JPS63133406A - Compound superconductor - Google Patents

Compound superconductor

Info

Publication number
JPS63133406A
JPS63133406A JP62263725A JP26372587A JPS63133406A JP S63133406 A JPS63133406 A JP S63133406A JP 62263725 A JP62263725 A JP 62263725A JP 26372587 A JP26372587 A JP 26372587A JP S63133406 A JPS63133406 A JP S63133406A
Authority
JP
Japan
Prior art keywords
compound
compound superconductor
mechanical strength
superconductor
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62263725A
Other languages
Japanese (ja)
Inventor
Mitsuyuki Imaizumi
今泉 三之
Kiyoshi Yoshizaki
吉崎 浄
Fumio Fujiwara
藤原 二三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62263725A priority Critical patent/JPS63133406A/en
Publication of JPS63133406A publication Critical patent/JPS63133406A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To enable mass-production industrially by refraining from applying heat treatment affecting superconductivity of compound superconductive material filled at time of filling process during or after cross-section reduction processing. CONSTITUTION:The process consists of a filling process to fill pulverulent or fibrous compound superconductive material 3 displaying superconductivity into a metallic cylinder 2 and a cross-section reduction process to obtain a prescribed shaped compound superconductor by cross-section redution processing of the metallic cylinder 2 after the filling process. During the cross-section reduction process and after said process heat treatment affecting the superconductivity of the compound superconductive material 3 shall not be applied. Since heat treatment is not required it is suitable for industrial mass-production.

Description

【発明の詳細な説明】 本発明は化合物超電導線材等の化合物超電導に関する。[Detailed description of the invention] The present invention relates to compound superconductors such as compound superconducting wires.

超電導機器は核融合炉、超電導発電機、電力貯蔵などの
エネルギー関連装置をはじめとして、加速器などの高エ
ネルギー物理装置、磁気浮上列車や船舶推進などの運輸
機器、パイ中間子治療器などの医療機器等として広汎な
分野でその利用が逐次実現されつつあり、これら機器の
進歩と巨大化に伴って高磁場や高速励磁に耐え得る超電
導線材が要望されている。
Superconducting equipment includes energy-related equipment such as nuclear fusion reactors, superconducting generators, and power storage, as well as high-energy physical equipment such as accelerators, transportation equipment such as magnetic levitation trains and ship propulsion, and medical equipment such as pion therapy devices. The use of superconducting wires is gradually being realized in a wide range of fields, and as these devices progress and become larger, there is a need for superconducting wires that can withstand high magnetic fields and high-speed excitation.

例えば8TCテスラ〕以上の高磁界においては通常、高
磁界特性の優れたNb5SnやVsGa  などの化合
物超電導線材が使用されているが、この種の超電導線材
は化合物であることから機械的に脆弱でらシ、このため
構造及び製造において様々な工夫がなされている。即ち
、その一つとして非連続繊維型化合物超電導線材が考え
られ、この線材は非連続繊維超電導物質量の近接効果に
て電流が維持されるため大きな電磁力が作用し変形して
も前記超電導物質相互の間隔が成る一定の距離以下であ
ればその超電導電流特性を保持する特長を有する。
For example, in high magnetic fields of 8TC Tesla or higher, compound superconducting wires such as Nb5Sn and VsGa, which have excellent high-field characteristics, are usually used, but since these types of superconducting wires are made of compounds, they are not mechanically fragile. For this reason, various improvements have been made in structure and manufacturing. Specifically, one possible example is a discontinuous fiber type compound superconducting wire, in which current is maintained due to the proximity effect of the amount of discontinuous fiber superconducting material, so even if a large electromagnetic force acts and deforms, the superconducting material They have the advantage of retaining their superconducting current characteristics as long as their mutual spacing is less than a certain distance.

