JPS63129263A - Cooling water controller for absorption refrigerator - Google Patents

Cooling water controller for absorption refrigerator

Info

Publication number
JPS63129263A
JPS63129263A JP27587186A JP27587186A JPS63129263A JP S63129263 A JPS63129263 A JP S63129263A JP 27587186 A JP27587186 A JP 27587186A JP 27587186 A JP27587186 A JP 27587186A JP S63129263 A JPS63129263 A JP S63129263A
Authority
JP
Japan
Prior art keywords
temperature
cooling water
control device
blower
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27587186A
Other languages
Japanese (ja)
Inventor
坂田 泰雄
秀明 小穴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27587186A priority Critical patent/JPS63129263A/en
Publication of JPS63129263A publication Critical patent/JPS63129263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ〉産業上の利用分野 本発明は冷却水管系にクーリングタワーを有する吸収冷
凍機において、そのクーリングタワーの制御装置の改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to an improvement in a control device for a cooling tower in an absorption refrigerator having a cooling tower in a cooling water pipe system.

(ロ)従来の技術 一般に従来の吸収冷凍機における冷却水制御装置、すな
わちクーリングタワーの制御装置としては、実公昭57
−26136号公報に記載されているようなものがあっ
た。
(b) Conventional technology In general, as a cooling water control device in a conventional absorption refrigerator, that is, a cooling tower control device,
There was one as described in the -26136 publication.

この公報に記載のものは、発生器、凝縮器、蒸発器、吸
収器等で冷凍サイクルを構成し、この凝縮器と吸収器の
冷却水管系にクーリングタワーを有する吸収冷凍機にお
いて、吸収器に供給される冷却水の温度が所定値以下と
なった時にクーリングタワーの送風機の運転を停止して
冷却水温度の異常低下を防止していた。
What is described in this publication is an absorption refrigerator in which a refrigeration cycle is composed of a generator, a condenser, an evaporator, an absorber, etc., and a cooling tower is provided in the cooling water pipe system of the condenser and absorber. When the temperature of the cooling water dropped below a predetermined value, the operation of the blower in the cooling tower was stopped to prevent an abnormal drop in the temperature of the cooling water.

すなわち、外気温の低下等により冷却水温度が過度に低
下すると、吸収器を流下する間に蒸発器からの冷媒蒸気
を吸収して濃度が低下した稀液の、温度も低くなること
が一般に知られており上記の装置では、この稀液が熱交
換器の濃液と熱交換した際に濃液が冷却されて結晶を析
出して吸収冷凍機の運転に重大な支障を来たすことを防
止しようとしたものであった。
In other words, it is generally known that when the cooling water temperature drops excessively due to a drop in outside temperature, etc., the temperature of the dilute liquid, which absorbs refrigerant vapor from the evaporator and reduces its concentration while flowing down the absorber, also decreases. In the above device, when this diluted liquid exchanges heat with the concentrated liquid in the heat exchanger, it is necessary to prevent the concentrated liquid from being cooled and precipitating crystals, which would seriously impede the operation of the absorption refrigerator. It was.

(ハ)発明が解決しようとする問題点 以上のような従来の制御装置では、クーリングタワーの
送風機の運転が停止する冷却水の温度をt−α℃とした
場合、送風機の運転が再開される温度はtoCに設定さ
れていた。(尚、αは送風機の運転−停止のチャタリン
グを防止するためのディファレンシャル幅) このような制御装置で、吸収冷凍機が通常の冷房負荷で
運転を行なっている時は、冷却水の温度は送風機の運転
又は停止によってほぼt−α℃≦冷却水の温度≦t℃内
に制御される。
(c) Problems to be Solved by the Invention In the conventional control device as described above, when the temperature of the cooling water at which the operation of the blower in the cooling tower stops is t-α℃, the temperature at which the operation of the blower is resumed is was set in toC. (Also, α is the differential width to prevent chattering between the operation and stop of the blower.) With such a control device, when the absorption chiller is operating under a normal cooling load, the temperature of the cooling water will be the same as that of the blower. By operating or stopping the cooling water, the temperature is approximately controlled within t-α°C≦cooling water temperature≦t°C.

