JPS63132454A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63132454A
JPS63132454A JP27862086A JP27862086A JPS63132454A JP S63132454 A JPS63132454 A JP S63132454A JP 27862086 A JP27862086 A JP 27862086A JP 27862086 A JP27862086 A JP 27862086A JP S63132454 A JPS63132454 A JP S63132454A
Authority
JP
Japan
Prior art keywords
wiring
film
single crystal
layer
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27862086A
Other languages
Japanese (ja)
Inventor
Takayuki Wakui
和久井 陽行
Tokuo Watanabe
篤雄 渡辺
Masataka Minami
正隆 南
Akihiro Tanba
昭浩 丹波
Takahiro Nagano
隆洋 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27862086A priority Critical patent/JPS63132454A/en
Publication of JPS63132454A publication Critical patent/JPS63132454A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make easily contact holes minute and flat, by growing single crystal Si only on amorphous Si in the contact hole by solid phase epitaxy, eliminating selectively excess amorphous silicon, and burying it in single crystal Si. CONSTITUTION:After a gate electrode 20, a gate oxide film 21, an N<+> type diffusion layer 22, an element isolation region 23, etc., are formed on a P-type Si substrate 100, an interlayer insulating film 25 is formed. After the film 25 is made flat, contact holes 27 which connect the layer 22 and the layer 26 are formed in the following manner; after amorphous Si 29 is deposited on the whole surface of holes on which the film 25 and the Si surface are exposed, a heat treatment at 600 deg.C is performed in an N2 atmosphere, and single crystal Si is grown up to the upper surface of the hole 27 by solid phase epitaxy. Next, excess amorphous Si is selectively eliminated by etching.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製法に係り、特に、高集積化、
高性能化に好適なLSI用多層配線の構成要素である接
続領域(コンタクトホール、スルホール等)を有する半
導体装置の製法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and in particular, to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device.
The present invention relates to a method for manufacturing a semiconductor device having a connection region (contact hole, through hole, etc.) which is a component of multilayer wiring for LSI suitable for high performance.

〔従来の技術〕[Conventional technology]

LSIは、*細加工技術を主軸に、3年毎に4倍の速度
で高集積化を達成して来た。さらに、大規模な高集積化
を実現するため、多層配線を微細化、多層化する高密度
配線技術が必要である。前記高密度配線技術を実現する
ための主要な技術として、■配線構造の平坦化、■接続
領域(コンタクトホール、スルホール)の縮小、■耐マ
イグレーション、耐腐蝕性配線材料の適用等がある。本
発明は前記■、■に有効な技術を提供しようとするもの
である。第2図は1例えば、MoSトランジスタにより
示した、従来の多層配線に内在している問題点を示す。
LSI has achieved high integration at a rate of four times every three years, centered on fine processing technology. Furthermore, in order to achieve large-scale high integration, high-density wiring technology is required to miniaturize and multilayer multilayer wiring. The main technologies for realizing the above-mentioned high-density wiring technology include (1) planarization of the wiring structure, (2) reduction of the connection area (contact hole, through hole), and (2) application of migration-resistant and corrosion-resistant wiring materials. The present invention aims to provide a technique effective for the above-mentioned (1) and (2). FIG. 2 illustrates the problems inherent in conventional multilayer wiring, exemplified by, for example, MoS transistors.

配線層1−a、1−bおよび層間絶縁膜2−a、2−b
がそれぞれスパッタ法。
Wiring layers 1-a, 1-b and interlayer insulating films 2-a, 2-b
are each sputtering method.