かかる超電導線材は、例えば歯及びSn″成分を含むC
u基合金を溶融状態から急速に冷却凝固させてNb粒子
をCu−5nブロンズマトリツクス中に微細に分散せし
め、このマトリックスに引抜加工等を施こし述粒子を非
連続繊維状に形成し、熱処理を施こすことによってNb
非連続繊維の表面部分にNb、3nを生成する方法、又
はNb粉末とCu及びSn若しくはCu−Sn合金粉末
とを加工焼結もしくは熱間押出しを行なった後伸線加工
を施こすことによ、9CuとSn若しくはCu−Sn合
金中にNb非連続繊維を形成し、次いで熱処理を施こし
てNb非連続繊維表面にNb、Snを生成する方法など
によって作成されている。
Such superconducting wires include, for example, C containing teeth and Sn'' components.
The U-based alloy is rapidly cooled and solidified from a molten state to finely disperse Nb particles in a Cu-5n bronze matrix, and this matrix is subjected to drawing processing etc. to form the particles into discontinuous fibers, followed by heat treatment. By applying
A method of producing Nb, 3n on the surface portion of discontinuous fibers, or a method of processing and sintering or hot extruding Nb powder and Cu and Sn or Cu-Sn alloy powder, followed by wire drawing. , 9Cu and Sn or a Cu-Sn alloy, Nb discontinuous fibers are formed, and then heat treatment is performed to generate Nb and Sn on the surface of the Nb discontinuous fibers.

しかし、Cu基合金を急冷凝固する方法は、Nbを微細
かつ均質に分散させるために冷却速度をできる限シ遠く
する必要があシ、従って鋳塊を大きくした場合には熱容
量も大きくなるため急冷できず、工業的な規模での製造
が困難であった。また、歯等の粉末を用いる方法は、N
bが化学的に活性な金属であることからその表面が酸化
し易い上にN7やN1などのガスを吸着して後工程での
加工性が著しく損なわれ、加工性が良好で微細なNb繊
維を得ることが期待できず、このためかかる方法におい
ては酸化や上記ガスの汚染を防止すべく特別な前処理と
取扱い上の配慮が必要であり、信頼性を有するこの種の
線材を工業的に得ることは非常に困難であった。
However, in the method of rapidly solidifying Cu-based alloys, it is necessary to set the cooling rate as far as possible in order to disperse Nb finely and homogeneously. This made it difficult to manufacture on an industrial scale. In addition, the method using powdered teeth, etc.
Since b is a chemically active metal, its surface is easily oxidized and adsorbs gases such as N7 and N1, significantly impairing workability in subsequent processes. For this reason, such methods require special pretreatment and handling considerations to prevent oxidation and contamination with the above gases, and it is difficult to produce this type of reliable wire material industrially. It was very difficult to obtain.

本発明は上記した点に鑑みてなされたもので、電磁力に
起因する機械的な応力によシ変形した場合でも超電導特
性が殆んど劣化することがなく、かつ工業的に量産する
ことが可能な構造を有する化合物超電導体を提供するこ
とを目的とする。
The present invention has been made in view of the above-mentioned points, and the superconducting properties hardly deteriorate even when deformed due to mechanical stress caused by electromagnetic force, and it is possible to mass-produce it industrially. The purpose of the present invention is to provide a compound superconductor having a possible structure.

即ち、本発明は、化合物超電導物質の周面に、機械的強
度の大きな金属及びAg 、 At、 Cu  などの
機械的強度が比較的小さく加工が容易な金属を直接この
順に包囲配設して成ることを特徴とする化合物超電導体
である。
That is, the present invention is made by directly surrounding and disposing metals with high mechanical strength and metals with relatively low mechanical strength and easy to process, such as Ag, At, and Cu, in this order around the circumferential surface of a compound superconducting material. It is a compound superconductor characterized by the following.

本発明において、上記化合物超電導物質とは、Nbs 
Sn 、 Nbs Ge 、 ’Nbs AL+ Vs
 Ge 、 Va Ga 、 Vs S iなどのA1
5型化合物、HfVt  すどのC15型化合物、。
In the present invention, the compound superconducting material is Nbs
Sn, Nbs Ge, 'Nbs AL+ Vs
A1 such as Ge, Va Ga, Vs Si, etc.
Type 5 compound, HfVt type C15 compound.

NbC、NbNなどのNaC2型化合物t’ B aP
b I −X B l z O3。
NaC2 type compounds such as NbC and NbN t' B aP
b I -X B l z O3.

