JPS63131566A - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JPS63131566A
JPS63131566A JP61276528A JP27652886A JPS63131566A JP S63131566 A JPS63131566 A JP S63131566A JP 61276528 A JP61276528 A JP 61276528A JP 27652886 A JP27652886 A JP 27652886A JP S63131566 A JPS63131566 A JP S63131566A
Authority
JP
Japan
Prior art keywords
word lines
capacitor
insulating film
lower electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61276528A
Other languages
Japanese (ja)
Inventor
Yoshio Sakai
芳男 酒井
Haruhiko Tanaka
田中 治彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61276528A priority Critical patent/JPS63131566A/en
Publication of JPS63131566A publication Critical patent/JPS63131566A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To reduce the dispersion of the capacitance of a capacitor due to mask displacement during the formation of a flat section between word lines in a field oxide film, and to obtain uniform memory characteristics by burying an insulating film between adjacent word lines and flatly constituting a section between the word lines on the field oxide film. CONSTITUTION:An insulating film 10 consisting of SiO2, etc., is shaped between two adjacent word lines 4 on a thick field oxide film 7 in thickness the same as or larger than the word lines. consequently, a section between the two word lines is flattened, and a lower electrode 5 for a capacitor is formed in the flattened region. Accordingly, even when mask alignment is displaced between the word lines 4 and the capacitor lower electrode 5, capacitor capacitance is not shaped on the side wall sections of the word lines, thus acquiring uniform capacitor characteristics required for a high-integration memory.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体記憶装置に係り、特に高集積化が可能で
特性のバラツキが少ないダイナミック形MO8ランダム
アクセスメモリ(以下、ダイナミックMO8−RAMと
略記)のメモリセルに関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a semiconductor memory device, and in particular to a dynamic MO8 random access memory (hereinafter abbreviated as dynamic MO8-RAM) that can be highly integrated and has little variation in characteristics. ) regarding memory cells.

〔従来の技術〕[Conventional technology]

1個のMOSトランジスタと1個のキャパシタから成る
1トランジスタ形ダイナミックMO8・RAMでは蓄積
信号量を大きくするために蓄積容量用のキャパシタの容
量値を大きくする必要がある。このために、第2図に示
すようにキャパシタがワード線3.4の上部にも積層形
に形成された構造が特公昭60−2784号に記載され
ている。
In a one-transistor type dynamic MO8 RAM consisting of one MOS transistor and one capacitor, it is necessary to increase the capacitance value of the storage capacitor in order to increase the amount of stored signals. To this end, Japanese Patent Publication No. 60-2784 discloses a structure in which a capacitor is also formed in a stacked manner above the word line 3.4 as shown in FIG.

この従来構造では厚いフィールド酸化膜7上のワード線
4の上にもキャパシタの下部電極5が重なっているため
、第3図に示すようにキャパシタ製造工程において、キ
ャパシタ下部電極5がワード線4に対してマスク合せの
ずれが生じた場合には。
In this conventional structure, since the lower electrode 5 of the capacitor also overlaps the word line 4 on the thick field oxide film 7, the capacitor lower electrode 5 overlaps the word line 4 in the capacitor manufacturing process as shown in FIG. On the other hand, if a misalignment of the mask occurs.

対向するキャパシタ下部電極5は片方はワード線の上部
に下部電極の端が存在し、ワード線の側壁部には下部電
極5は形成されないが、もう片方のキャパシタ下部電極
8はワード線4の側壁部にも形成される。このようなマ
スク合せずれが生じた状態でキャパシタ上部電極6を形
成すると、第3図において右側に存在するキャパシタは
ワード線4の側壁部にもキャパシタが形成されているた
めに、第3図での左側のキャパシタよシも大きな容量値
となってしまう。このように従来構造ではマスク合せズ
レによる容量値のバラツキが大きく。
One of the opposing capacitor lower electrodes 5 has an end on the upper part of the word line, and the lower electrode 5 is not formed on the side wall of the word line, but the other capacitor lower electrode 8 is on the side wall of the word line 4. It is also formed in the part. If the capacitor upper electrode 6 is formed with such mask misalignment, the capacitor on the right side in FIG. The capacitor on the left side also has a large capacitance value. In this way, in the conventional structure, the capacitance value varies greatly due to mask alignment misalignment.