CV D (Chsmical Vapor Depo
sition )法によつで形成されている。これらの
薄膜被着法は、いずれも下地の形状を反映する。例えば
、選択酸化膜3、ゲート電極4上、あるいはコンタクト
ホール5、スルホール6上の配線層1−a、1−b、層
間絶1Ili1′層2−a、 2−b(7)形状テアル
。シカモ、段差が重なり合う箇所では高低差がそのまま
累積される(例えば、図中■)。このため、微細加工の
低下、配線の信頼性が低下する等の問題が生じる。前者
の問題点は、加工マスク用のホトレジスl−膜厚がSj
ウェハ内の各場所で異るため、リソグラフィ工程におけ
る露光現像特性に膜厚依存性が生じ1寸法績度が低下す
る。あるいは、ドライエツチング時に段差部の肩、すき
間における配線層1の膜厚が平坦部に比較して実効的に
厚くなるため、エツチング残りが生じやすく、配線ショ
ートの原因となる。後者の信頼性の低下は、配線層1に
おいて、段差底部における被着膜厚が極端C)薄くなり
、配線の断線となること、絶a層2において、段差の肩
、底部における被着膜質、膜厚の低下により配線層間の
ショートの原因となることに起因する。デバイスが微細
化、高集積化されるにつれて、上記の問題点はますます
顕著になる。
CV D (Chsmical Vapor Depo
It is formed by the ``situation'' method. All of these thin film deposition methods reflect the shape of the underlying substrate. For example, the wiring layer 1-a, 1-b, the layer interlayer 1Ili1' layer 2-a, 2-b (7) shape tear on the selective oxide film 3, gate electrode 4, or contact hole 5, through hole 6. In places where steps overlap, height differences are accumulated as they are (for example, ■ in the figure). This causes problems such as poor microfabrication and poor wiring reliability. The problem with the former is that the photoresist l-film thickness for the processing mask is Sj
Since it differs at each location within the wafer, the exposure and development characteristics in the lithography process become film thickness dependent, resulting in a decrease in one-dimensional performance. Alternatively, during dry etching, the thickness of the wiring layer 1 at the shoulders and gaps of the stepped portion is effectively thicker than that at the flat portion, so that etching remains are likely to occur, causing wiring short circuits. The latter decrease in reliability is due to the fact that in the wiring layer 1, the thickness of the deposited film at the bottom of the step becomes extremely thin, resulting in disconnection of the wiring, and in the absolute layer 2, the quality of the deposited film at the shoulder and bottom of the step, This is because the reduction in film thickness causes short circuits between wiring layers. As devices become smaller and more highly integrated, the above problems become more prominent.

配線抵抗、容量などの寄生効果が問題となってくるから
である。すなわち、スケーリング則(比例縮小剤)によ
って平面寸法は1/kに縮小されるものの、配線や層間
絶縁膜の厚さ等の縦構造は縮小固難である。縦構造も1
/kに縮/J%すると配線抵抗と配線遅延はに2倍に増
加し、LSIの特性や信頼性の劣化を引き起すためであ
る。以上のように、配線層の縦方向寸法を縮小すること
は不可能であるため、必然的にデバイス表面の凹凸段差
が厳しくなる。すなわち、アスペクト比(例えば、凹部
のアスペクト比は高さ7間口で表わす)が高くなるため
、第2図で示した問題点がますます顕著になる。このた
め、それぞれ必要とされる工程に応じて、各種の段差緩
和の方法すなわち平坦化法がとられている。工程別に分
類すると、配線層。
This is because parasitic effects such as wiring resistance and capacitance become a problem. That is, although the planar dimension is reduced to 1/k by the scaling law (proportional reduction agent), it is difficult to reduce the vertical structure such as the thickness of wiring and interlayer insulating film. Vertical structure is also 1
This is because if the wiring resistance and wiring delay are reduced to /J%, the wiring resistance and wiring delay will double, causing deterioration of the characteristics and reliability of the LSI. As described above, since it is impossible to reduce the vertical dimension of the wiring layer, the unevenness of the device surface inevitably becomes severe. That is, since the aspect ratio (for example, the aspect ratio of the recess is expressed as a height of 7 widths) increases, the problem shown in FIG. 2 becomes more and more noticeable. For this reason, various methods of reducing the step difference, that is, flattening methods, are used depending on the required steps. Categorized by process: wiring layer.