Li++zTi2−XO4などの酸化物、PbMoa 
Ssなどのシュブレル相化合物等を含み、これらの物質
を粒径又は直径が数μmから数十Xs度の扮末状又は繊
維状にて用いる。
Oxides such as Li++zTi2-XO4, PbMoa
It contains Chebrel phase compounds such as Ss, etc., and these substances are used in the form of powder or fibers with a particle size or diameter of several μm to several tens of Xs degrees.

また、上記機械的強度の大きな金属とは、Niを10〜
30重i1パーセント含むキュプロニッケルやCuを3
0〜40重量ノe−セント含むモネルなどのCu−Ni
合金、(::u−13eやCu−Tiなどの析出硬化型
銅合金、SUS 304や5US316などの非磁性ス
テンレス、冷間加工性の優れている運やTaなどの金属
を含む。
In addition, the above-mentioned metal with high mechanical strength refers to 10 to 10% of Ni.
30% cupronickel and Cu containing 1%
Cu-Ni such as Monel containing 0-40 wt.
Alloys include precipitation hardening copper alloys such as u-13e and Cu-Ti, non-magnetic stainless steels such as SUS 304 and 5US316, and metals with excellent cold workability such as Ta and Ta.

次に、本発明を非連続繊維型ぷ1Sn化合物線材の実施
例に基づいて説明する。即ち、線径500〜3200ズ
、長さ0.5〜5 μmのNb * Sn繊維状粉末を
、外径11m5、内径LowのCu−30重量/4’−
セントNiノぐイブ(キュプロニッケルパイフ)に充填
し、このパイプの周面に外径3.2+a、内径11.8
■の銅パイプを被覆し、これらの複合金属を一体的に冷
間伸線によシ線引加工することにより外径3+mの線材
を作成し、次にこの線材を対辺距離が2.8■になるよ
うに断面六角形に形成した後この線材を、第1図に示す
ように、外径50IIIII+、内径37.5■の銅容
器1に127本挿入しく図中、2はキュプロニッケル/
ぐイブ、1′は該ノぞイブ上に被覆した銅、3はNb*
 Sn繊維状粉末である。)、650℃にて熱間押出し
加工を施こし外径20wl1の線材を作成し、最後にこ
の線材に再び冷間伸線加工を施こして直径0.5唾の丸
線を作成した後ピッチの長さ20■のねじり加工を施こ
し本発明に係る非連続繊維型Nb、Sn化合物線材を得
た。
Next, the present invention will be explained based on an example of a discontinuous fiber type P1Sn compound wire. That is, Nb*Sn fibrous powder with a wire diameter of 500 to 3200 z and a length of 0.5 to 5 μm was mixed with Cu-30 weight/4'- with an outer diameter of 11 m5 and an inner diameter of Low.
Fill the Cent Ni pipe (cupronickel pipe) with an outer diameter of 3.2 + a and an inner diameter of 11.8 on the circumferential surface of this pipe.
A wire rod with an outer diameter of 3+m is created by coating the copper pipe of ■ and drawing these composite metals integrally by cold wire drawing, and then this wire rod with a distance across flats of 2.8 After forming the wire into a hexagonal cross section, 127 wires are inserted into a copper container 1 having an outer diameter of 50III+ and an inner diameter of 37.5cm, as shown in FIG.
1' is the copper coated on the nozzle, 3 is Nb*
It is Sn fibrous powder. ), hot extrusion processing was performed at 650℃ to create a wire rod with an outer diameter of 20 wl1, and finally, this wire rod was subjected to cold wire drawing processing again to create a round wire with a diameter of 0.5 mm. A discontinuous fiber type Nb, Sn compound wire according to the present invention was obtained by twisting the wire to a length of 20 cm.

そして、この得られた非連続繊維型Nb、Sn化合物線
材に、4.2にの温度を有する液体ヘリウム中にて12
テスラのバイアス磁場を加えると共に曲げ歪を作用させ
、キュプロニッケル・母イブ内のNb3Sn化合物にお
ける臨界電流密度を測定し、その結果を第2図において
曲線Aとして示した。
The obtained discontinuous fiber type Nb, Sn compound wire was heated in liquid helium at a temperature of 4.2
The critical current density in the Nb3Sn compound in the cupronickel mother plate was measured by applying a Tesla bias magnetic field and applying bending strain, and the results are shown as curve A in FIG.