メモIJ’W性のバラツキという点で充分な配慮がなさ
れていなかった。
Memo: Sufficient consideration was not given to variations in IJ'W properties.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は数百オビット以上のメモリセルを集積化
した大容量ダイナミックMO8R,AMでは製造工程で
の特性バラツキが大きく、均一な特性が要求される大容
量ダイナミックMOS RAM製造の上では大きな障害
になる。
In the above conventional technology, large-capacity dynamic MO8R and AM, which integrate memory cells of several hundred obits or more, have large variations in characteristics during the manufacturing process, which is a major obstacle in the production of large-capacity dynamic MOS RAM, which requires uniform characteristics. Become.

本発明の目的は上記従来技術の問題点を解決し。The object of the present invention is to solve the above-mentioned problems of the prior art.

製造工程でのマスク合せずれによる特性のバラツキ、具
体的にはキャパシタの容量のバラツキを低減し、大容量
ダイナミックMO8RAMに用いられるメモリセルを提
供することにある。
It is an object of the present invention to provide a memory cell for use in a large-capacity dynamic MO8RAM, which reduces variations in characteristics due to mask misalignment during the manufacturing process, specifically, variations in capacitance of a capacitor.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために1本発明では厚いフィールド
上に存在する隣り合うワード線の間に絶縁膜を埋め込ん
で、フィールド酸化膜上のワード線の間は平坦に構成す
る。
In order to achieve the above object, one aspect of the present invention is to embed an insulating film between adjacent word lines existing on a thick field so that the space between the word lines on the field oxide film is flat.

〔作用〕[Effect]

上記手段により、フィールド酸化膜上のワード線の側壁
部にはキャパシタの下部電極が入シこまないために製造
工程でマスク合せずれが生じてもワード線側壁部にキャ
パシタ容量が形成されず。
With the above means, the lower electrode of the capacitor does not enter the side wall of the word line on the field oxide film, so even if mask misalignment occurs in the manufacturing process, no capacitor capacitance is formed on the side wall of the word line.

マスク合せずれによるキャパシタ容量バラツキはなくな
り、均一なメモリ特性が得られるようになる。
Variations in capacitor capacitance due to mask misalignment are eliminated, and uniform memory characteristics can be obtained.

〔実施例〕〔Example〕

以下1本発明の実施例を第1図及び第4〜6図により説
明する。
An embodiment of the present invention will be described below with reference to FIG. 1 and FIGS. 4 to 6.

本発明によるメモリセルの断面構造を第1図に示す。同
図にはメモリセル2ピツト分が図示されており、ワード
線3をゲート電極とし、高濃度n膨拡散層2をソース・
ドレインとする。転送ゲー)MOS)ランジスタも左右
に1ケずつ図示されている。蓄積容量用のキャパシタ下
部電極5はワード線4の上部に積層して形成されている
。キャパシタの上部電極6は下部電極5上に薄い絶縁膜
9を介して形成されている。第1図に示した本発明の特
徴として、厚いフィールド酸化膜7上の2本の隣り合う
ワード線4の間には5i02等の絶縁膜10がワード線
と同等以上の厚さで形成されているため、2本のワード
線の間は平坦化されており、この平坦化された領域にキ
ャパシタの下部電極5が形成されている。従って、ワー
ド線4とキャパシタ下部電極5との間でマスク合せずれ
が生じても、第3図に図示したようにワード線側壁部に
キャパシタ容量が形成されることはなく、高集積メモリ
に必要な均一なキャパシタ特性が得られることになる。
FIG. 1 shows a cross-sectional structure of a memory cell according to the present invention. The figure shows two memory cell pits, with the word line 3 serving as the gate electrode and the high concentration n-swelling diffusion layer 2 serving as the source.
Drain. Transfer game) MOS) transistors are also shown, one on each side. A capacitor lower electrode 5 for storage capacitance is formed in a stacked manner on top of the word line 4 . The upper electrode 6 of the capacitor is formed on the lower electrode 5 with a thin insulating film 9 interposed therebetween. As a feature of the present invention shown in FIG. 1, an insulating film 10 such as 5i02 is formed between two adjacent word lines 4 on a thick field oxide film 7 with a thickness equal to or greater than that of the word lines. Therefore, the area between the two word lines is flattened, and the lower electrode 5 of the capacitor is formed in this flattened region. Therefore, even if a mask misalignment occurs between the word line 4 and the capacitor lower electrode 5, capacitor capacitance will not be formed on the side wall of the word line as shown in FIG. 3, which is necessary for highly integrated memory. Therefore, uniform capacitor characteristics can be obtained.

