JPS63131392A - Magnetic bubble memory element - Google Patents

Magnetic bubble memory element

Info

Publication number
JPS63131392A
JPS63131392A JP27651086A JP27651086A JPS63131392A JP S63131392 A JPS63131392 A JP S63131392A JP 27651086 A JP27651086 A JP 27651086A JP 27651086 A JP27651086 A JP 27651086A JP S63131392 A JPS63131392 A JP S63131392A
Authority
JP
Japan
Prior art keywords
insulating film
bubble
film
magnetic
insulation film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27651086A
Other languages
Japanese (ja)
Inventor
Haruhiko Matsuyama
松山 治彦
Fusaji Shoji
房次 庄子
Hiroshi Umezaki
梅崎 宏
Makoto Suzuki
良 鈴木
Hiromi Kanai
紘美 金井
Hisao Nozawa
野沢 悠夫
Tetsuaki Suzuki
鈴木 哲昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27651086A priority Critical patent/JPS63131392A/en
Publication of JPS63131392A publication Critical patent/JPS63131392A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain excellent bubble transfer characteristic in a high density element using a bubble whose diameter is 1.2mu or below by using polymer resin having a thermal fluidity to a 2nd insulation film in the process of curing. CONSTITUTION:The magnetic film 1 holding magnetic bubbles coated on a nonmagnetic substrate with lamination, a 1st insulation film 2, a conductor pattern 3, a 2nd insulation film 4 and a soft magnetic pattern 5 are provided at least and the bubble diameter is 1.2mum or below. The resin having a fluid property by heat treatment at least parity in the 2nd insulation film 4 is used and not only the fluidity at the coating of the resin solution but also the molten fluidity by heat treatment are utilized together to decrease the title angle at the edge of the conductor pattern. Thus, the 2nd insulation film 4 is formed with high accuracy and the element with excellent characteristic is manufactured with high reproducibility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導電体パターン上に眉間絶縁膜を介して軟磁性
体パターンを形成する磁気バブルメモリ素子に係り、特
に12μ購以下の微小径のパズルを用いた高密度素子に
おいて良好なバブル転送特性を得るための層間絶縁膜に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic bubble memory element that forms a soft magnetic material pattern on a conductor pattern via a glabellar insulating film, and particularly relates to a magnetic bubble memory element with a micro diameter of 12 μm or less. This invention relates to an interlayer insulating film for obtaining good bubble transfer characteristics in high-density devices using puzzles.

〔従来の技術〕[Conventional technology]

磁気バブルメモリ素子は、軟磁性体パターンをバブルが
−ネット膜の上部に形成し1面内方向の回転磁界を印加
することにより、パターン端部に磁界を発生させる。バ
ブルの転送は、この磁極を利用して行う。一方、この軟
磁性パターンは、導電体パターン上に眉間絶縁膜を介し
て形成される。
A magnetic bubble memory element generates a magnetic field at the edge of the pattern by forming a soft magnetic pattern on the top of a bubble-net film and applying a rotating magnetic field in one in-plane direction. Bubble transfer is performed using these magnetic poles. On the other hand, this soft magnetic pattern is formed on the conductor pattern with a glabella insulating film interposed therebetween.

したがりて、導電性パターンの段差が、そのまま軟磁性
体パターンに転写されろと、軟磁性体パターンに段差が
発生し1回転磁界あるいは垂直方向のバイアス磁界によ
りその段差部分に磁極が発生する。この段差部の磁極は
バブルの転送に悪影響を与え、転送特性の劣化の原因と
なる。
Therefore, if the step of the conductive pattern is transferred as is to the soft magnetic material pattern, a step will be generated in the soft magnetic material pattern, and a magnetic pole will be generated in the step portion by one rotation magnetic field or a vertical bias magnetic field. The magnetic poles at this stepped portion have an adverse effect on bubble transfer, causing deterioration of transfer characteristics.

