JPH0455313A - Method of removing sulfuric acid ion - Google Patents

Method of removing sulfuric acid ion

Info

Publication number
JPH0455313A
JPH0455313A JP2162594A JP16259490A JPH0455313A JP H0455313 A JPH0455313 A JP H0455313A JP 2162594 A JP2162594 A JP 2162594A JP 16259490 A JP16259490 A JP 16259490A JP H0455313 A JPH0455313 A JP H0455313A
Authority
JP
Japan
Prior art keywords
salt
ion exchange
ion
sulfuric acid
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2162594A
Other languages
Japanese (ja)
Inventor
Shohei Nozaki
野崎 正平
Hiroyuki Asakura
弘幸 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2162594A priority Critical patent/JPH0455313A/en
Publication of JPH0455313A publication Critical patent/JPH0455313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To effectively remove sulfuric acid ion in a salt soln. without using harmful calcium salt or expensive barium salt, etc., by treating the salt soln. containing sulfuric acid ion with an ion exchange resin having polyamine groups. CONSTITUTION:Sulfuric acid ion in a salt soln. is removed by treating the salt soln. such as industrial salt containing sulfuric acid ion with an ion exchange resin having polyamine groups. As one example of the ion exchange resin having polyamine groups, an ion exchange of resin consisting of polystyrene-divinylbenzene copolymers as the base material and polyamine groups introduced thereinto as the functional groups is used, and this resin is commercially available as 'DIA-ION WA20', etc. To treat the salt soln. with the ion exchange resin, it is preferable to pack a column with the ion exchange resin and to make the salt soln. flow through this column.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は硫酸イオンを含む食塩水溶液からの硫酸イオン
の除去法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for removing sulfate ions from a saline solution containing sulfate ions.

[従来の技術] 苛性ソーダと塩素は工業的には食塩電解法により製造さ
れ、その原料である食塩としては通常工業塩と呼ばれる
天日塩が使用される。この工業塩中には種々の不純物が
含有されており電解槽の運転を安定に維持するためにそ
れらを除去する必要がある。その不純物の1つである硫
酸イオンは塩水循環系の中で徐々に蓄積するため新たに
熔解する工業塩に同伴してくる硫酸イオン量分は除去す
る必要がある。そのため例えば従来、この食塩電解法と
してよく採用されていた水銀電解法においては塩化カル
シウムを加えることにより不溶性の硫酸カルシウムとし
て沈降分離する方法が採られていた。
[Prior Art] Caustic soda and chlorine are industrially produced by the salt electrolysis method, and the raw material salt used is solar salt, which is usually called industrial salt. This industrial salt contains various impurities, and it is necessary to remove them in order to maintain stable operation of the electrolytic cell. Sulfate ions, one of the impurities, gradually accumulate in the salt water circulation system, so it is necessary to remove the amount of sulfate ions that accompany the newly melted industrial salt. For this reason, for example, in the mercury electrolysis method that has been commonly used as a common salt electrolysis method, a method has been adopted in which calcium chloride is added to precipitate and separate the salt as insoluble calcium sulfate.

近年、この水銀電解法に替わる新たな電解法としてイオ
ン交換膜法が多数採用されるようになった。このイオン
交換膜法における食塩水中の許容硫酸イオン濃度は水銀
法で許容される硫酸イオン濃度より更に低い偵である。
In recent years, the ion exchange membrane method has come to be widely adopted as a new electrolysis method to replace the mercury electrolysis method. The allowable sulfate ion concentration in the saline solution in this ion exchange membrane method is even lower than the allowable sulfate ion concentration in the mercury method.

そのため塩化カルシウム法ではその許容濃度まで硫酸イ
オンを除去することが困難であるため塩化バリウムや炭
酸バリウムを加え沈降性の非常に大きな硫酸バリウムと
して分離除去する方法が採られるようになった。
For this reason, it is difficult to remove sulfate ions to the allowable concentration using the calcium chloride method, so a method has been adopted in which barium chloride or barium carbonate is added to separate and remove barium sulfate, which has a very high sedimentation property.

しかしながら、これらのバリウム塩はカルシウム塩に比
べ高価なため硫酸イオンの処理費用の増大を来した。ま
たバリウム塩は資源としても乏しく安定的に確保するこ
とにも不安が生じている。
However, these barium salts are more expensive than calcium salts, resulting in an increase in the cost of processing sulfate ions. Furthermore, barium salt is a scarce resource, and there are concerns about securing a stable supply of it.

さらにカルシウム、バリウムはともにイオン交換膜内に
蓄積し成性能を低下させる物質であるため反応に寄与し
ない過剰のこれらイオンは除去しなければならないとい
う不都合も生しることとなる。
Furthermore, since calcium and barium are both substances that accumulate in the ion exchange membrane and reduce the formation performance, there is also the inconvenience that excess of these ions that do not contribute to the reaction must be removed.