層間絶縁層、接続孔(コンタクトホール、スルホール)
形成に大別される。配線層の平坦化例としては、陽極酸
化法やリフトオフ法などがある。層間絶縁膜層に対して
はP S G (Phospho 5ilicateG
lass) 、 BPSG(Boro Phospo 
5ilicate Glass)の塗布膜を利用したも
の、あるいは前記塗布膜とエツチングを利用したエッチ
バック法、さらにはバイアススパッタ法による5iOz
膜平坦化法、有機絶縁膜による平坦化法などがある。
Interlayer insulation layer, connection hole (contact hole, through hole)
It is broadly divided into formation. Examples of planarization of the wiring layer include an anodic oxidation method and a lift-off method. For the interlayer insulating film layer, PSG (Phospho 5ilicateG
lass), BPSG (Boro Phospo
5iOz using a coating film of 5iLinate Glass), an etch-back method using the coating film and etching, or a bias sputtering method.
There are a film planarization method, a planarization method using an organic insulating film, etc.

接続孔に対しては、その形成がレイアウト上高密度化を
制限する大きな要因のひとつとなっており、今後ますま
す縮小される傾向にある。微細化されるにつれ、接続孔
における配線の被覆性(ステップカバレジ)の低下が問
題となって来た。すなわち、通常用いられているAQの
スパッタリング法では、接続孔の側壁が互いに被着A、
 2粒子の陰になり、底部におけるAQ膜が極めて簿く
なる現象である。従来は、これを防止するためにホール
の形状に傾きをもたせたテーバ加工を行う方法がとられ
ていた。しかし、微細化に伴う接続孔の縮小に対して不
利であり、垂直形状が必須である。
Regarding connection holes, their formation is one of the major factors that restricts the increase in layout density, and there is a tendency to further reduce the size of the connection holes in the future. As miniaturization progresses, a decrease in wiring coverage (step coverage) in contact holes has become a problem. That is, in the commonly used AQ sputtering method, the side walls of the connection hole are adhered to each other by A,
This is a phenomenon in which the AQ film at the bottom becomes extremely thin due to the shadow of the two particles. Conventionally, in order to prevent this, a method has been used in which the shape of the hole is tapered to give it an inclination. However, it is disadvantageous to the reduction of the connection hole due to miniaturization, and a vertical shape is essential.

このため、ますます配線層のステップカバレジが厳しく
なる方向にある。また、凹凸を有する下地表面を平坦化
するには、一般に層間絶縁膜の厚さを増加する傾向し;
あり、微細化も加わって接続孔のアスペクト比は大幅に
増加する傾向にある。これを解決するため、接続孔の形
成法は種々の方法がとられている。その中で、より大き
なアスペクト比の接続孔に金属材料等を埋め込む方法が
試みられている。この方法をとることにより、微細な接
続孔のステップカバレジの改善あるいは接続孔の平坦化
が可能となる。例えば1次の例が公知である。第3図(
a)はポリSi等をエッチバック法を用いて接続孔に埋
め込む方法である6接続孔10、層間絶縁膜2上にポリ
5illをCVD法等で堆積する。その後、レジスト1
2等の有機材料を凹凸表面にスピン塗布して表面を見掛
は上、平坦にしてから、ポリ5illとレジスト12共
に同一のエツチング速度条件で、全体をエツチングして
(エッチバック)、(c)に示すように接続孔1o内に
のみ、ポリ5illを埋め込む、第4図は、選択エピタ
キシャル成長方法により、接続孔をSiで埋め込む方法
である。(a)に示すように接続孔10を形成し、S 
i H4t 5iHzC1zをソースガスとして100
0℃前後で、接続孔10にのみ選択的にSiを気相成長
させる。しかし、第3図の方法は、プロセスが複雑であ
るとともに同一エツチング速度条件の範囲がせまく、エ
ツチングに不均一が生じやすく、第3図(d)に示すよ
うに、接続孔の埋め込み高さがアンバランスになりやす
い。このため次工程の配線層の加工精度が低下する。第
4@の方法は、LSIプロセスと整合するものでなけれ
ばならず、高温でSiを成長させるため、下地の浅い接
合に悪影響を与える。
For this reason, step coverage of wiring layers is becoming increasingly difficult. Furthermore, in order to flatten an uneven underlying surface, there is a general tendency to increase the thickness of the interlayer insulating film;
With the addition of miniaturization, the aspect ratio of connection holes tends to increase significantly. To solve this problem, various methods have been used to form connection holes. Among these, a method of embedding a metal material or the like into a connection hole with a larger aspect ratio has been attempted. By adopting this method, it is possible to improve the step coverage of fine contact holes or to flatten the contact holes. For example, a first-order example is known. Figure 3 (
A) is a method of filling the contact hole with poly-Si or the like using an etch-back method. Poly 5ill is deposited on the contact hole 10 and the interlayer insulating film 2 by the CVD method or the like. Then resist 1
After spin coating an organic material such as No. 2 on the uneven surface to make the surface appear flat, the entire surface is etched (etched back) under the same etching speed conditions for poly 5ill and resist 12. ), poly 5ill is buried only in the contact hole 1o. FIG. 4 shows a method in which the contact hole is filled with Si by a selective epitaxial growth method. A connection hole 10 is formed as shown in (a), and S
i H4t 5iHz 100 using C1z as source gas
At around 0° C., Si is selectively grown in a vapor phase only in the connection hole 10. However, the method shown in Fig. 3 has a complicated process, the range of the same etching speed condition is narrow, and non-uniform etching is likely to occur, and as shown in Fig. 3(d), the buried height of the contact hole is It tends to become unbalanced. For this reason, the processing accuracy of the wiring layer in the next step is reduced. The fourth method (@) must be compatible with the LSI process, and because it grows Si at high temperatures, it has an adverse effect on shallow underlying junctions.