従来、この問題に対して例えば特開昭55−22295
号公報に開示されているように導電体パターンを軟磁性
体の間に熱硬化性樹脂を層間絶縁膜とし【用いる方法が
提案されている。この方法は熱硬化性樹脂溶液を塗布し
た後、熱硬化させて樹脂絶縁膜を形成するもので、熱硬
化性樹脂溶液の流動性を利用して導電体パターンの段差
の平坦化を図るため、極めて簡便かつ再現性の良い平坦
化手法といえよう。
Conventionally, this problem has been solved by, for example, Japanese Patent Application Laid-Open No. 55-22295.
As disclosed in the above publication, a method has been proposed in which a conductive pattern is formed between a soft magnetic material and a thermosetting resin as an interlayer insulating film. In this method, a thermosetting resin solution is applied and then thermally cured to form a resin insulating film.The fluidity of the thermosetting resin solution is used to flatten the steps of the conductor pattern. It can be said that this is an extremely simple and highly reproducible flattening method.

しかし、この方法を用いてバブル径12μm以下の微小
バブルに対する転送路を形成したところ。
However, this method was used to form a transfer path for microbubbles with a bubble diameter of 12 μm or less.

その転送特性は不満足なものであった。即ち、この場合
、導電体パターンの段差部分において転送特性が劣化し
ていることが明らかとなった。
Its transfer characteristics were unsatisfactory. That is, in this case, it has become clear that the transfer characteristics are degraded at the step portion of the conductor pattern.

第2図は、この段差部分での転送特性とバブル直径との
関係を示したものである。同図の関係を求めた試料は、
それぞれのパズル直径の磁性膜上に第1の絶縁膜、導電
体パターン、第2の絶縁膜及び軟磁性体パターンを形成
したもので、第2の絶縁膜としてはポリイミド系樹脂に
属するポリイミドインインドロキナゾリンジオンを用い
た。同図ヨリバブル径1.2μm以上では転送マージン
(バブルを良好に転送されるに必要なバイアス磁界の範
囲)が10係以上であるのに対し、バブル径が1.2μ
m以下になると急激に転送マージンが以下していること
がわかる。なお、良好なメモリ動作を行うためには転送
マージンは10%以上が必要である。
FIG. 2 shows the relationship between the transfer characteristics at this stepped portion and the bubble diameter. The sample for which the relationship in the same figure was obtained is
A first insulating film, a conductor pattern, a second insulating film, and a soft magnetic material pattern are formed on a magnetic film of each puzzle diameter. Rokinazolinedione was used. In the figure, when the bubble diameter is 1.2 μm or more, the transfer margin (the range of bias magnetic field necessary for good bubble transfer) is more than a factor of 10, whereas when the bubble diameter is 1.2 μm or more,
It can be seen that when the value becomes less than m, the transfer margin rapidly decreases. Note that in order to perform good memory operation, a transfer margin of 10% or more is required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このようにバブル径が微小になる程、従来の平坦化手法
では平坦化効果が不十分となることが明らかとなった。
It has become clear that as the bubble diameter becomes smaller, the flattening effect of the conventional flattening method becomes insufficient.

これは、バブル径が小さくなる時バブルを存在させるに
必要なバイアス磁界が増大し2軟磁性体パターンのわず
かな段差に対して。
This is because when the bubble diameter becomes smaller, the bias magnetic field required to cause the bubble to exist increases, even for a slight step difference between the two soft magnetic patterns.

大きな不要磁極の発生することが原因と考えられる。な
お、ここで不要磁極発生の原因となる段差は、その高低
差そのものより第3図に示す導電体パターン端部での傾
斜角(θ)がより重要である。
This is thought to be caused by the generation of large unnecessary magnetic poles. Note that the inclination angle (θ) at the end of the conductor pattern shown in FIG. 3 is more important than the difference in height itself, which is the cause of the generation of unnecessary magnetic poles.

即ち、軟磁性体の内部では、磁化は交換相互作用のため
出来るだけ平行、かつ連続した分布を持つ傾向がある。
That is, inside a soft magnetic material, magnetization tends to have a parallel and continuous distribution as much as possible due to exchange interaction.