さらにまたこれら不溶性の硫酸カルシウム、硫酸バリウ
ムを産業廃棄物として処理する必要も生じている。
Furthermore, it has become necessary to treat these insoluble calcium sulfate and barium sulfate as industrial waste.

これら沈鋒法に採って代わる方法として一部の原料塩水
を系外に廃棄することにより硫酸イオン濃度を一定に維
持しようとすることも考えられるが当然ながら原料塩の
大幅な損失となるので経済的に得策でない。
As an alternative to these methods, it may be possible to maintain a constant sulfate ion concentration by discarding some of the raw material brine outside the system, but this would naturally result in a large loss of raw material salt, so it is not economically viable. It's not a good idea.

このような問題から吸着剤により硫酸イオンのみを除去
しようとしても大量の塩素イオンが共存している場合硫
酸イオンのみを選択的に吸着するような吸着結果は得ら
れていなかった。
Due to these problems, even if an attempt was made to remove only sulfate ions using an adsorbent, it has not been possible to obtain an adsorption result that selectively adsorbs only sulfate ions when a large amount of chlorine ions coexist.

[発明が解決しようとする課題] 本発明は硫酸イオンを含む食塩水溶液を特定の吸着剤で
処理することにより硫酸イオンを効率的に除去すること
を目的とするものである。
[Problems to be Solved by the Invention] The object of the present invention is to efficiently remove sulfate ions by treating a saline solution containing sulfate ions with a specific adsorbent.

[課題を解決するための手段] 本発明者等はこれらの課題を解決するためにポリアミン
基を有するイオン交換樹脂が塩水中の硫酸イオンを選択
的に吸着することを見出し本発明を完成した。すなわち
、本発明は硫酸イオンを含む食塩水溶液を、ポリアミン
基を有するイオン交換樹脂で処理することを特徴とする
硫酸イオンの除去法を従供するものである。
[Means for Solving the Problems] In order to solve these problems, the present inventors discovered that an ion exchange resin having a polyamine group selectively adsorbs sulfate ions in salt water, and completed the present invention. That is, the present invention provides a method for removing sulfate ions, which is characterized by treating a saline solution containing sulfate ions with an ion exchange resin having a polyamine group.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明におけるポリアミン基を有するイオン交換樹脂と
しては、ポリスチレン−ジビニルベンゼン共重合物の母
材に官能基としてポリアミン基を導入したイオン交換樹
脂が例示され、この神のイオン交換樹脂としてはダイヤ
イオンWA20、同WA21、同CR20(以上三菱化
成社製)、アンバーライトIRA45(以上ロームアン
ドハース社製)など各種の商標で市販されている。 こ
れらポリアミン基を有するイオン交換樹脂を本目的に供
するには塩型に調製しておくことが望ましい。この塩種
としては通常CI型が用いられる。
An example of the ion exchange resin having a polyamine group in the present invention is an ion exchange resin in which a polyamine group is introduced as a functional group into a base material of polystyrene-divinylbenzene copolymer. , WA21, CR20 (manufactured by Mitsubishi Kasei Corporation), and Amberlite IRA45 (manufactured by Rohm and Haas). In order to use these ion exchange resins having polyamine groups for this purpose, it is desirable to prepare them in a salt form. As this salt type, CI type is usually used.

本発明の処理対象となるのは硫酸イオンを含んだ食塩水
である。このような食塩水としては食塩電解工業におい
て電解に供せられる濃厚塩水あるいは食塩の一部を消費
したのち電解槽から流出するいわゆる淡塩水と呼ばれる
ものがあげられる。
The target of the present invention is saline containing sulfate ions. Examples of such brine include concentrated brine that is provided for electrolysis in the salt electrolysis industry, and so-called fresh brine that flows out of the electrolytic cell after a portion of the salt has been consumed.

本発明における食塩水中の食塩濃度に制限はないが通常
240 g/l以下であり好ましくは200g/l以下
である。240g/lを越えると硫酸イオンの吸着効率
が低下するという不都合が生じる。
There is no limit to the salt concentration in the saline solution in the present invention, but it is usually 240 g/l or less, preferably 200 g/l or less. If it exceeds 240 g/l, there will be a disadvantage that the adsorption efficiency of sulfate ions will decrease.

本発明における食塩水中の硫酸イオン濃度には特に制限
はないが硫酸イオンを効果的に吸着させるという理由で
3g/1以上30 g / l以下が好ましい。
The sulfate ion concentration in the saline solution in the present invention is not particularly limited, but is preferably 3 g/1 or more and 30 g/l or less for the reason that sulfate ions are effectively adsorbed.