その他、AQバイアススパッタ法、タングステン選択C
VD法、メタルCVD法があるが、それぞれ信頼性膜厚
、均一性および膜質に問題がある。
Others: AQ bias sputtering method, tungsten selection C
There are VD methods and metal CVD methods, but each has problems in reliability, film thickness, uniformity, and film quality.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、接続孔の埋込み層の均一性、プロセス
との整合性(熱処理温度)、あるいはプロセスの容易性
の点について配慮されておらず、高密度配線を達成する
ための配線構造の平坦化。
The above conventional technology does not consider the uniformity of the buried layer of the contact hole, the compatibility with the process (heat treatment temperature), or the ease of the process, and the flatness of the wiring structure to achieve high-density wiring is not considered. ification.

接続領域の縮小化に問題があった。There was a problem in reducing the connection area.

本発明の目的は、LSI用高密度配線を達成するため、
上記従来技術の問題点を解消した接続領域を有する半導
体装置の製法を提供することにある。
The purpose of the present invention is to achieve high-density wiring for LSI,
It is an object of the present invention to provide a method for manufacturing a semiconductor device having a connection region that eliminates the problems of the prior art described above.

(問題点を解決するための手段〕 上記目的は、Si基板上に非晶[Siを堆積さ 。(Means for solving problems) The above purpose is to deposit amorphous [Si] on a Si substrate.

せ、炉加熱して単結晶Siを形成する。いわゆる同相エ
ピタキシャル成長法により、接続領域に選択的に単結晶
Siを埋込むことにより、達成される。
Then, heating is performed in a furnace to form single crystal Si. This is achieved by selectively filling the connection region with single crystal Si using a so-called in-phase epitaxial growth method.

〔作用〕[Effect]

本発明は、層間絶縁膜およびSi面が露出された接続孔
表面に、非晶質Siを堆積させ、500〜600℃で炉
加熱することにより、接続孔内の非晶質Siにのみ固相
エピタキシャル成長により単結晶Siを成長させて、余
分な非晶質Siを選択的に除去し、接続孔内を単結晶S
iで埋込むことが特徴である。それによって、均一性の
良い埋込み層、プロセスとの整合性がとれ、容易に接続
孔の微細化、平坦化が可能となる。
In the present invention, amorphous Si is deposited on the contact hole surface where the interlayer insulating film and the Si surface are exposed, and is heated in a furnace at 500 to 600°C, so that only the amorphous Si in the contact hole becomes solid. Single crystal Si is grown by epitaxial growth, excess amorphous Si is selectively removed, and the inside of the contact hole is filled with single crystal Si.
The feature is that it is embedded with i. This allows for a buried layer with good uniformity, consistency with the process, and easy miniaturization and flattening of connection holes.

〔実施例〕〔Example〕

以下、本発明を実施例を用いて詳細に説明する。 Hereinafter, the present invention will be explained in detail using examples.

