodiment of the present invention.

電荷転送部は、転送ゲート電極13.酸化膜12及びn
形シリコン層14.Pウェル16から成るCCDで構成
されている。光電変換部は、Pウェル181n形シリコ
ン層18及びシリコンと炭素の混晶層(Si    C
)sで構成されてい+−X    X る。混晶層9のシリコンと炭素の構成比を10゜チシリ
コンから構成比を60%シリコン、50%炭素に連続的
に変化させる。n形シリコン層18゜Pウェル16.n
形シリコン基板で過剰に蓄積された電子を捨てる縦型オ
ーバーフロードレイン構造が構成されている。遮光用ア
ルミニウム膜2はCCDの電荷転送チャンネルに光が浸
入しないようにCCDの上をおおっている。
The charge transfer section includes a transfer gate electrode 13. Oxide film 12 and n
shaped silicon layer 14. It is composed of a CCD consisting of P-well 16. The photoelectric conversion section includes a P-well 181, an n-type silicon layer 18, and a silicon-carbon mixed crystal layer (SiC
)s +−X X . The composition ratio of silicon and carbon in the mixed crystal layer 9 is continuously changed from 10% silicon to 60% silicon and 50% carbon. N-type silicon layer 18°P well 16. n
A vertical overflow drain structure is constructed to discard excess electrons accumulated in a shaped silicon substrate. A light shielding aluminum film 2 covers the CCD to prevent light from entering the charge transfer channels of the CCD.

上記構成の製造方法の1つの方法を第2図に示す。One method for manufacturing the above structure is shown in FIG.

通常のCCD固体撮像装置の製造方法の途中で第2図a
に示すようにn形シリコン層19.Pウェル2oのPn
接合ホトダイオードの上の酸化膜をエツチングし、次に
同図すに示すように分子線エピタキシャル成長を用いて
、シリコンと炭素の組成比を順次変化された混晶層22
を形成する。
In the middle of the manufacturing method of a normal CCD solid-state imaging device, the
As shown in the figure, an n-type silicon layer 19. Pn of P well 2o
The oxide film on the junction photodiode is etched, and then, as shown in the figure, a mixed crystal layer 22 whose composition ratio of silicon and carbon is successively changed using molecular beam epitaxial growth.
form.

混晶層22の膜厚は、千オングストロームから数千オン
グストロームとする。次いで同図0に示すように、その
上に酸化シリコン膜23を減圧CVDで形成し遮光用ア
ルミニウム24を形成する。
The thickness of the mixed crystal layer 22 is from 1,000 angstroms to several thousand angstroms. Next, as shown in FIG. 0, a silicon oxide film 23 is formed thereon by low pressure CVD, and a light shielding aluminum 24 is formed.

本実施例では、混晶層9をシリコンと炭素の組成を順次
変化させたが、シリコンと界面に転位が発生させずに積
層できるならば、順次変化させる必要はない。
In this embodiment, the silicon and carbon compositions of the mixed crystal layer 9 are sequentially changed, but it is not necessary to sequentially change the compositions if the layers can be stacked without generating dislocations at the interface with silicon.

また、本実施例の混晶層9の構成元素をシリコンと炭素
としたが、n形シリコン層18と結晶の格子整合のよい
、可視の短波長域の透過性のよいものならなんでもよく
、混晶でなくてもよい。
Although the constituent elements of the mixed crystal layer 9 in this embodiment are silicon and carbon, any material may be used as long as it has good crystal lattice matching with the n-type silicon layer 18 and has good transparency in the visible short wavelength range. It doesn't have to be crystal.

また、本実施例の製造方法では、混晶層22のエピタキ
シャル成長方法を分子線エピタキシャル成長法としたが
、低温エピタキシャル成長法ならなんでもよく例えば、
基板加熱をした減圧CYD法、光エピタキシャル法でも
よい。
Further, in the manufacturing method of this embodiment, the molecular beam epitaxial growth method was used as the epitaxial growth method for the mixed crystal layer 22, but any low-temperature epitaxial growth method may be used, for example,
A low pressure CYD method using substrate heating or a photoepitaxial method may be used.