比較のために市販の連続繊維極細多心線と従来法によシ
得た非連続繊維型Nbs Sn 線材の臨界電流密度を
上述したと同一条件にて測定し、その結果を第2図にお
いてそれぞれ曲線B、Cとして示しだ。
For comparison, the critical current densities of a commercially available continuous fiber ultrafine multicore wire and a discontinuous fiber type NBS Sn wire obtained by a conventional method were measured under the same conditions as described above, and the results are shown in Figure 2. They are shown as curves B and C.

この第2図から明らかなように、本発明に係る非連続繊
維型Nb s S n化合物線材は、歪がOにおける臨
界電流密度が市販及び従来の線材のそれよりも数倍以上
に向上している。これは本発明の線材がキュプロニッケ
ル内に従来の線材のようにCu−8n  ブロンズなど
の非超電導物質を含まず、全てNb3Sn超電導物質か
ら構成されていることによる。
As is clear from FIG. 2, the critical current density of the discontinuous fiber Nb s S n compound wire according to the present invention at a strain of O is several times higher than that of commercially available and conventional wires. There is. This is because the wire of the present invention does not contain a non-superconducting material such as Cu-8n bronze in the cupronickel unlike conventional wires, but is entirely composed of Nb3Sn superconducting material.

また、本発明の線材は歪が5%でも臨界電流密度が殆ん
ど低下しないのに対して従来法によシ得た線材は歪が1
%で臨界電流密度が低下している。
In addition, the critical current density of the wire of the present invention hardly decreases even when the strain is 5%, whereas the wire obtained by the conventional method has a strain of 1%.
%, the critical current density decreases.

これは本発明の線材が微細なNb、Sn繊維状粉末によ
シ構成されていることによる。このように本発明に係る
非連続繊維型Nbs S n化合物線材は超電導特性が
極めて優れており、又機械的応力が作用した場合でも超
電導特性が殆んど劣化することがない。
This is because the wire of the present invention is composed of fine Nb and Sn fibrous powder. As described above, the discontinuous fiber type NbsSn compound wire according to the present invention has extremely excellent superconducting properties, and even when mechanical stress is applied, the superconducting properties hardly deteriorate.

尚、上記実施例において、キュプロニッケル・蓼イブ2
に被覆した銅パイプ1′は、フラッフスジヤング等によ
シ発生した熱を速やかに外径方向へ伝達するために設け
たのであシ、必ずしも設ける必要がない。
In addition, in the above example, cupronickel/Tai Eve 2
The coated copper pipe 1' is provided to quickly transmit the heat generated by the fluff jacket or the like in the outer radial direction, and therefore does not necessarily need to be provided.

以上説明したように本発明によれば、化合物超電導体を
、化合物超電導物質の周面に、機械的強度の大きな金属
及びAt、Ag、Cu  などの機械的強度が比較的小
さく加工が容易な金属を直接この順に包囲配設した構成
にしたので、従来のこの種の超電導体のようにCu−5
nブロンズなどの非超電導物質を含まず、単位断面積車
たシの電流密度が飛躍的に増大し、また構造が簡単であ
ることから工業的に貴意できる。そして、本発明に係る
化合物超電導線材を巻回して作成した電磁石等において
該線材に大きな電磁力が作用し変形した場合でも粉末状
の化合物超電導物質が渭シによって移動しその近接効果
が維持されるので、電流密度の低下を有効に防止するこ
とができ、また機械的強度の大きな金属としてキュプロ
ニッケルなどの高抵抗率を有する金属を用いているので
、ノクルスマグネットなどの動的に変化する電流、磁場
による交流損失を著しく低減でき、従って大きい電磁力
が作用する高磁界電磁石等において高性能で信頼性を有
する線材として広く利用に供することができその実用的
価値は大きい。
As explained above, according to the present invention, a compound superconductor is formed on the peripheral surface of a compound superconducting material using metals with high mechanical strength and metals with relatively low mechanical strength such as At, Ag, and Cu that are easy to process. Since the structure is such that Cu-5 is directly surrounded in this order, unlike conventional superconductors of this type,
It is industrially valuable because it does not contain non-superconducting substances such as n-bronze, the current density per unit cross-sectional area increases dramatically, and the structure is simple. In an electromagnet or the like made by winding the compound superconducting wire according to the present invention, even if a large electromagnetic force acts on the wire and deforms it, the powdery compound superconducting material moves by the wave and the proximity effect is maintained. Therefore, it is possible to effectively prevent a decrease in current density, and since a metal with high resistivity such as cupronickel is used as a metal with large mechanical strength, dynamically changing current such as Noculus magnet is used. It can significantly reduce alternating current loss due to magnetic fields, and therefore can be widely used as a high-performance and reliable wire in high-field electromagnets where large electromagnetic forces act, and its practical value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例において銅容器内に複数の複合
金属線材を配設して構成したビレットの断面図、第2図
は本発明に係る非連続繊維型Nb 3Sn化合物線材と
市販の複合多心化合物超電導線及び従来法により得た非
連続繊維型Nb、Sn化合物線材との歪を加えた場合の
臨界電流密度の変化をそれぞれ示す特性図である。 1・・・銅容器、2・・・キュゾロニッケルパイプ、3
・・・粉末状のNb5Sn化合物超電導物質。
FIG. 1 is a cross-sectional view of a billet constructed by arranging a plurality of composite metal wires in a copper container in an embodiment of the present invention, and FIG. FIG. 2 is a characteristic diagram showing changes in critical current density when strain is applied to a composite multicore compound superconducting wire and a discontinuous fiber type Nb, Sn compound wire obtained by a conventional method. 1...Copper container, 2...Cuzoronickel pipe, 3
...Powdered Nb5Sn compound superconducting material.