しかし外気温の低下などによって、冷房負荷が低下した
時は、送風機の運転又は停止による冷却水の温度変化速
度が速くなり制御装置の応答遅れが生じてオーバーシュ
ートが大きくなっていた。
However, when the cooling load decreases due to a drop in the outside temperature, etc., the rate of change in temperature of the cooling water becomes faster due to operation or stoppage of the blower, causing a delay in the response of the control device and increasing overshoot.

このオーバーシュートによる温度の変化幅を4°Cとす
ると冷却水の温度はt−α−β℃≦ぞ冷却水の温度≦t
+β℃となるものであった。このオーバーシュートが大
きいと冷却水の最低温度が低下し、この最低温度で冷媒
凍結や吸収液の結晶等が生じることがあり、吸収冷凍機
の故障を充分に防止できるものではなかった。
If the range of temperature change due to this overshoot is 4°C, the temperature of the cooling water is t-α-β°C≦Temperature of the cooling water≦t
+β°C. If this overshoot is large, the minimum temperature of the cooling water decreases, and at this minimum temperature, the refrigerant may freeze or the absorption liquid may crystallize, so failures of the absorption refrigerator cannot be sufficiently prevented.

斯る問題点に鑑み、本発明は冷却水温度の過度の低下を
確実に防止できる制御装置を提供するものである。
In view of such problems, the present invention provides a control device that can reliably prevent an excessive drop in cooling water temperature.

(ニ)問題点を解決するための手段 本発明は発生器、水冷式凝縮器、蒸発器、吸収器及び凝
縮器の冷却水管系にクーリングタワーを有し、前記凝縮
器の冷却水温度が高いときにクーリングタワーの送風機
を運転し、同じく冷却水温度が低いときに送風運転を停
止するようにクーリングタワーの送風機用モータを制御
する制御装置を備えた吸収冷凍機において、この制御装
置には外気温度が低いときに送風機用モータの運転と送
風停止との温度幅を小さくする機構を設けたものである
(d) Means for solving the problem The present invention has a cooling tower in the cooling water pipe system of the generator, water-cooled condenser, evaporator, absorber, and condenser, and when the temperature of the cooling water in the condenser is high. In an absorption refrigerator equipped with a control device that controls the cooling tower blower motor to operate the cooling tower blower motor when the outside air temperature is low, and also to stop the blower operation when the cooling water temperature is low, In some cases, a mechanism is provided to reduce the temperature range between the operation of the blower motor and the time when the blower stops.

(ホ)作用 このように構成きれた本発明の吸収冷凍機の冷却水制御
装置では、冷却水の温度によって制御きれるクーリング
タワーの送風機用モータの運転と送風停止とのディファ
レンシャル幅を外気温度に基づいて変えるものである。
(E) Function In the cooling water control device for an absorption chiller of the present invention configured as described above, the differential width between the operation of the cooling tower blower motor and the stop of air blowing, which can be controlled by the temperature of the cooling water, is determined based on the outside air temperature. It is something that can be changed.

(へ)実施例 第1図は本発明によるこの種の吸収冷凍機の一実施例を
示した概略構成説明図である。図において、1は高温発
生器、2は低温発生器3および水冷式凝縮器4より成る
発生凝縮器、5は蒸発器6および吸収器7より成る蒸発
吸収器、8,9はそれぞれ低温、高温溶液熱交換器、P
、は冷媒液用ポンプ、PLAは稀溶液用ポンプ、10は
気液分離器で、これらの機器は揚液管11、中間濃度の
溶液(以下、中間溶液という)の流れる管12,13、
濃溶液の流れる管15,16、稀溶液の流れる管17.
1B、19,20.冷媒の流れる管21、冷媒液の流下
する管22、冷媒液の還流する管23.24により接続
きれて冷媒〔水〕と溶液〔臭化リチウム水溶液〕の循環
路が形成されている。
(F) Embodiment FIG. 1 is a schematic structural diagram showing an embodiment of this type of absorption refrigerator according to the present invention. In the figure, 1 is a high temperature generator, 2 is a generation condenser consisting of a low temperature generator 3 and a water-cooled condenser 4, 5 is an evaporative absorber consisting of an evaporator 6 and an absorber 7, and 8 and 9 are low and high temperatures, respectively. Solution heat exchanger, P
, PLA is a pump for dilute solution, 10 is a gas-liquid separator, and these devices include a liquid lift pipe 11, pipes 12 and 13 through which an intermediate concentration solution (hereinafter referred to as intermediate solution) flows,
Concentrated solution flows through tubes 15, 16, diluted solution flows through tube 17.
1B, 19, 20. A refrigerant flow pipe 21, a refrigerant liquid flow pipe 22, and a refrigerant liquid return pipe 23 and 24 are connected to form a circulation path for the refrigerant [water] and the solution [lithium bromide aqueous solution].