このため、上記段差部分では軟磁性体内部の磁化はほぼ
傾斜角方向に向くことになり傾斜角(θ)が大きい程不
要磁極も増大するものと考えられる。なおバイアス磁界
の影響は段差部分での磁化の方向をさらに垂直方向に向
けようとする働きにあり、バイアス磁界が増大する程、
磁化の垂直成分が増大し、不要磁極も増大する。
Therefore, in the stepped portion, the magnetization inside the soft magnetic material is almost oriented in the direction of the inclination angle, and it is thought that the larger the inclination angle (θ) is, the greater the number of unnecessary magnetic poles is. The effect of the bias magnetic field is to direct the direction of magnetization in the step part more perpendicularly, and as the bias magnetic field increases,
The perpendicular component of magnetization increases, and the unnecessary magnetic poles also increase.

第4図は、転送マージン10チを確保するための上記傾
斜面(θ)とバブル径の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the slope (θ) and the bubble diameter for ensuring a transfer margin of 10 inches.

試料は第3図で用いた試料と同様であるが、第2の絶縁
膜を形成した。同図より、転送マージン10チを確保す
るためにはバブル径がt2μm以下の微小径の時、傾斜
角は20〜0°とする必要のあることがわかる。
The sample was the same as the sample used in FIG. 3, but a second insulating film was formed. From the figure, it can be seen that in order to secure a transfer margin of 10 inches, when the bubble diameter is as small as t2 μm or less, the inclination angle needs to be 20 to 0°.

本発明の目的は直径が12μm以下の微小径のバブルを
用いた素子において、良好な転送特性を得ることにある
An object of the present invention is to obtain good transfer characteristics in an element using microscopic bubbles with a diameter of 12 μm or less.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、所定膜厚の第2の絶縁膜の導電体パターン
端部での傾斜角を20〜o0とすることで達成される。
The above object is achieved by setting the inclination angle of the second insulating film having a predetermined thickness at the end of the conductor pattern to 20 to o0.

本発明においては、このため第2の絶縁膜のすぐなくと
も一部に加熱処理により流動する性質の樹脂を用いる。
For this reason, in the present invention, a resin having a property of flowing by heat treatment is used for at least a portion of the second insulating film.

すなわち、樹脂溶液の塗布時の流動性のみならず、加熱
処理による融解流動性をもあわせて利用し、導電体パタ
ーン端部における傾斜角を著しく低減する。本発明にお
いてはこのため下記一般式(1)あるいは(II)で表
わされるポリイミド前駆体を用い加熱融解後、硬化する
ことにより上記目的を達成する。
That is, the inclination angle at the end of the conductor pattern is significantly reduced by utilizing not only the fluidity of the resin solution during application but also the melting fluidity due to heat treatment. Therefore, in the present invention, the above object is achieved by using a polyimide precursor represented by the following general formula (1) or (II), heating and melting it, and then curing it.

なくとも一種類の基であり−Ar’は式次、てンテπち
から選ばれた少なくとも一種類の基であり、ルは1〜1
00である。
-Ar' is at least one group selected from the following formula: 1 to 1;
It is 00.

のりちから選ばれた少なくとも一種類の基でありmは1
0〜500である。
is at least one type of group selected from Norichi, and m is 1
It is 0-500.

また前記の(1) (III)式で示したポリイミド前
駆体は、溶媒に対する溶解性が高く、均質で高濃度のポ
リアミド酸フェスとなることから、各種膜厚を容易に形
成することができる。溶媒としては。
Further, the polyimide precursor represented by the above formula (1) (III) has high solubility in a solvent and forms a homogeneous and highly concentrated polyamic acid film, so that various film thicknesses can be easily formed. As a solvent.

N−メチル−2−ピロリドン、ベンジルピロリドン、N
、N−ジメチルアセトアミド、ジメチルホルムアミド、
ジメチルスルホキシド等の極性溶媒が好ましく、特に後
から述べるスピン塗布を行う場合には、N−メチル−2
−ピロリドン、N。
N-methyl-2-pyrrolidone, benzylpyrrolidone, N
, N-dimethylacetamide, dimethylformamide,
Polar solvents such as dimethyl sulfoxide are preferred, especially when performing spin coating as described later, N-methyl-2
-pyrrolidone, N.