Claims (12)

【特許請求の範囲】[Claims] (1)化合物超電導物質の周面に、機械的強度の大きな
金属及びAg、Al、Cuなどの機械的強度が比較的小
さく加工が容易な金属を直接この順に包囲配設して成る
ことを特徴とする化合物超電導体。
(1) Metals with high mechanical strength and metals with relatively low mechanical strength and easy to process, such as Ag, Al, and Cu, are directly surrounding the compound superconducting material in this order. Compound superconductor.
(2)上記化合物超電導物質は粉末状であることを特徴
とする特許請求の範囲第1項に記載の化合物超電導体。
(2) The compound superconductor according to claim 1, wherein the compound superconductor is in powder form.
(3)上記化合物超電導物質は非連続の繊維状であるこ
とを特徴とする特許請求の範囲第1項に記載の化合物超
電導体。
(3) The compound superconductor according to claim 1, wherein the compound superconductor is in the form of discontinuous fibers.
(4)上記化合物超電導物質はNb_3Sn、Nb_3
Ge、Nb_3Al、V_3Ge、V_3Ga、V_3
SiなどのA15型化合物であることを特徴とする特許
請求の範囲第1項乃至第3項のいずれかに記載の化合物
超電導体。
(4) The above compound superconducting materials are Nb_3Sn, Nb_3
Ge, Nb_3Al, V_3Ge, V_3Ga, V_3
The compound superconductor according to any one of claims 1 to 3, which is an A15 type compound such as Si.
(5)上記化合物超電導物質はHfV_2などのC15
型化合物であることを特徴とする特許請求の範囲第1項
乃至第3項のいずれかに記載の化合物超電導体。
(5) The above compound superconducting material is C15 such as HfV_2
The compound superconductor according to any one of claims 1 to 3, which is a type compound.
(6)上記化合物超電導物質はNbC、NbNなどのN
aCl型化合物であることを特徴とする特許請求の範囲
第1項乃至第3項のいずれかに記載の化合物超電導体。
(6) The above compound superconducting material is NbC, NbN, etc.
The compound superconductor according to any one of claims 1 to 3, which is an aCl type compound.
(7)上記化合物超電導物質はBaPb_1_−_xB
i_xO_3、LiH_xTi_2_−_xO_4など
の酸化物であることを特徴とする特許請求の範囲第1項
乃至第3項のいずれかに記載の化合物超電導体。
(7) The above compound superconducting material is BaPb_1_-_xB
The compound superconductor according to any one of claims 1 to 3, which is an oxide such as i_xO_3, LiH_xTi_2_-_xO_4.
(8)上記化合物超電導物質はPbMo_6S_8など
のシュブレル相化合物であることを特徴とする特許請求
の範囲第1項乃至第3項のいずれかに記載の化合物超電
導体。
(8) The compound superconductor according to any one of claims 1 to 3, wherein the compound superconductor is a Chebrel phase compound such as PbMo_6S_8.
(9)上記機械的強度の大きな金属はキュプロニッケル
、モネルなどで代表されるCu−Ni合金であることを
特徴とする特許請求の範囲第1項に記載の化合物超電導
体。
(9) The compound superconductor according to claim 1, wherein the metal with high mechanical strength is a Cu-Ni alloy represented by cupronickel, monel, etc.
(10)上記機械的強度の大きな金属はCu−Be、C
u−Tiなどで代表される析出硬化型銅合金であること
を特徴とする特許請求の範囲第1項に記載の化合物超電
導体。
(10) The metals with high mechanical strength are Cu-Be, C
The compound superconductor according to claim 1, which is a precipitation hardening copper alloy represented by u-Ti.
(11)上記機械的強度の大きな金属はSUS_3_0
_4、SUS_3_1_6などで代表される非磁性ステ
ンレス合金であることを特徴とする特許請求の範囲第1
項に記載の化合物超電導体。
(11) The above metal with high mechanical strength is SUS_3_0
Claim 1, characterized in that it is a non-magnetic stainless steel alloy represented by _4, SUS_3_1_6, etc.
Compound superconductor described in Section.
(12)上記機械的強度の大きな金属はNb系若しくは
Ta系金属であることを特徴とする特許請求の範囲第1
項に記載の化合物超電導体。
(12) Claim 1, wherein the metal with high mechanical strength is a Nb-based or Ta-based metal.
Compound superconductor described in Section.
JP62263725A 1987-10-21 1987-10-21 Compound superconductor Pending JPS63133406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263725A JPS63133406A (en) 1987-10-21 1987-10-21 Compound superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263725A JPS63133406A (en) 1987-10-21 1987-10-21 Compound superconductor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56084062A Division JPS57199104A (en) 1981-06-01 1981-06-01 Compound superconductor