また、本発明ではPn接合ホトダイオードを用いたCC
D固体撮像装置のホトダイオード上に光透過性のよい5
i1−、Cx 層を形成しているがCCD固体撮像装置
ならなんでもよく例えばMOS容量ホトダイオードを用
いたCCD固体撮像装置の酸化膜とシリコン層の間にS
i、−xOx層を形成してもよい。
In addition, in the present invention, a CC using a Pn junction photodiode
D 5 with good light transmittance on the photodiode of the solid-state imaging device
Although the i1- and Cx layers are formed, any CCD solid-state imaging device may be used, for example, an S layer is formed between the oxide film and silicon layer of a CCD solid-state imaging device using a MOS capacitor photodiode.
An i, -xOx layer may also be formed.

また本発明では、CCD固体撮像装置としたが、固体撮
像装置なら何でもよく例えばMO3型固体撮像装置でも
よい。
Further, in the present invention, a CCD solid-state imaging device is used, but any solid-state imaging device may be used, such as an MO3 type solid-state imaging device.

発明の効果 以上のように本発明は、ホトダイオードの上に光の透過
性が良いとともに格子整合のよい混晶層を設けることに
より酸化膜との界面準位などの影響にくくなり、可視光
域の短波長の光に対する感度が、改善されその実用的効
果は犬なるものがある0
Effects of the Invention As described above, the present invention provides a mixed crystal layer with good light transmittance and good lattice matching on top of the photodiode, which reduces the effects of interface states with the oxide film, and improves performance in the visible light range. Sensitivity to short wavelength light is improved, and its practical effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の固体撮像装置の断面図、第2図は本発
明の固体撮像装置の製造工程図、第3図は従来の固体撮
像装置の断面図である。 9・・・・・・光の透過し易い半導体層、11・・・・
・・層間絶縁膜、18・・・・・・n形半導体層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名q 
−、v>′:+彰R〉@とメノヒ小Jタイオードオオオ
吟Zり光のfh九して栢Rハ千sAオー11ブーーー1
r硝剥す病娼艮 f3−私送笹柩 fら一−P7ユル 18−ル邪チ蜂木畳 41 図 第2図 第2図 第3図
FIG. 1 is a cross-sectional view of a solid-state imaging device of the present invention, FIG. 2 is a manufacturing process diagram of the solid-state imaging device of the present invention, and FIG. 3 is a cross-sectional view of a conventional solid-state imaging device. 9... Semiconductor layer through which light easily passes, 11...
...Interlayer insulating film, 18...n-type semiconductor layer. Name of agent: Patent attorney Toshio Nakao and 1 other personq
-, v>': +Akira R〉@ and Menohi small J Taiodeo oh Gin Zri light fh 9 and Kayak R ha 1000 s A oh 11 boo-1
r The sick prostitute f3-private Sasa coffin f et al-P7 Yur 18-ru evil bee wooden tatami 41 Fig. 2 Fig. 2 Fig. 3

Claims (2)

【特許請求の範囲】[Claims] (1)ホトダイオードの上にホトダイオードの結晶と格
子整合がとれかつ前記ホトダイオード材料より光の透過
しやすい半導体層が積層されていることを特徴とする固
体撮像装置。
(1) A solid-state imaging device characterized in that a semiconductor layer is laminated on a photodiode, the semiconductor layer having lattice matching with the crystal of the photodiode and transmitting light more easily than the photodiode material.
(2)ホトダイオードの上に格子整合がとれた、ホトダ
イオード材料より光の透過しやすい半導体層を分子線エ
ピタキシャル成長法、光エピタキシャル成長法または気
相エピタキシャル成長法を用いた選択エピタキシャル成
長で積層して光電変換部を形成することを特徴とする固
体撮像装置の製造方法。
(2) A photoelectric conversion section is formed by laminating a lattice-matched semiconductor layer on top of the photodiode through selective epitaxial growth using molecular beam epitaxial growth, photoepitaxial growth, or vapor phase epitaxial growth. 1. A method for manufacturing a solid-state imaging device, comprising: forming a solid-state imaging device.
JP61282429A 1986-11-26 1986-11-26 Solid-state image sensing device and its manufacture Pending JPS63133666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61282429A JPS63133666A (en) 1986-11-26 1986-11-26 Solid-state image sensing device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61282429A JPS63133666A (en) 1986-11-26 1986-11-26 Solid-state image sensing device and its manufacture