本発明における硫酸イオンを吸着させる方法としては、
硫酸イオンを含んだ食塩水を該樹脂に接触せしめればよ
く、例えば、カラム式でもバッチ式でもよいが通常はカ
ラム内に充填したポリアミン基を有するイオン交換樹脂
に、該水溶液を下向流あるいは上向流により流通させる
カラム式が採用される。
The method for adsorbing sulfate ions in the present invention is as follows:
It is sufficient to bring the saline solution containing sulfate ions into contact with the resin. For example, the aqueous solution may be brought into contact with the resin using a column method or a batch method, but usually the aqueous solution is passed through an ion exchange resin containing polyamine groups packed in a column in a downward flow or A column type is adopted in which the fluid is circulated by upward flow.

本発明においては硫酸イオンを吸着した樹脂を再生し再
び硫酸イオンの吸着に供することができる。この再生剤
としては通常苛性アルカリ水溶液が公知の方法により使
用される。さらに使用に際してはこれを塩酸等で処理し
樹脂をCI型にしておくのが好ましい、また他の再生剤
として吸着処理に供する食塩水より食塩濃度が実質的に
濃厚な食塩水を使用しても差し支えない。
In the present invention, the resin that has adsorbed sulfate ions can be regenerated and used again for adsorption of sulfate ions. As this regenerating agent, an aqueous caustic solution is usually used by a known method. Furthermore, when using the resin, it is preferable to treat it with hydrochloric acid or the like to make the resin into a CI type.Also, as another regenerating agent, it is also possible to use a saline solution that has a substantially higher salt concentration than the saline solution subjected to the adsorption treatment. No problem.

[実施例] 以下に実施例で本発明の詳細な説明する。[Example] The present invention will be explained in detail below using Examples.

以下においてfitliイオン濃度分析にはイオンクロ
マトグラフィーを用いそのクロマトグラフの面積比から
その濃度を求めた。
In the following, ion chromatography was used for fitli ion concentration analysis, and the concentration was determined from the area ratio of the chromatograph.

実施例1 直径2’5.0mm高さ300mmのジャケット付ガラ
ス製カラムに三菱化成社製ポリアミン基を有するイオン
交換樹脂ダイヤイオンWA20CI型を高さ250mm
まで充填し硫酸イオン濃度を5g/1食塩濃度120g
/lに調整した被処理液を通液速度SV l O(h+
” )にて600s1通液した、カラム温度はジャケッ
トに温水を通じることにより40°Cに維持した。カラ
ムから流出した処理液をすべて集めその中の硫酸イオン
濃度を測定したところその濃度は2.8g/lであった
Example 1 An ion exchange resin Diaion WA20CI type having a polyamine group manufactured by Mitsubishi Kasei Corporation was placed in a jacketed glass column with a diameter of 2'5.0 mm and a height of 300 mm to a height of 250 mm.
Fill up to 5g sulfate ion concentration/120g salt concentration
Liquid passing rate SV l O(h+
), and the column temperature was maintained at 40°C by passing hot water through the jacket. All the treated liquid flowing out from the column was collected and the sulfate ion concentration therein was measured, and the concentration was 2. It was 8g/l.

実施例2 実施例1に示したポリアミン基を有するイオン交換樹脂
のかわりに三菱化成社製ダイヤイオンCR20CI型を
用いて、さらにカラム温度を60°Cとし他は実施例1
と同様の方法により食塩濃度150g/l硫酸号オン濃
度7g/lに調整した食塩水を500m1通液したとこ
ろ流出した処理液中の硫酸イオン濃度は平均4.9g/
lであった実施例3〜7 実施例1に示した食塩水のかわりに第1表に示した食塩
水を用いて、他は実施例1と同様の方法により処理した
ところ同表にある硫酸イオンの吸着結果を得た。
Example 2 Diaion CR20CI type manufactured by Mitsubishi Kasei Co., Ltd. was used instead of the ion exchange resin having a polyamine group shown in Example 1, and the column temperature was set to 60°C, and the other conditions were as in Example 1.
When 500 ml of saline solution adjusted to a salt concentration of 150 g/l and a sulfuric acid ion concentration of 7 g/l was passed through in the same manner as above, the average sulfate ion concentration in the treated liquid that flowed out was 4.9 g/l.
Examples 3 to 7 The saline solution shown in Table 1 was used instead of the saline solution shown in Example 1, and the treatment was carried out in the same manner as in Example 1, and the sulfuric acid shown in the table was The ion adsorption results were obtained.

第1表 比較例1 実施例1に示した吸着剤のかわりにバイエル社製スチレ
ン−ジビニルベンゼン系強塩基性イオン交換樹脂レバチ
ッ)MP500C1型を用いて、他は実施例1と同様の
方法により硫酸イオンの吸着を試みた。その結果に処理
液中の硫酸イオン濃度は4.9g/Iであり吸着効果は
殆ど認められなかった。
Table 1 Comparative Example 1 In place of the adsorbent shown in Example 1, a styrene-divinylbenzene-based strongly basic ion-exchange resin, MP500C1 type manufactured by Bayer AG, was used. An attempt was made to adsorb ions. As a result, the sulfate ion concentration in the treatment liquid was 4.9 g/I, and almost no adsorption effect was observed.