なお、第1図では、キャパシタが積層されていない転送
MO8)ランジスタの高濃度拡散層2の上部にもキャパ
シタの下部電極5と同一の多結晶シリコンを形成し、こ
の上にデータ線となるアルミニウム電極との電極孔を形
成している。
Note that in FIG. 1, the same polycrystalline silicon as the lower electrode 5 of the capacitor is formed on the top of the high concentration diffusion layer 2 of the transfer MO8) transistor on which the capacitor is not stacked, and on top of this, aluminum is formed to form the data line. It forms an electrode hole with the electrode.

第4図は本発明によるメモリセルの平面パターンを示す
ものである。厚いフィールド酸化膜8上の2本のワード
線40間の領域11に段差を平坦化するための絶縁膜が
埋め込まれている。従って。
FIG. 4 shows a planar pattern of a memory cell according to the present invention. An insulating film is buried in a region 11 between two word lines 40 on the thick field oxide film 8 to flatten the step. Therefore.

キャパシタの下部電極5はマスク合せずれによりその端
がワード線4を超えてフィールド部8にかかったとして
もワード線段差によるキャパシタ容量のバラツキは非常
に小さい。
Even if the end of the lower electrode 5 of the capacitor exceeds the word line 4 and extends into the field portion 8 due to mask misalignment, the variation in capacitance of the capacitor due to the word line step difference is very small.

第5図は本発明によるメモリセル構造の製造方法を示す
工程図である。まず、厚さ0.2〜1.0μmのフィー
ルド酸化膜8.および5〜5Qnmの薄いゲート酸化膜
12を形成する(第5図A)。次に、多結晶シリコンや
シリサイド層もしくはそれらの多層膜によるゲート電極
4とその上部の8i0z膜による絶縁膜13を形成する
。このゲート電極をマスクとして、n形の不純物を10
12〜10110l4”イオン打ち込みしてn影領域1
6を形成する(第5図B)。次に化学気相反応法(以下
、CVD法) ニヨ’り S i 02膜14 e O
,1〜0.5μm堆積させ、2本のワード線40間をお
おうようにホトレジストパターン15を形成する(第5
図C)。次に、異方性ドライエツチングにより上記8i
02膜14をエツチングすると、メモリのワード線とな
るゲートを極4の側壁にはスペーサ17が形成され、か
つフィールド酸化膜上の隣り合うワード線4の間は11
8i0z膜が埋め込まれて平坦化されている(第5図D
)。この平坦化の度合いは隣り合うワード線の間隔が狭
ければ狭いほど平坦度がますため、ワード線の間隔はり
ソグラフイプロセスで許容できる最小の間隔にするのが
好ましい。その後、ソース・ドレインとなるn形高濃度
層2とキャパシタ下部電極5を多結晶シリコンで形成し
、その上に4〜200mの薄い絶縁膜9を5i02膜や
5isN<膜あるいは他の高誘電率絶縁膜を形成し、さ
らにその上にキャパシタ上部電極6を多結晶シリコンや
シリサイドあるいはそれら多層膜や高融点金属膜によυ
形成する(第5図E)。最後に、PSG膜等の表面保護
膜18と電極孔19.電極配線20を形成しメモリセル
を構成する(第5図F)。
FIG. 5 is a process diagram showing a method for manufacturing a memory cell structure according to the present invention. First, a field oxide film 8 with a thickness of 0.2 to 1.0 μm. Then, a thin gate oxide film 12 of 5 to 5 Q nm is formed (FIG. 5A). Next, a gate electrode 4 made of polycrystalline silicon, a silicide layer, or a multilayer film thereof, and an insulating film 13 made of an 8i0z film above the gate electrode 4 are formed. Using this gate electrode as a mask, 10% of n-type impurities were added.
12~10110l4'' ion implantation n shadow area 1
6 (Figure 5B). Next, chemical vapor phase reaction method (hereinafter referred to as CVD method) is applied to the S i 02 film 14 e O
, 1 to 0.5 μm, and a photoresist pattern 15 is formed so as to cover between the two word lines 40 (fifth
Figure C). Next, the above 8i is etched by anisotropic dry etching.
When the 02 film 14 is etched, a spacer 17 is formed on the side wall of the gate pole 4, which will become the word line of the memory, and a spacer 17 is formed between adjacent word lines 4 on the field oxide film.
8i0z film is embedded and flattened (Fig. 5D)
). The degree of flattening increases as the distance between adjacent word lines becomes narrower, so it is preferable to set the distance between the word lines to the minimum distance allowable in the lithography process. After that, the n-type high concentration layer 2 that will become the source and drain and the capacitor lower electrode 5 are formed of polycrystalline silicon, and a thin insulating film 9 of 4 to 200 m is formed thereon using a 5i02 film, 5isN< film, or other high dielectric constant film. An insulating film is formed, and a capacitor upper electrode 6 is formed on the insulating film using polycrystalline silicon, silicide, a multilayer film thereof, or a high melting point metal film.
form (Fig. 5E). Finally, a surface protective film 18 such as a PSG film and an electrode hole 19. Electrode wiring 20 is formed to constitute a memory cell (FIG. 5F).