N−ジメチルアセトアミドが好ましい。なお、これらの
溶剤は単純もしくは二種類以上混合して用いろ。
N-dimethylacetamide is preferred. These solvents may be used simply or in combination of two or more.

磁気バブルメモリ素子の眉間絶縁膜は、上記ポリアミド
酸フェスを導電体パターンが設けられた凹凸のある基板
上に塗布し、熱硬化処理するとポリイミド系樹脂膜が形
成される。塗布法としてはスピン塗布法、ロールコート
法、ディップ法、印刷法等があるが、基板全面に均一に
生産性よく塗膜を形成するには、スピン塗布法が最も好
ましい。
For the glabellar insulating film of the magnetic bubble memory element, a polyimide resin film is formed by applying the above-mentioned polyamic acid film onto a substrate with an uneven surface provided with a conductor pattern, and then heat-curing the film. Coating methods include spin coating, roll coating, dipping, and printing, but spin coating is most preferred in order to form a coating uniformly over the entire surface of the substrate with good productivity.

熱硬化処理は温度140〜400℃好ましくは250〜
400℃1時間10〜180分、好ましくは250〜4
00℃時間10〜180分、好1しくは30〜120分
が良い。
The temperature of the heat curing treatment is 140 to 400°C, preferably 250 to 400°C.
400°C 1 hour 10-180 minutes, preferably 250-4
The 00°C time is preferably 10 to 180 minutes, preferably 30 to 120 minutes.

雰囲気はAr、N2等の不活性ガス中か又は圧力0. 
I Pa以下の減圧状態である。
The atmosphere is an inert gas such as Ar or N2, or a pressure of 0.
The pressure is reduced below I Pa.

上記のポリイミド前駆体(1)、(n)は共通して矢の
ような性質がある。
The above polyimide precursors (1) and (n) have arrow-like properties in common.

(11ポリマーの硬化温度以下の適当な温度で融解流動
する。
(11) Melts and flows at a suitable temperature below the curing temperature of the polymer.

(2)融解流動により導電体パターン端部におけろ傾斜
角θを著しく低減することができろ。
(2) The inclination angle θ at the end of the conductor pattern can be significantly reduced by the melt flow.

(3)  融解流動する温度以上の加熱処理により硬化
して分子量の犬ぎいポリマーになる。
(3) It is cured by heat treatment at a temperature higher than the temperature at which it melts and flows, and becomes a polymer with a high molecular weight.

なお、加熱により融解流動する樹脂を用い基板表面分平
坦にする方法が特開昭57−1210611に開示され
ている。しかし、その目的は基板表面における凹凸に関
し、その高低差の絶対値を低減することにあり1本発明
の目的とする磁気バブル素子特有の問題に一般的に適用
することは困難である。
A method of flattening the surface of a substrate using a resin that melts and flows when heated is disclosed in JP-A-57-1210611. However, the purpose of this method is to reduce the absolute value of the difference in height with respect to the unevenness on the substrate surface, and it is difficult to apply it generally to the problems specific to the magnetic bubble element, which is the object of the present invention.

すなわち1本発明の第1の特徴は所定の膜厚により、導
電体パターン端部における傾斜角を0〜20°とする第
2の絶縁膜を得ることにある。ここで所定の膜厚とは直
径1.28m以下サブミクロン径のバブルに対し100
〜500nmであり、好ましくは200〜500綿の範
囲にある。これらの値は軟磁性体パターンのパターン形
状に依存する値であるが導電体パターンを横切る軟磁性
体の転送路では上記膜厚の範囲が望ましい。
That is, the first feature of the present invention is to obtain a second insulating film having a predetermined film thickness with an inclination angle of 0 to 20 degrees at the end of the conductor pattern. Here, the predetermined film thickness is 100 mm for bubbles with a submicron diameter of 1.28 m or less.
~500 nm, preferably in the range of 200-500 nm. Although these values depend on the pattern shape of the soft magnetic material pattern, the above film thickness range is desirable for the soft magnetic material transfer path that crosses the conductive material pattern.