Publications (1)

Publication Number Publication Date
JPS63133406A true JPS63133406A (en) 1988-06-06

Family

ID=17393439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263725A Pending JPS63133406A (en) 1987-10-21 1987-10-21 Compound superconductor

Country Status (1)

Country Link
JP (1) JPS63133406A (en)

Similar Documents

Publication Publication Date Title
Tachikawa et al. High‐field superconducting properties of the composite‐processed Nb3Sn with Nb‐Ti alloy cores
JP4481584B2 (en) Composite sheath MgB2 superconducting wire and method for manufacturing the same
JPS6150136B2 (en)
JP2002373534A (en) Superconducting wire, its producing method, and superconducting magnet using it
EP1429399A2 (en) Superconducting wire rod and method of producing the same
Devred Practical low-temperature superconductors for electromagnets
WO1982003941A1 (en) Compound-type superconductor and process for its preparation
JPS63133406A (en) Compound superconductor
EP3961658B1 (en) Blank for producing a long nb3 sn-based superconducting wire
RU2134462C1 (en) PROCESS OF MANUFACTURE OF SUPERCONDUCTOR BASED ON COMPOUND Nb3Sn
JPH02276113A (en) Manufacture of ceramics group superconductive wire material
Kreilick Niobium-titanium superconductors
JPS6312329B2 (en)
Smathers A15 Superconductors
Oberly et al. The origin and future of composite aluminium conductors
Chawla et al. Multifilamentary Superconducting Composites
Hong et al. Superconducting properties of a liquid‐infiltration Nb‐Nb3Sn composite formed during a low‐temperature reaction
JP2008166173A (en) Nb3Sn SUPERCONDUCTIVE WIRE, PRECURSOR THEREFOR, AND Nb COMPOUND SINGLE CORE FOR PRECURSOR
JPS6086704A (en) Method of producing nb3sn superconductive wire material using sn-iva group element alloy
KR20030012273A (en) Fabrication method of MgB2 superconducting wire
JPH0317332B2 (en)
Abdyukhanov et al. Composite technical superconductors
JP2015213005A (en) Method for producing superconductive member
JPS61231143A (en) Manufacture of stabilizing material for composite superconductor
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod