JPS63130187A - Method for softening water - Google Patents

Method for softening water

Info

Publication number
JPS63130187A
JPS63130187A JP61277360A JP27736086A JPS63130187A JP S63130187 A JPS63130187 A JP S63130187A JP 61277360 A JP61277360 A JP 61277360A JP 27736086 A JP27736086 A JP 27736086A JP S63130187 A JPS63130187 A JP S63130187A
Authority
JP
Japan
Prior art keywords
resin
water
ppm
regenerated
bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61277360A
Other languages
Japanese (ja)
Inventor
Yusuke Maeda
雄介 前田
Tadashi Sugiyama
正 杉山
Toyokazu Sugawara
菅原 豊和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP61277360A priority Critical patent/JPS63130187A/en
Publication of JPS63130187A publication Critical patent/JPS63130187A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance softening treatment capacity, by blowing air in a resin sedimentation bed formed by removing a supernatant liquid from the lower part of a column to uniformly stir said resin bed. CONSTITUTION:The softening treatment of water is performed by passing raw water through an Na-type strong acidic cation exchange resin from the upper part thereof. After the resin is regenerated by backwashing water, the resin is allowed to sediment and water is drawn out up to the upper part of the sedimented resin bed and the resin is regenerated by brine. Before and after this regeneration, air is blown in the resin sedimentation bed to uniformly stir said resin bed. By this method, the softening treatment capacity of water can be enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水の軟化方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for softening water.

水中からの硬度成分であるOa及びMgイオンの除去、
所謂軟化処理は強酸性陽イオン交換樹脂のNa形に通水
して行われるが、辷れはほぼ全産業でボイラー用水の精
製に利用されている他。
Removal of Oa and Mg ions, which are hardness components, from water,
The so-called softening process is carried out by passing water through a strongly acidic cation exchange resin in the Na form, while slipping is used in almost all industries to purify boiler water.

ビル媛房用ボイラー、給湯装置等にも広く用いられてい
る。
It is also widely used in building boilers, water heaters, etc.

〔従来の技術〕[Conventional technology]

通常この軟化処理はカラムに充填された強酸性陽イオン
交換樹脂への通水、充填樹脂の逆洗、食塩水による樹脂
の再生という一連の操作によって行われているが、樹脂
の通水処理能力は樹脂の全交換能力より低い値しか得ら
れず、処理能力を高める為種々の試みがなされてきた。
Normally, this softening process is performed by a series of operations: passing water through a strongly acidic cation exchange resin packed in a column, backwashing the packed resin, and regenerating the resin with saline, but the resin's ability to handle water passing However, a value lower than the total exchange capacity of the resin has been obtained, and various attempts have been made to increase the processing capacity.

〔発明の目的〕[Purpose of the invention]

本発明者らはこの軟化方法の改良を目的として種々検討
を行なった結果、軟化処理後該樹脂を逆洗再生処理して
再使用するに当り、逆洗後の再生前或いは再生後におい
て上澄液を除去して形成される樹脂の沈降層に空気を吹
き込み均一攪拌する事によって軟化通水処理能力が向上
される事を見出し本発明に到達した。
As a result of various studies aimed at improving this softening method, the inventors of the present invention found that when the resin is backwashed and reused after the softening treatment, the supernatant is removed before or after the regeneration after the backwashing. The present invention was achieved by discovering that the softening water flow treatment ability can be improved by blowing air into the resin sediment layer formed by removing the liquid and stirring it uniformly.

〔発明の構成〕[Structure of the invention]

上記のように水の軟化処理は強酸性陽イオン交換樹脂の
Na形に原水を上部より通水して行われるが5通常樹脂
はカラムに充填して用いられる。充填樹脂層高は/〜二
m゛が普通で、この樹脂を通して通常−〇 −,10ベ
ツド・ボリューム/時の流速で通水を行う。通水を続け
るにつれ樹脂中の交換基は次第にOa及びM、9イオン
で満たされやがてこれら硬度成分のリークが始まる。通
水はこの時点で停止し、続いて食塩水による樹脂の再生
に移るが、この前【通水中に持ち込まれ樹脂層上に堆積
された微小異物を除去し、同時に通水により圧密化され
た樹脂層をほぐすため、下部より上向きに水を流して樹
脂を展開し洗浄する逆洗操作が行なわれる。充分異物を
洗い出し樹脂層をほぐした後は、逆洗水をとめ流動した
樹脂が沈降するのを待つ。続いて沈静した樹脂層の上部
まで水を抜き通常5〜1Oqb食塩水を用いて樹脂の再
生が行われるが。
As mentioned above, the water softening treatment is carried out by passing raw water through the Na form of a strongly acidic cation exchange resin from above, but the resin is usually used by filling a column. The height of the filled resin layer is usually 2 m2, and water is passed through the resin at a flow rate of 10 bed volumes/hour. As water continues to flow through the resin, the exchange groups in the resin are gradually filled with Oa, M, and 9 ions, and soon these hardness components begin to leak. Water flow stops at this point, and the resin is then regenerated using saline solution. In order to loosen the resin layer, a backwashing operation is performed in which water is flowed upward from the bottom to expand and wash the resin. After thoroughly washing out foreign matter and loosening the resin layer, stop the backwashing water and wait for the fluidized resin to settle. Subsequently, the water is drained to the top of the settled resin layer, and the resin is regenerated, usually using 5 to 1 Oqb of saline solution.

この再生前或いは再生後にカラム下部より樹脂の沈降層
に空気を吹き込み、均一攪拌する事によって軟化処理能
力が向上される事が見出された。空気吹きノみの時期は
上記のように樹脂の再生前或いは再生後のどちらでもよ
いが、硬度成分の通水時における平均リークの少なさか
ら考えると再生後に行う方がより好ましい。又、この空
気吹き込みによる攪拌は出来るだけ樹脂層を均−Ic攪
拌する事が好ましく、例えば流速1、♂ゴ/ゴ1分で5
分以上、好ましくは70分以上吹きこむことばより達成
される。
It has been found that the softening ability can be improved by blowing air into the resin sedimentation layer from the bottom of the column and stirring it uniformly before or after this regeneration. The air blowing may be performed either before or after the resin is regenerated as described above, but it is more preferable to perform the air blowing after the regeneration in view of the small average leakage of the hardness component during water passage. In addition, it is preferable to stir the resin layer as uniformly as possible with this air blowing, for example, at a flow rate of 1, male/go 1 minute,
This can be accomplished by blowing the words for at least 70 minutes, preferably at least 70 minutes.

空気吹き込み攪拌は上記の如く出来るだけ均一に樹脂沈
降層が形成されるよりに沈降層上部まで上澄水を抜いた
後洗性なわれる。この水抜きは均一沈降層が得られるの
であれば必ずしも正確に水面が樹脂表層に達する必要は
なく例えば樹脂層上lO口以下程度でも構わない。
The air blowing and agitation process is performed after the supernatant water is removed to the top of the sediment layer so that the resin sediment layer is formed as uniformly as possible as described above. As long as a uniform sedimentation layer can be obtained, the water level does not necessarily have to reach exactly the surface layer of the resin, for example, it may be less than 10 liters above the resin layer.

本発明で用いられる樹脂としては通常の強酸性陽イオン
交換樹脂であれば何を用いてもよく、市販されているダ
イヤイオンBE/B%PKコ/6(三菱化成■裂)、ア
ンバー2イトエR/、10B、デュオライト0.20(
ローム・アンド・ハース社友〕、ダウエックス)IOR
(ダウケミカル社製)、レバチット5too(バイエル
社製ン等が挙げられる。
As the resin used in the present invention, any ordinary strong acid cation exchange resin may be used, including commercially available Diamond BE/B% PK Co/6 (Mitsubishi Kasei ■Shiba), Amber 2 Itoe, etc. R/, 10B, Duolite 0.20 (
Rohm & Haas Friends], Dowex) IOR
(manufactured by Dow Chemical Company), Revachit 5too (manufactured by Bayer Company), and the like.

〔実施例〕〔Example〕

以下本発明の効果を実施例によって説明する。 The effects of the present invention will be explained below using examples.

実施例−/ 強酸性陽イオン交換樹脂ダイヤイオンSK/B(商品名
)のNa形−〇〇Wを内径コ/誼ダ高さ1000龍Hの
カラムに充填し、これに塩化ナトリウムと塩化カルシウ
ムをl:lの比率で一20θOppm(as 0aOO
s)含む原水を流速SV=コOで流した。出口液中のO
a’+イ、オン濃度が/ ! ppm(as (3aO
O,)になるまで通液を行ない、続いて約70分間の逆
洗を行なった。その後、樹脂面迄液を抜き、下部より空
気を吹き込み、樹脂層を均一に混合した。
Example-/ Na form-〇〇W of the strong acidic cation exchange resin Diamond SK/B (trade name) was packed into a column with an inner diameter of 1,000 mm and a height of 1,000 mm, and sodium chloride and calcium chloride were added to the column. -20θOppm (as 0aOO
s) The containing raw water was flowed at a flow rate of SV = 0. O in outlet liquid
a'+i, the on concentration is /! ppm(as (3aO
The liquid was passed until the temperature reached 0, ), and then backwashing was performed for about 70 minutes. Thereafter, the liquid was drained to the resin surface, and air was blown from the bottom to uniformly mix the resin layer.

次忙、10チー塩化ナトIJウム溶液を用いて再生レベ
ル2001・Na01/l−Rで再生を行ない、脱塩水
を樹脂と同容量再生時と同じ流速で流し更に脱塩水を用
いて水洗を171行なった。
Next, perform regeneration using a 10Q sodium chloride solution at a regeneration level of 2001/Na01/l-R, then run demineralized water at the same flow rate as when regenerating the same volume as the resin, and then rinse with demineralized water at 171. I did it.

この再生した樹脂に同じ塩化ナトリウムと塩化カルシウ
ムの原水を流速BV=20で同じく出口液中の0が+イ
オン濃度がt ! ppm(as 0aOOs)Kなる
まで通液を行なった。その結果、 Ca’+イオン濃度
が/ ! ppm(as 0aOOに、のOa交換容量
はり/、コl−0aOOs/l−Rであった。又、その
時の平均リーク量は9.2 ppm(as OaOOm
rc6つた。
The same raw water of sodium chloride and calcium chloride was added to this regenerated resin at a flow rate of BV=20, and the concentration of 0+ ions in the outlet liquid was t! The solution was passed until it reached ppm (as 0aOOs)K. As a result, the Ca'+ ion concentration is /! ppm (as 0aOOs), the Oa exchange capacity was 1-0aOOs/1-R.The average leakage amount at that time was 9.2 ppm (as OaOOm
rc6.

実施例−2 実施例−7と同様にダイヤイオンEJIC/Bをカラム
に充填し、塩化ナトリウムと塩化カルシウムを/:lの
比率で2o o o ppm(aa 0aOO1)含む
原水をBY=20で流し、出口液中の(a”+イオン濃
度が/ !r ppm(as Oa○0.)になるまで
通液を行なった。その後、約70分間の逆洗を行なった
Example-2 A column was filled with Diaion EJIC/B in the same manner as in Example-7, and raw water containing sodium chloride and calcium chloride at a ratio of /:l of 2o o o ppm (aa 0aOO1) was flowed at BY = 20. The solution was passed until the concentration of (a''+ ions in the outlet liquid reached /!r ppm (as Oa○0.). Thereafter, backwashing was performed for about 70 minutes.

次忙、実施例−/と同様の条件により再生、水洗を行な
った。その後、樹脂面迄液を抜き、下部より空気を吹き
込み、樹脂層を均一に混合した。
Next, regeneration and water washing were performed under the same conditions as in Examples. Thereafter, the liquid was drained to the resin surface, and air was blown from the bottom to uniformly mix the resin layer.

この樹脂に同じ塩化ナトリウムと塩化カルシウムの原水
を流速s v=a oで同じく出口液中の(a”イオン
濃度が/ j ppm(as Oa○0.)になるまで
通液を行なった。
The same raw water of sodium chloride and calcium chloride was passed through this resin at a flow rate of s v = ao until the (a'' ion concentration in the outlet liquid reached / j ppm (as Oa○0.).

その結果、Oa″+イオン濃度が/ ! ppm(as
 0aOO。
As a result, the Oa″+ ion concentration was /! ppm (as
0aOO.

迄のCcL  交換容量は70. A 9・0aC(h
/l−Rであった。
The CcL exchange capacity up to now was 70. A 9・0aC(h
/l-R.

又、その時の平均リーク量は、八/ppm(asOaO
O,)であった。
Also, the average leakage amount at that time was 8/ppm (asOaO
O,).

比較例−/ 実施例−1,λと同様にダイヤイオンSK/Bをカラム
に充填後、実施例−/、コと同じ塩化ナトリウムと塩化
カルシウムの原水をSV=、20で流し、出口液中のO
a”+イオン濃度が/よppm(as OaOOm)に
なるまで通液を行なった。その後約io分間逆洗を行な
った。
Comparative Example-/ After filling a column with Diamond ION SK/B in the same manner as in Example-1, λ, the same raw water of sodium chloride and calcium chloride as in Example-/, was flowed at SV = 20, and in the outlet liquid. O of
The solution was passed until the concentration of a''+ ions reached 0 ppm (as OaOOm). After that, backwashing was performed for about io minutes.