第1図は、本発明を典型的なN型MO8hランジスタに
適用した例を示している。同図(a)は(100)P型
Si基板100内には、Po1ySiとタングステンシ
リサイドの2層構造のゲート電極20.ゲート酸化膜2
1.ソース、ドレンのN+型型数散層22ら成り、23
は素子分離用の酸化膜で、24はチャネルストッパ用の
拡散層である。
FIG. 1 shows an example in which the present invention is applied to a typical N-type MO8h transistor. In the figure (a), a (100) P-type Si substrate 100 has a gate electrode 20 having a two-layer structure of PolySi and tungsten silicide. Gate oxide film 2
1. Consisting of source and drain N+ type scattering layers 22 and 23
2 is an oxide film for element isolation, and 24 is a diffusion layer for a channel stopper.

これらの、拡散層、ゲート電極および素子分離は、通常
のLSI製造プロセスの拡散、CVD、ホトリソグラフ
ィ技術により形成した。その後、配線工程に至る。先ず
、層間絶縁膜25を形成する。
These diffusion layers, gate electrodes, and element isolations were formed by diffusion, CVD, and photolithography techniques in a normal LSI manufacturing process. After that, the wiring process begins. First, an interlayer insulating film 25 is formed.

層間絶i&膜25は、S i  (OCzH3)番をソ
ースとした。低圧CVDによる5iOzと、平坦化を目
的にBPSG(Boro Phospo 5ilica
te Glass)膜である。
In the interlayer insulation film 25, S i (OCzH3) was used as the source. 5iOz by low pressure CVD and BPSG (Boro Phospo 5ilica) for planarization.
It is a glass film.

BPSG膜は、SiH4十oz +PHs +BzHe
ガス系で堆積し、リフローさせ層間絶縁膜25を平坦化
した。その後、通常のホトリソグラフィによりN十型拡
散層のソース・ドレイン22と配線層26と接続する接
続孔27(コンタクトホール)を形成する。次いで、接
続孔27内に単結晶Siを形成するが、その詳細を第1
図中の(b)に示す。図は、簡略化するため接続孔27
部分のみを図示した。先ず、結晶成長のシード領域とな
る単結晶面28の清浄化を行う。清浄法は、超高真空中
で熱処理した。同−真空内で非晶質5i29を電子ビー
ム蒸着法により全面に堆積し、堆積したSiの非晶質性
を制御するための低温熱処理(350℃)を施した。そ
の後、N2雰囲気中600℃で熱処理し、単結晶5i3
0を成長させる。すなわち、同相エピタキシャル成長に
よって単結晶Siを形成する単結晶の成長は、接続孔2
7の上面で停止させるが、単結晶Siの成長は、熱処理
時間を制御することにより、容易に接続孔27の上面で
停止させることができる。その後、HF系のエツチング
液でかるくエツチングし、余分な非晶質Siを除去する
。非晶質Siと単結晶SiはHF系エツチング液で容易
に選択エツチングできる。接続孔27内の単結晶Siは
、配線層26とオーミックコンタクトをとるため、非晶
質Siを堆積後、リンをイオン注入しく膜厚方向に均一
で3X10”口″″’)、600℃で熱処理して単結晶
Siを成長させるとともに、N上型に形成しである。以
上の様な方法により、接続孔27は単結晶5i30で埋
め込まれているため、次に形成される配線層26の接続
孔27に対するステップカバレジを考慮する必要もなく
、さらに接続孔27が層間絶縁膜25と同一面に平坦化
されている。また、層間絶縁膜25の膜厚が均一に形成
され、接続孔27の深さが同一であるかぎり、単結晶S
iの成長の制御は容易であり、全面にわたって接続孔が
均一に平坦化される。
BPSG film is SiH40oz +PHs +BzHe
The interlayer insulating film 25 was deposited using a gas system and reflowed to planarize it. Thereafter, a connection hole 27 (contact hole) connecting the source/drain 22 of the N0 type diffusion layer and the wiring layer 26 is formed by normal photolithography. Next, single-crystal Si is formed in the connection hole 27, the details of which are described in the first section.
It is shown in (b) in the figure. The figure shows connection hole 27 for simplicity.
Only a portion is shown. First, the single crystal surface 28, which will become a seed region for crystal growth, is cleaned. The cleaning method was heat treatment in an ultra-high vacuum. In the same vacuum, amorphous 5i29 was deposited on the entire surface by electron beam evaporation, and low-temperature heat treatment (350° C.) was performed to control the amorphous nature of the deposited Si. After that, heat treatment was performed at 600℃ in N2 atmosphere to form a single crystal 5i3.
Grow 0. That is, the growth of a single crystal to form single crystal Si by in-phase epitaxial growth is
However, the growth of single crystal Si can be easily stopped at the upper surface of the connection hole 27 by controlling the heat treatment time. Thereafter, it is lightly etched with an HF-based etching solution to remove excess amorphous Si. Amorphous Si and single crystal Si can be selectively etched easily with an HF-based etching solution. In order to make ohmic contact with the wiring layer 26, the single-crystal Si in the contact hole 27 is deposited with amorphous Si and then ion-implanted with phosphorus at 600° C. uniformly in the film thickness direction. The single crystal Si is grown by heat treatment and is formed into an N-type.Since the contact hole 27 is filled with the single crystal 5i30 by the method described above, the wiring layer 26 to be formed next is There is no need to consider step coverage for the contact hole 27, and the contact hole 27 is flattened on the same surface as the interlayer insulating film 25. Furthermore, the thickness of the interlayer insulating film 25 is uniform, and the contact hole 27 As long as the depth of the single crystal S
It is easy to control the growth of i, and the contact hole is uniformly planarized over the entire surface.

以下、通常の配線技術により、アルミニウム配線層26
をスパッタリング法により形成し、通常のホトリソグラ
フィによりパターン精度グした。
Thereafter, the aluminum wiring layer 26 is
was formed by a sputtering method, and the pattern accuracy was checked by ordinary photolithography.

さらに、配線層間の層間絶縁膜31を形成し、ホトリソ
グラフィにより配線層間の接続孔を形成し、さらに配線
層32を形成した。
Further, an interlayer insulating film 31 between the wiring layers was formed, connection holes between the wiring layers were formed by photolithography, and a wiring layer 32 was further formed.

以上1本発明の実施例によれば、低温で単結晶Siを接
続孔に埋め込むことができ、下地の浅い接合層に悪影響
を与えることがない。しかも、接続孔が単結晶Siで埋
め込まれているため、配線層のステップカバレジを考慮
する必要がないため、接続孔の縮小化が容易になる。ま
た、接続孔と層間絶縁膜と同一面で平坦化されているた
め、次工程の配線層のホトリソグラフィが容易になる。
According to the first embodiment of the present invention, single-crystal Si can be filled into the connection hole at a low temperature without adversely affecting the underlying shallow bonding layer. Moreover, since the contact hole is filled with single-crystal Si, there is no need to consider the step coverage of the wiring layer, making it easy to reduce the size of the contact hole. Furthermore, since the connection hole and the interlayer insulating film are flattened on the same surface, photolithography of the wiring layer in the next step is facilitated.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、非晶質Siを堆積させ、炉加熱により
低温で、すなわち固相エピタキシャル成長によって、接
続孔を単結晶Siで埋め込むことができるため、プロセ
スとの整合性、特に、熱処理に対する、すなわち浅い接
合形成に対する悪影響が少なくなる。また、均一な接続
孔内の埋込層が容易に得られるため、次工程の配線層の
パターン精度が向上する。また、等速エツチング等の複
雑な工程が不要であり、プロセスが簡略化する。
According to the present invention, since it is possible to deposit amorphous Si and fill the contact hole with single crystal Si at a low temperature by furnace heating, that is, by solid phase epitaxial growth, it is possible to improve the compatibility with the process, especially with respect to heat treatment. In other words, the negative effect on the formation of shallow junctions is reduced. Further, since a uniform buried layer in the connection hole can be easily obtained, the pattern accuracy of the wiring layer in the next step is improved. Further, complicated steps such as constant speed etching are not required, simplifying the process.