第6図は隣り合うワード線の間を平坦化する他の製造方
法を示すものである。この方法では第5図Cでシ1示し
たホトンジスト膜15′f:形成せずにワード線の側壁
に5iOz膜のスペーサを形成した後に、5iCh粒を
有機溶媒に溶かした溶液を塗布することにより1段差部
に5iQ221を埋め込むものである。
FIG. 6 shows another manufacturing method for flattening the space between adjacent word lines. In this method, a spacer of 5iOz film is formed on the side wall of the word line without forming the photonist film 15'f shown in Figure 5C, and then a solution of 5iCh grains dissolved in an organic solvent is applied. 5iQ221 is embedded in one step.

〔発明の効果〕〔Effect of the invention〕

本発明によれば1チツプにメガビット以上全集積化した
大容量ダイナミックMO8RAMに用いられるメモリセ
ルの製造工程での特性のバラツキを1/4以下に低減す
ることができるので、大容量メモリ実現に技術的に大き
く寄与することになる。
According to the present invention, it is possible to reduce to less than 1/4 the variation in characteristics in the manufacturing process of memory cells used in large-capacity dynamic MO8RAMs that are fully integrated with megabits or more on one chip. This will make a significant contribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例になる半導体装置の縦断面図、
第2図、第3図は従来の半導体装置の縦断面図、第4図
は本発明の実施例の平面レイアウト図、第5図、第6図
は本発明の実施例の製造工程を示す図である。 1・・・シリコン基板、2.16・・・n膨拡散層、3
゜4・・・ワード線、  5. 8・・・キャパシタ下
部電極、6・・・キャパシタ下部電極、7,9,10,
11゜12.13,14,17,18.21・・・絶縁
膜。 19・・・電極孔、15・・・ホ)l/シスト膜、20
・・・電極。 茅)図 I 竿2図 ゝl ¥3図 乎4図 11  絶噂榎埋囚砺磯
FIG. 1 is a longitudinal cross-sectional view of a semiconductor device according to an embodiment of the present invention.
2 and 3 are vertical cross-sectional views of a conventional semiconductor device, FIG. 4 is a plan layout diagram of an embodiment of the present invention, and FIGS. 5 and 6 are diagrams showing the manufacturing process of an embodiment of the present invention. It is. 1...Silicon substrate, 2.16...N swelling diffusion layer, 3
゜4...word line, 5. 8... Capacitor lower electrode, 6... Capacitor lower electrode, 7, 9, 10,
11°12.13, 14, 17, 18.21...Insulating film. 19... Electrode hole, 15... E) l/cyst membrane, 20
···electrode. Kaya) Figure I Rod 2 Figure 1 ¥3 Figure 4 Figure 11 Zetsubo Eno Buried Prisoner Toiso