第4図はバブル直径に対し、転送マージンが10チ以上
となるために必要な傾斜角を示したものである。この図
かられかるように、バブル直径が1.2μm以下の場合
には傾斜角は20°以下とする必要がある。
FIG. 4 shows the inclination angle required for the transfer margin to be 10 inches or more with respect to the bubble diameter. As can be seen from this figure, when the bubble diameter is 1.2 μm or less, the inclination angle needs to be 20° or less.

第5図は導電体パターン上に形成した第2の絶縁膜に関
し、その膜厚とパターン端部における傾斜角の関係を従
来の樹脂絶縁膜と本発明の樹脂絶縁膜とを比較して示し
たものである。第6図よりこの傾斜角以下にするための
膜厚を求めると従来の樹脂絶縁膜では500間以上であ
り1本発明の樹脂絶縁膜では150nm以上である。一
方、第2の絶縁膜の膜厚は先に述べた理由により200
〜300nmが望ましい。したがって良好な転送特性を
得るためには第2の絶縁膜として本発明の樹脂絶縁膜を
用いる必要のあることがわかる。
FIG. 5 shows the relationship between the thickness of the second insulating film formed on the conductor pattern and the angle of inclination at the edge of the pattern, comparing the conventional resin insulating film and the resin insulating film of the present invention. It is something. From FIG. 6, the film thickness required to make the inclination angle less than or equal to this angle is found to be 500 nm or more for the conventional resin insulating film, and 150 nm or more for the resin insulating film of the present invention. On the other hand, the thickness of the second insulating film is 200 mm for the reason mentioned above.
~300 nm is desirable. Therefore, it can be seen that in order to obtain good transfer characteristics, it is necessary to use the resin insulating film of the present invention as the second insulating film.

本発明の第2の特徴は、第2の絶縁膜が上記一般式(1
)あるいは(n)のポリイミド前駆体を加熱溶融後硬化
したものを用いて導電体パターン端部の傾斜角を低減さ
せるとともに、250℃以上、好ましくは500℃以上
〜400℃のガラス転移温度分有する膜であることによ
り、後に第2の絶縁膜上に形成する軟磁性体の形成温度
マージンを大きくできることにある。即ち基板温度が、
300℃を越えるような蒸着方式による軟磁性体形成工
程においても下地となる第2の絶縁膜が軟化することが
ないため、形成した軟磁性体膜に、しわなどの変形の発
生する危険性は小さくなる。
A second feature of the present invention is that the second insulating film has the above general formula (1
) or the polyimide precursor of (n), which is cured after being heated and melted, is used to reduce the inclination angle of the end of the conductor pattern, and has a glass transition temperature of 250°C or higher, preferably 500°C or higher to 400°C. By being a film, it is possible to increase the temperature margin for forming the soft magnetic material to be formed later on the second insulating film. In other words, the substrate temperature is
Even in the soft magnetic material formation process using a vapor deposition method that exceeds 300 degrees Celsius, the underlying second insulating film does not soften, so there is no risk of wrinkles or other deformation occurring in the formed soft magnetic material film. becomes smaller.

〔実施例〕〔Example〕

以下、実施例により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 第1図に示す如くバブルガーネット膜(バブル径0.9
μm)tの上に第1の絶縁膜としてSIO!膜2および
A1L/Aio用いた導電体パターン5を形成する(第
1図(α) ) 、ここでS i O2+ Au/M 
oの膜厚はそれぞれ+00nm 、 550℃mであり
、M6は5iO1とAtLの間の接着層として用い膜厚
は20nrnである。次に次式(一般式(1)に対応)
で表わされるポリイミド前駆体のN、N−ジメチルアセ
トアミド溶液(樹脂分濃度15重量%)を回転塗布し、
窒素雰囲気中で加熱融解後、硬化し絶縁膜4−11を形
成した(第1図(At 、 (c) )。
Example 1 As shown in Fig. 1, a bubble garnet film (bubble diameter 0.9
μm) SIO! as the first insulating film on the t! A conductor pattern 5 is formed using the film 2 and A1L/Aio (FIG. 1 (α)), where SiO2+ Au/M
The film thickness of M6 is +00 nm and 550° C.m, respectively, and M6 is used as an adhesive layer between 5iO1 and AtL, and the film thickness is 20 nrn. Next, the following formula (corresponding to general formula (1))
A solution of a polyimide precursor represented by N,N-dimethylacetamide (resin concentration 15% by weight) was spin-coated,
After heating and melting in a nitrogen atmosphere, it was cured to form an insulating film 4-11 (FIG. 1 (At, (c)).