以上の効果を得ることにより、接続領域の縮小化が容易
になり、LSI用高密度配線が達成できる。
By obtaining the above effects, the connection area can be easily reduced, and high-density wiring for LSI can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するためのN型MOS
トランジスタの断面図、第2図は従来技術問題点を説明
するためのMoSトランジスタの100・・・Si基板
、20・・・ゲート電極、21・・・ゲート酸化膜、2
2・・・ソース・ドレイン、23・・・選択酸化膜、2
5・・・層間絶縁膜、26・・・配線層。 27・・・接続孔、29・・・非晶質S1.30・・単
結晶 x a
FIG. 1 shows an N-type MOS for explaining one embodiment of the present invention.
A cross-sectional view of a transistor, FIG. 2 shows a MoS transistor 100...Si substrate, 20...gate electrode, 21...gate oxide film, 2
2... Source/drain, 23... Selective oxide film, 2
5... Interlayer insulating film, 26... Wiring layer. 27... Connection hole, 29... Amorphous S1.30... Single crystal x a

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基体中にN型、P型の不純物層を形成したト
ランジスタ等の素子を形成されており、半導体基体上の
複数の配線層、前記半導体基体の素子領域と電気的に接
続する複数の接続孔および前記接続孔が形成され、且つ
前記半導体基体の素子領域と前記配線層および配線層間
を電気的に絶縁する層間絶縁層により成る半導体装置の
製法において、前記接続孔を固相成長により単結晶シリ
コンで選択的に埋込んだことを特徴とする半導体装置の
製法。
1. Elements such as transistors with N-type and P-type impurity layers formed in a semiconductor substrate are formed, and a plurality of wiring layers on the semiconductor substrate and a plurality of interconnection layers electrically connected to the element region of the semiconductor substrate are formed. In a method for manufacturing a semiconductor device comprising a connection hole and an interlayer insulating layer in which the connection hole is formed and electrically insulates the element region of the semiconductor substrate, the wiring layer, and the wiring layer, the connection hole is formed simply by solid phase growth. A method for manufacturing a semiconductor device characterized by selective embedding with crystalline silicon.
JP27862086A 1986-11-25 1986-11-25 Manufacture of semiconductor device Pending JPS63132454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27862086A JPS63132454A (en) 1986-11-25 1986-11-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27862086A JPS63132454A (en) 1986-11-25 1986-11-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63132454A true JPS63132454A (en) 1988-06-04

Family

ID=17599812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27862086A Pending JPS63132454A (en) 1986-11-25 1986-11-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63132454A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100233183B1 (en) * 1995-04-21 1999-12-01 가네꼬 히사시 Method of forming interlevel contact part without increase of contact resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100233183B1 (en) * 1995-04-21 1999-12-01 가네꼬 히사시 Method of forming interlevel contact part without increase of contact resistance

Similar Documents

Publication Publication Date Title
JPH0344419B2 (en)
JPH02310963A (en) Manufacture of semi conductor device
CN1985358A (en) Formation of active area using semiconductor growth process without STI integration
JP3301170B2 (en) Semiconductor device manufacturing method
JPH0410222B2 (en)
TW202240874A (en) Fabrication process of vertical-channel, silicon, field-effect transistors
JPS63132454A (en) Manufacture of semiconductor device
CN111415907B (en) Method for manufacturing amorphous silicon structure
JPH0473296B2 (en)
JPH0513535B2 (en)
US6534348B1 (en) Ultrascaled MIS transistors fabricated using silicon-on-lattice-matched insulator approach
JPS6080244A (en) Element isolation method of semiconductor device
JPS58200554A (en) Manufacture of semiconductor device
US6251769B1 (en) Method of manufacturing contact pad
JPS60132341A (en) Semiconductor device
JPS6250978B2 (en)
JPS59215741A (en) Manufacture of semiconductor integrated circuit device
JP2003273237A (en) Method of manufacturing semiconductor device
JPH01214064A (en) Insulated gate field effect transistor and its manufacture
KR20010068539A (en) The method of forming self-aligned contact for semiconductor devices
JPH05121535A (en) Diffusion method for impurity and dielectric isolation method of wafer
JPH0234930A (en) Manufacture of semiconductor device
JPH05347353A (en) Manufacture of semiconductor device
JPH0235718A (en) Manufacture of semiconductor device
JPH01238033A (en) Dielectric isolation type semiconductor substrate and its manufacture