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基板上に設けられた絶縁ゲート形電界効果ト
ランジスタと電荷蓄積容量とからなり、蓄積容量用の電
極が上記電界効果トランジスタのゲート電極となつてい
るワード線と、フィールド絶縁膜上に形成されているワ
ード線との上にも重なるように形成されている積層型ダ
イナミック半導体記憶装置において、フィールド絶縁膜
上の隣り合うワード線の間は絶縁膜が埋め込まれて平坦
化されており、上記平坦化された領域に蓄積容量下部電
極の端があるように形成されたことを特徴とする半導体
記憶装置。
1. Consisting of an insulated gate field effect transistor and a charge storage capacitor provided on a semiconductor substrate, an electrode for the storage capacitor is formed on a word line and a field insulating film, which serves as the gate electrode of the field effect transistor. In a stacked dynamic semiconductor memory device, which is formed so as to overlap the word lines that are formed, an insulating film is buried between the adjacent word lines on the field insulating film and is flattened. A semiconductor memory device characterized in that a storage capacitor lower electrode is formed so that an end thereof is located in a flattened region.
JP61276528A 1986-11-21 1986-11-21 Semiconductor storage device Pending JPS63131566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61276528A JPS63131566A (en) 1986-11-21 1986-11-21 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61276528A JPS63131566A (en) 1986-11-21 1986-11-21 Semiconductor storage device

Publications (1)

Publication Number Publication Date
JPS63131566A true JPS63131566A (en) 1988-06-03

Family

ID=17570731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61276528A Pending JPS63131566A (en) 1986-11-21 1986-11-21 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JPS63131566A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252465A (en) * 1988-08-17 1990-02-22 Mitsubishi Electric Corp Semiconductor device
DE102014001877A1 (en) 2013-03-12 2014-09-18 Sumitomo Heavy Industries, Ltd. engine frame

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252465A (en) * 1988-08-17 1990-02-22 Mitsubishi Electric Corp Semiconductor device
DE102014001877A1 (en) 2013-03-12 2014-09-18 Sumitomo Heavy Industries, Ltd. engine frame
US9407124B2 (en) 2013-03-12 2016-08-02 Sumitomo Heavy Industries, Ltd. Motor frame with hanging features and bolts

Similar Documents

Publication Publication Date Title
JP2501501B2 (en) Method for manufacturing semiconductor memory-memory of device-capacitor used in cell and structure thereof
JP2906807B2 (en) Semiconductor memory cell and manufacturing method thereof
JPH0412564A (en) Semiconductor memory device and its manufacture
JPS60231357A (en) Semiconductor memory device
JP2741672B2 (en) Method of manufacturing capacitor for stacked DRAM cell
US5920777A (en) Semiconductor memory device and method of manufacturing the same
JPH0729994A (en) Method of manufacturing semiconductor device
JPS63281457A (en) Semiconductor memory
JPH02219264A (en) Dram cell and its manufacture
JPH0294561A (en) Semiconductor storage device and manufacture thereof
JPH098252A (en) Semiconductor storage device and its manufacture
JPH0321062A (en) Semiconductor storage device
JPS63131566A (en) Semiconductor storage device
JPS61107768A (en) Semiconductor memory device
JP2950550B2 (en) Method for manufacturing semiconductor memory device
JP3489090B2 (en) Semiconductor device and manufacturing method thereof
JPH0529571A (en) Semiconductor storage device and manufacture thereof
US7075138B2 (en) Bitline structure for DRAM and method of forming the same
JP3048417B2 (en) Method for manufacturing semiconductor device
KR20020078432A (en) method of manufacturing semiconductor memory device
JPH04291959A (en) Semiconductor memory and manufacture thereof
KR950013382B1 (en) Capacitor and manufacturing method thereof
JP2740543B2 (en) Method for manufacturing semiconductor memory device
TW306043B (en) Manufacturing method of high-density integrated circuit
JP2740544B2 (en) Method for manufacturing semiconductor memory device