以   下   余   白 (但しルキ10) 加熱処理は200℃30分、650℃30分で行なりて
おり、この際の溶媒蒸発、融解流動、イミド化は200
℃加熱迄の段階で起こり、550℃加熱迄の段階で架橋
硬化が起こっている。この時の硬化膜のガラス転移温度
を真空理工株式会社表の示差走査熱量計DSC−150
0で測定したところ505℃であった。
Margin below (However, the heat treatment was performed at 200°C for 30 minutes and 650°C for 30 minutes. At this time, solvent evaporation, melting flow, and imidization were performed at 200°C.
This occurs before heating to 550°C, and crosslinking and curing occurs before heating to 550°C. The glass transition temperature of the cured film at this time was measured using a differential scanning calorimeter DSC-150 of Shinku Riko Co., Ltd.
When measured at 0, the temperature was 505°C.

次にこの絶縁膜4の上に高周波スパッタ法により軟磁性
体膜(膜厚550 nm )を形成し、さらにレジスト
パターン形成後イオンミリングにより軟磁性体のエツチ
ングを行ない軟磁性体パターンを形成した(第1図(1
1図)。
Next, a soft magnetic material film (thickness: 550 nm) was formed on this insulating film 4 by high frequency sputtering, and after forming a resist pattern, the soft magnetic material was etched by ion milling to form a soft magnetic material pattern ( Figure 1 (1
Figure 1).

この様にして形成した磁気バブルメモリ素子では、導電
体パターン端部での傾斜角は約10℃であり転送マージ
ンは従来の4〜5チから10〜12チと向上した。
In the magnetic bubble memory element formed in this manner, the inclination angle at the end of the conductor pattern was about 10 DEG C., and the transfer margin was improved from the conventional 4 to 5 inches to 10 to 12 inches.

実施例2 第1表の隘1〜Nn8に示す樹脂濃度15重量−のポリ
イミド前駆体(一般式(1)に対応)を用いて絶縁膜4
分形成した以外はすべて実施例1と同様にして、磁気バ
ブルメモリ素子を製造し、転送マージンを調べた。転送
マージンは従来の4〜5チから第1表の隘1〜迎8に示
すように10〜121と向上した。
Example 2 An insulating film 4 was prepared using a polyimide precursor (corresponding to general formula (1)) with a resin concentration of 15% by weight as shown in columns 1 to Nn8 of Table 1.
A magnetic bubble memory element was manufactured in the same manner as in Example 1 except that the magnetic bubble memory element was formed, and the transfer margin was examined. The transfer margin has improved from the conventional 4 to 5 inches to 10 to 121, as shown in columns 1 to 8 of Table 1.

実施例3 第2表の陽1〜Nh7に示す樹脂濃度15重i%のポリ
イミド前駆体(一般式(n)に対応)を用いて絶縁膜4
を形成した以外はすべて実施例1と同様にして、la気
バブルメモリを製造し、転送マージンを調べた。転送マ
ージンは従来の4〜5%から第2表の陽1〜7に示すよ
うに8〜10チと向上した。
Example 3 An insulating film 4 was prepared using a polyimide precursor (corresponding to general formula (n)) with a resin concentration of 15% by weight as indicated by numbers 1 to Nh7 in Table 2.
An LA bubble memory was manufactured in the same manner as in Example 1, except that a 100% oxide layer was formed, and the transfer margin was examined. The transfer margin has improved from the conventional 4 to 5% to 8 to 10% as shown in numbers 1 to 7 of Table 2.