[発明の効果] 以上詳細したとおり、本発明によれば従来技術で達成さ
れなかった食塩水中のtttlIイオンの効果的な除去
が達成される。
[Effects of the Invention] As detailed above, according to the present invention, effective removal of tttlI ions from saline solution, which has not been achieved with the prior art, is achieved.

つまり、プロセス上有害なカルシウム塩や、さらに高価
なバリウム塩などを食塩水中に加えることなく硫酸イオ
ンの効果的な除去ができるので工業的に極めて有利であ
る。
In other words, it is extremely advantageous industrially because sulfate ions can be effectively removed without adding calcium salts, which are harmful to the process, or barium salts, which are more expensive, to the saline solution.

なお、1段の処理により所望の硫酸イオン濃度まで充分
除去されない場合は、勿論、2段、3段と多段処理すれ
ばよい、また、単に、硫酸イオンの蓄積を防止する場合
は、従来系外にパージしていた量を常に除去すればよい
ので、一定量のイオンを確実に除去出来るのであれば、
実施例5〜7に相当する操作を適用することも充分意義
のあることなのである。
If the desired concentration of sulfate ions cannot be sufficiently removed by one-stage treatment, of course, multi-stage treatment such as two or three stages can be used.Also, if you simply want to prevent the accumulation of sulfate ions, you can use a method other than the conventional system. If you can reliably remove a certain amount of ions, you just need to always remove the amount that was previously purged.
It is also significant to apply operations corresponding to Examples 5 to 7.

Claims (1)

【特許請求の範囲】[Claims] (1)硫酸イオンを含む食塩水溶液を、ポリアミン基を
有するイオン交換樹脂で処理することを特徴とする硫酸
イオンの除去法。
(1) A method for removing sulfate ions, which comprises treating a saline solution containing sulfate ions with an ion exchange resin having a polyamine group.
JP2162594A 1990-06-22 1990-06-22 Method of removing sulfuric acid ion Pending JPH0455313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2162594A JPH0455313A (en) 1990-06-22 1990-06-22 Method of removing sulfuric acid ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2162594A JPH0455313A (en) 1990-06-22 1990-06-22 Method of removing sulfuric acid ion

Publications (1)

Publication Number Publication Date
JPH0455313A true JPH0455313A (en) 1992-02-24

Family

ID=15757562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2162594A Pending JPH0455313A (en) 1990-06-22 1990-06-22 Method of removing sulfuric acid ion

Country Status (1)

Country Link
JP (1) JPH0455313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220034934A (en) * 2012-04-09 2022-03-18 미쯔비시 케미컬 주식회사 Composition for organic electroluminescent elements, and organic electroluminescent element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220034934A (en) * 2012-04-09 2022-03-18 미쯔비시 케미컬 주식회사 Composition for organic electroluminescent elements, and organic electroluminescent element

Similar Documents

Publication Publication Date Title
CN1225075A (en) Process for preparing pure alkali and/or ammonium tungstate solutions
JP3309043B2 (en) Production of hybrid cation adsorbent by single-flow ion exchange.
JPH0455313A (en) Method of removing sulfuric acid ion
JPH03227963A (en) Method for separating amino acid
JP3249677B2 (en) Electrolysis method of alkali metal chloride
RU2125105C1 (en) Method of nickel recovery from sheet solutions of electroplating
JPS6191014A (en) Method of purifying aqueous solution of potassium chloride for electrolysis
JPH0375217A (en) Removal of sulfate ion
JP2002146691A (en) Method for treating collected ash in cooking chemical recovery process
JP3592495B2 (en) Sucrose liquid purifying apparatus and method for regenerating sucrose liquid purifying apparatus
JP3907937B2 (en) Method for treating boron-containing eluent containing alkali
JP2015199050A (en) Method of removing metal ion in saturated salt water
JPH041659B2 (en)
US3043867A (en) Method for the purification of aminocarboxylic acids
EP0609839B1 (en) Method for electrolyzing an alkali metal chloride
JP4756911B2 (en) Boron recovery method
JP3831107B2 (en) Radium adsorbent, method for producing the same, and method for treating radium-containing wastewater using the same
RU2039011C1 (en) Method of arsenic extraction from solutions
JPS6036831B2 (en) Treatment method for water containing arsenic and silica
CA2159183C (en) Resin regeneration process
JPH0449485B2 (en)
SU1223992A1 (en) Method of processing sorbent
JPS6152236B2 (en)
JP3563781B2 (en) Dechlorination of organic chlorinated products
JPS62146299A (en) Treatment of plating solution