次に実施例−/、コと同様な条件により、樹脂の再生、
水洗を行なった。この再生した樹脂に同じ塩化ナトリウ
ムと塩化カルシウムの原水をSV=二〇で流し、出口液
中のOa”+イオン濃度が/ 、t ppm(&8 C
!aooa)Kなるまで通液を行ナッた・ その結果、Oa”イオン濃度が/ j ppm (&B
 OaOOm)迄のOa交換容量は4 /、 !r I
・0aOOv′!!−Rでめつた。
Next, the resin was regenerated under the same conditions as in Example-/, and
I washed it with water. The same raw water of sodium chloride and calcium chloride was poured through this regenerated resin at SV=20, and the Oa''+ ion concentration in the outlet liquid was /, t ppm (&8 C
! As a result, the Oa'' ion concentration was /j ppm (&B
The Oa exchange capacity up to OaOOm) is 4 /, ! r I
・0aOOv′! ! - I met with R.

り 又、その時の平均リーク量は/ 0.6 ppm(aG
OaCOa )であった。以上の結果を表−/にまとめ
る。
The average leakage amount at that time was / 0.6 ppm (aG
OaCOa ). The above results are summarized in Table-/.

実施例−3 強酸性陽イオン交換樹脂アンバーライトエR−lコOE
(商品名)のNa形−00rrttを内径2/ml、高
さ1000.ffklのカラムに充填し、これに塩化ナ
トリウムと塩化カルシウムを/:/の比率で2000 
ppm as Ca0O,含む原水を流速Sv;−〇で
流した。出口液中のOa”イオン濃度が’ !r 1)
pm(aa 0aOO,)になるまで通液を行ない、続
りて約70分間の逆洗を行なった。
Example-3 Strongly acidic cation exchange resin Amberlite E-R-OE
(Product name) Na type-00rrtt with an inner diameter of 2/ml and a height of 1000mm. Fill a ffkl column with sodium chloride and calcium chloride in a ratio of 2000
Raw water containing ppm as Ca0O was flowed at a flow rate Sv; -0. Oa” ion concentration in the outlet liquid is '!r 1)
The liquid was passed through until the temperature reached pm (aa 0aOO,), and then backwashing was performed for about 70 minutes.

その後、樹脂表面迄液を抜き、下部より空気を吹き込み
樹脂層を均一に混合した。
Thereafter, the liquid was drained to the resin surface, and air was blown from the bottom to uniformly mix the resin layer.

次に、/θ俤塩化ナトリウム溶液を用いて再生レベル5
.20011 NhO1l/13−Rで再生を行ない脱
塩水を樹脂と同容量再生時と同じ流速で流し更に脱塩水
を用いて水洗を71行なった。
Next, regenerate level 5 using /θ 俤 sodium chloride solution.
.. Regeneration was performed with 20011 NhO1l/13-R, and demineralized water was flowed at the same flow rate as when regenerating the same volume as the resin, and further 71 washings were performed using demineralized water.

この再生した樹脂に同じ塩化ナトリウムと塩化カルシウ
ムの原水を流速S V=20で同じく出口液中のOa”
+イオン濃度が/ !; ppm (as 0aOO,
)になるまで通液を行なった。その結果、 Oa叶イオ
ン濃度が/ j ppm (as O&C05gのOa
交換容量はA 1.l 、li’ Ca00v’l−R
であった。又、その時の平り 均リーク量は/ /、 / ppm lL80aOOa
であった。
The same raw water of sodium chloride and calcium chloride was added to this regenerated resin at a flow rate of SV = 20.
+Ion concentration/! ; ppm (as 0aOO,
). As a result, the Oa leaf ion concentration was / j ppm (as O&C05g Oa
Exchange capacity is A1. l ,li'Ca00v'l-R
Met. Also, the average leakage amount at that time is / /, / ppm 1L80aOOa
Met.

比較例−一 実施例−3と同様に工R−/コOBをカラムに充填し、
実施例−3と同じ塩化ナトリウムと塩化カルシウムを含
む原水を流速S V=20で流し、出口液中のOa”+
イオン濃度が/ 左ppm(asca OOs)になる
まで通液を行なった。その後約10分間の逆流を行なっ
た。
Comparative Example - Fill a column with KoR-/CoOB in the same manner as in Example-3,
Raw water containing the same sodium chloride and calcium chloride as in Example-3 was flowed at a flow rate of SV=20, and Oa''+ in the outlet liquid was
The solution was passed until the ion concentration reached 1/2 ppm (asca OOs). Thereafter, backflow was performed for about 10 minutes.