実施例4 実施例1で用いたポリイミド前駆体と第2表隘4に示し
たポリイミド前駆体を1/1重量%で混合したポリイミ
ド前駆体を用いて絶縁膜4を形成した以外はすべて実施
例1と同様にして、磁気バブルメモリ素子を製造し、転
送マージン分調べた。
Example 4 All examples were the same except that the insulating film 4 was formed using a polyimide precursor obtained by mixing the polyimide precursor used in Example 1 and the polyimide precursor shown in Table 2, column 4 at 1/1% by weight. A magnetic bubble memory element was manufactured in the same manner as in Example 1, and the transfer margin was examined.

転送マージンは従来の4〜5チから、10〜12チと向
上した。またこの際の絶縁膜4のガラス転移温度は61
5℃であった。
The transfer margin has improved from the conventional 4 to 5 inches to 10 to 12 inches. In addition, the glass transition temperature of the insulating film 4 at this time is 61
The temperature was 5°C.

以   下   余   白 〔発明の効果〕 本発明によれば導電体パターン端部における傾斜角は著
しく低減され1%に微小なバブル(直径12μm以下)
を有する磁気バブル素子において著しい特性改善の効果
が見られた。第7図はバブル直径0,9μmの磁性膜に
対し、導電体パターンを横切る軟磁性体転送路において
転送マージンと回転磁界との関係を示したものであり、
従来の樹脂絶縁膜と本発明の樹脂絶縁膜を用いた場合の
比較結果を示す。なお、これらの樹脂絶縁膜の厚さはい
ずれも500 nmとした。同図より従来の樹脂絶縁膜
を用いた場合の転送マージンは回転磁界6004で4%
であるに対し1本発明の樹脂絶縁膜では12チと3倍に
改善されていることがわかる。
Margin below [Effects of the Invention] According to the present invention, the inclination angle at the end of the conductor pattern is significantly reduced to 1%, resulting in minute bubbles (diameter of 12 μm or less).
A significant characteristic improvement effect was observed in the magnetic bubble element having the following properties. Figure 7 shows the relationship between the transfer margin and the rotating magnetic field in a soft magnetic material transfer path that crosses the conductor pattern for a magnetic film with a bubble diameter of 0.9 μm.
Comparison results between a conventional resin insulating film and a resin insulating film of the present invention are shown. Note that the thickness of each of these resin insulating films was 500 nm. From the same figure, the transfer margin when using a conventional resin insulating film is 4% in a rotating magnetic field of 6004.
On the other hand, it can be seen that the resin insulating film of the present invention has a three-fold improvement of 12 inches.

このように1本発明によれば、塗布、加熱処理というき
わめて簡便な方法により第2の絶縁膜を高精度に形成す
ることができ、優れた特性の素子を再現性良く作製する
ことが可能である。
As described above, according to the present invention, the second insulating film can be formed with high precision using an extremely simple method of coating and heat treatment, and elements with excellent characteristics can be manufactured with high reproducibility. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけろ磁気バブルメモリ素子
の作製工程図、第2図は従来の樹脂絶縁膜を用いた磁気
バブルメモリ素子におけるバブル直径と転送マージンと
の関係線図、第3図は磁気バブルメモリ素子の断面図、
第4図は転送マージン10チ以上を確保するのに必要な
バブル直径と傾斜角θの関係を示す図、第5図は樹脂膜
厚(A)と傾斜角(のとの関係図、第6図は回転磁界と
バイアス磁界との関係を示す線図である。 1・・・・・・・・・・・・バブルガーネット膜2・・
・・・・・・・・・・5iO1膜5・・・・・・・・・
・・・導電体パターン4・・・・・・・・・・・・絶縁
膜 5・・・・・・・・・・・・軟磁性体パターン/パ  
、 6′1、A ′−・、  〆 代理人 弁理士 小 川 勝 男 ヱ  1  図 茎 2 口 )(0)1しl’?tζ)、A筑つ ス 3 回 晃 年 回 箪  ら  国〕 0    200   400    GOO室謁曝危
h(α儀) Z    乙   G] dD     50   6Q 口転虫界(Oe)
FIG. 1 is a manufacturing process diagram of a magnetic bubble memory device according to an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between bubble diameter and transfer margin in a conventional magnetic bubble memory device using a resin insulating film, and FIG. Figure 3 is a cross-sectional view of a magnetic bubble memory element.
Fig. 4 is a diagram showing the relationship between the bubble diameter and inclination angle θ necessary to secure a transfer margin of 10 inches or more, Fig. 5 is a diagram showing the relationship between resin film thickness (A) and inclination angle ( The figure is a diagram showing the relationship between the rotating magnetic field and the bias magnetic field. 1. Bubble garnet film 2.
・・・・・・・・・・・・5iO1 film 5・・・・・・・・・
...Conductor pattern 4...Insulating film 5...Soft magnetic pattern/pattern
, 6'1, A'-・, 〆Representative Patent Attorney Katsuo Ogawa 1 Figure 2 Mouth) (0) 1 Shil'? tζ), A Chikutsusu 3rd year, 2015, 2000, 0 200 400 GOO room audience exposure crisis (α)