Publications (1)

Publication Number Publication Date
JPS63133666A true JPS63133666A (en) 1988-06-06

Family

ID=17652297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61282429A Pending JPS63133666A (en) 1986-11-26 1986-11-26 Solid-state image sensing device and its manufacture

Country Status (1)

Country Link
JP (1) JPS63133666A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289017A (en) * 1991-12-25 1994-02-22 Rohm Co., Ltd. Solid state imaging device having silicon carbide crystal layer
US7385238B2 (en) * 2004-08-16 2008-06-10 Micron Technology, Inc. Low dark current image sensors with epitaxial SiC and/or carbonated channels for array transistors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723282A (en) * 1980-07-18 1982-02-06 Toshiba Corp Solid state image sensor
JPS59152678A (en) * 1983-02-21 1984-08-31 Victor Co Of Japan Ltd Photodetector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723282A (en) * 1980-07-18 1982-02-06 Toshiba Corp Solid state image sensor
JPS59152678A (en) * 1983-02-21 1984-08-31 Victor Co Of Japan Ltd Photodetector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289017A (en) * 1991-12-25 1994-02-22 Rohm Co., Ltd. Solid state imaging device having silicon carbide crystal layer
US7385238B2 (en) * 2004-08-16 2008-06-10 Micron Technology, Inc. Low dark current image sensors with epitaxial SiC and/or carbonated channels for array transistors
US8283710B2 (en) * 2004-08-16 2012-10-09 Micron Technology, Inc. Low dark current image sensors with epitaxial SiC and/or carbonated channels for array transistors

Similar Documents

Publication Publication Date Title
CN106067469B (en) Camera head and electronic equipment
US6023081A (en) Semiconductor image sensor
US5581099A (en) CCD solid state image device which has a semiconductor substrate with a P-type region with an N-type region formed therein by injection of arsenic
US7560330B2 (en) CMOS image sensor and method for manufacturing the same
JP2003069005A (en) Solid-state imaging device and method of manufacturing the same
JPH04355964A (en) Solid-state image pickup device and manufacture thereof
US4742027A (en) Method of fabricating a charge coupled device
TW200947612A (en) Semiconductor device and method for manufacturing same
CN100466283C (en) CMOS image sensor and method for manufacturing the same
US4947224A (en) Solid state image sensing device with photodiode to reduce smearing
JPS6126270B2 (en)
TW578303B (en) Image sensor with pixel isolation region
JPS63133666A (en) Solid-state image sensing device and its manufacture
US20080160731A1 (en) Method for fabricating cmos image sensor
JPH08316450A (en) Multilayer solid-state image pickup device and its manufacture
JPH01274468A (en) Manufacture of solid-state image sensing device
JP2007141938A (en) Solid-state imaging device and its manufacturing method
KR100600957B1 (en) Image sensor capable of increasing optical sensitivity and method for fabrication thereof
KR100644025B1 (en) Image sensor capable of increasing optical sensitivity and method for fabrication thereof
JPS62217656A (en) Solid state image pick-up element
JPH069236B2 (en) Solid-state imaging device and manufacturing method thereof
JPS6376370A (en) Solid-state image sensing element
JP3451833B2 (en) Solid-state imaging device and method of manufacturing solid-state imaging device
JP2897284B2 (en) Solid-state imaging device
JPH05145056A (en) Solid state image sensor