次に、実施例−3と同様な条件により樹脂の再生、水洗
を行なった。この再生した樹脂に同じ塩化ナトリウムと
塩化カルシウムの原水を流速8 V= 20で流し、出
口液中のOa”+イオン濃度が/ k ppm(as 
0aCO,)になるまで通液を行なった。その結果、O
a”+イオン濃度が/ j ppm(aEICaOO,
)迄のOa交換容量は!r r、 I 1−caoo、
/l−Rり であった。又、その時の平均+)−P:jiは/−16
ppm(as 0aOOs)であった。以上の結果を表
−コにまとめる。
Next, the resin was regenerated and washed with water under the same conditions as in Example-3. The same raw water of sodium chloride and calcium chloride was flowed through this regenerated resin at a flow rate of 8 V = 20, and the Oa''+ ion concentration in the outlet liquid was / k ppm (as
The solution was passed until the temperature reached 0aCO,). As a result, O
a”+ ion concentration is / j ppm (aEICaOO,
) The Oa exchange capacity is up to! r r, I 1-caoo,
/l-Rri. Also, the average at that time +)-P:ji is /-16
ppm (as 0aOOs). The above results are summarized in Table-C.

表−一 〔発明の効果〕 以上のように不発明によると効率的に水を軟化処理する
ことができる。
Table 1 [Effects of the Invention] As described above, according to the invention, water can be efficiently softened.

Claims (1)

【特許請求の範囲】[Claims] (1)強酸性陽イオン交換樹脂のカラムに原水を通して
軟化処理した後、該樹脂を逆洗再生処理して再使用する
に当り、逆洗後の再生前或いは再生後において、上澄液
を除去して形成される樹脂の沈降層にカラム下部より空
気を吹き込み均一攪拌することを特徴とする水の軟化方
法。
(1) After softening raw water by passing it through a column of strongly acidic cation exchange resin, when the resin is backwashed and reused, the supernatant liquid is removed before or after the regeneration after backwashing. A water softening method characterized by uniformly stirring the resin sediment layer formed by blowing air from the bottom of the column.
JP61277360A 1986-11-20 1986-11-20 Method for softening water Pending JPS63130187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61277360A JPS63130187A (en) 1986-11-20 1986-11-20 Method for softening water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61277360A JPS63130187A (en) 1986-11-20 1986-11-20 Method for softening water

Publications (1)

Publication Number Publication Date
JPS63130187A true JPS63130187A (en) 1988-06-02

Family

ID=17582439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61277360A Pending JPS63130187A (en) 1986-11-20 1986-11-20 Method for softening water

Country Status (1)

Country Link
JP (1) JPS63130187A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113019475A (en) * 2021-03-16 2021-06-25 台嘉成都玻纤有限公司 Softener resin regeneration method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113019475A (en) * 2021-03-16 2021-06-25 台嘉成都玻纤有限公司 Softener resin regeneration method

Similar Documents

Publication Publication Date Title
US4969520A (en) Steam injection process for recovering heavy oil
RU2719832C2 (en) Method of treating silicon-containing waste water and method of use thereof, as well as method and system for producing molecular sieve
RU2118204C1 (en) Method of removing corrosive metal impurities from liquid compositions and method of producing carboxylic acid and/or its anhydride
US4332649A (en) Method of polishing glass ware with sulfuric acid and hydrofluoric acid
US20220371887A1 (en) Method for preparing hypochlorous acid aqueous solution and method for regenerating weakly acidic cation exchanger
US3493498A (en) Ion-exchange process
JPS6231613B2 (en)
JPS63130187A (en) Method for softening water
US3492159A (en) Water conditioning
EP0228831B1 (en) Process for treating a liquid involving cation exchange and selective removal of nitrate ions from the liquid, and ion exchange resin mixtures suitable for use therein
JP3765653B2 (en) Separation method of mixed resin in mixed bed type ion exchange resin tower and regeneration method of mixed bed type sucrose purification device
JPS61283355A (en) Method for preventing release of impurities from strong acidic cation exchange resin
US4320206A (en) Emulsion regenerant for ion exchange resins
JPS6155421B2 (en)
US2502120A (en) Removal of silicon compounds from water
JPS63263099A (en) Improved method for desalting sugar-containing solution
JPH0455313A (en) Method of removing sulfuric acid ion
JPH041659B2 (en)
JPH0768254A (en) Pure water producing apparatus and its regeneration
RU2083594C1 (en) Process for hydration of sulfonated styrene-divinyl benzene copolymer
JPH0768187A (en) Regenerating method of strong-acidic cation exchange resin
JPS6133623B2 (en)
JPH1057100A (en) Mixed bed type purifier for carbohydrate solution
JPS624447A (en) Method for preventing liberization of impurity from strongly acidic cation-exchange resin
JPS6259630B2 (en)