Claims (1)

【特許請求の範囲】[Claims] 1、非磁性基板上に積層して被着された磁気バブルを保
持し得る磁性膜、第1の絶縁膜、導電体パターン、第2
の絶縁膜及び軟磁性体パターンを少なくともそなえ、か
つバブル直径が1.2μm以下である磁気バブルメモリ
素子において、上記第2の絶縁膜が硬化過程で熱流動性
を有する高分子樹脂であることを特徴とするバブルメモ
リ素子。
1. A magnetic film capable of holding magnetic bubbles laminated and deposited on a non-magnetic substrate, a first insulating film, a conductor pattern, a second
In a magnetic bubble memory element comprising at least an insulating film and a soft magnetic material pattern and having a bubble diameter of 1.2 μm or less, the second insulating film is made of a polymer resin that has thermal fluidity during the curing process. Features a bubble memory element.
JP27651086A 1986-11-21 1986-11-21 Magnetic bubble memory element Pending JPS63131392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27651086A JPS63131392A (en) 1986-11-21 1986-11-21 Magnetic bubble memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27651086A JPS63131392A (en) 1986-11-21 1986-11-21 Magnetic bubble memory element

Publications (1)

Publication Number Publication Date
JPS63131392A true JPS63131392A (en) 1988-06-03

Family

ID=17570472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27651086A Pending JPS63131392A (en) 1986-11-21 1986-11-21 Magnetic bubble memory element

Country Status (1)

Country Link
JP (1) JPS63131392A (en)

Similar Documents

Publication Publication Date Title
JP3110092B2 (en) Method of manufacturing slider for magnetic head
JPS6142714A (en) Manufacture of multilayer conductor film structure
JPS597148B2 (en) magnetic bubble memory element
JPS63131392A (en) Magnetic bubble memory element
JPS62117183A (en) Magnetic bubble memory device
JPH05214101A (en) Thermoplastic polyester-imide and electronic part and device using the same
JPH04274402A (en) Production of lightguide
JPH04232629A (en) Manufacture of grooved substrate and multilayer structure
JPS61196439A (en) Photomagnetic recording medium and its production
JPH0827913B2 (en) Manufacturing method of thin film magnetic head
JPS6233390A (en) Magnetic bubble memory element
US4772505A (en) Magnetic bubble memory element
JPS6338920A (en) Mim active matrix liquid crystal display element
EP0182287A2 (en) Perpendicular magnetic recording medium and method for preparing the same
KR100256064B1 (en) Thin magnetic head
JPH04304234A (en) Thermoplastic polyetherimide and electronic device using same
JPS6061923A (en) Production of magnetic recording medium
JPS60121587A (en) Magnetic bubble memory element
JPH087222A (en) Thin film magnetic head and its production
JPS62257611A (en) Manufacture of thin film magnetic head
JPS6045917A (en) Production of thin film magnetic head
JPS61248529A (en) Manufacture of resin layer
JP2001229525A (en) Substrate for magnetic recording medium and its manufacturing method
JPS62219313A (en) Thin film magnetic head
JPS62143283A (en) Manufacture of magnetic bubble memory element