Bは高温発生器1のバーナー、25は低温発生器3の加
熱器、26は凝縮器4の冷却器、27は蒸発器6の熱交
換器、28は吸収器7の冷却器であり、29.30は熱
交換器27に接続し冷温水を取り出す冷水〔温水〕用管
路である。
B is the burner of the high temperature generator 1, 25 is the heater of the low temperature generator 3, 26 is the cooler of the condenser 4, 27 is the heat exchanger of the evaporator 6, 28 is the cooler of the absorber 7, 29 .30 is a pipe line for cold water (hot water) that connects to the heat exchanger 27 and takes out cold and hot water.

また、冷却水用管路31,32,33.34で冷却器2
B、26、クーリングタワー35、冷却水循環用ポンプ
Pcを直列に接続して、冷却水管系を形成している。
In addition, the cooler 2 is connected to the cooling water pipes 31, 32, 33, and 34.
B, 26, the cooling tower 35, and the cooling water circulation pump Pc are connected in series to form a cooling water pipe system.

36は気液分離器10と低温発生器3とを接続したオー
バーフロー管で、この管の途中にはポールフロート型、
パケット型などのように弁部が中間溶液の流入により開
かれる一方冷媒蒸気の流入により閉じられるトラップT
を備えている。また、37は気液分離器10と蒸発吸収
器5とを接続した冷温度切替弁V。H付きの管である。
36 is an overflow pipe connecting the gas-liquid separator 10 and the low temperature generator 3, and a pole float type,
A trap T, such as a packet type, in which the valve part is opened by the inflow of intermediate solution and closed by the inflow of refrigerant vapor.
It is equipped with Further, 37 is a cold temperature switching valve V that connects the gas-liquid separator 10 and the evaporative absorber 5. It is a tube with an H.

SLは蒸発器6の液溜め38に備えた液面検出器で、こ
の検出器の信号により冷媒液用ポンプP。
SL is a liquid level detector provided in the liquid reservoir 38 of the evaporator 6, and a refrigerant liquid pump P is activated based on a signal from this detector.

の発停が制御されるようになっている。The start and stop of the is now controlled.

S、、S、は冷却水温度検出器、外気温度検出器であり
、夫々冷却水用管路31、及びクーリングタワー35の
送風機39の吸収側(外気温度を検出できる位置であれ
ばよい)に設けられている。
S, , S are a cooling water temperature detector and an outside air temperature detector, which are respectively installed on the cooling water pipe 31 and the absorption side of the blower 39 of the cooling tower 35 (any position is sufficient as long as the outside air temperature can be detected). It is being

40は冷却水制御装置であり、冷却水温度検出器Sw、
外気温度検出器S。の検出する温度に基づい1送風損3
9用のモータ41の運転を制御するものである。
40 is a cooling water control device, which includes a cooling water temperature detector Sw,
Outside temperature sensor S. Based on the temperature detected by 1 wind loss 3
This controls the operation of the motor 41 for 9.

この制御装置40の要部は第2図に示す電気回路によっ
て構成されている。第2図において、43は抵抗であり
、温度検出器Sw(例えばサーミスタ)と直列に定電圧
回路46に接続されている。42,44.45は定電圧
回路46に直列に接続された抵抗、47は比較器であり
非反転入力端子を抵抗42と抵抗44との接続点に接続
し、この端子に抵抗42.44.45で定まる基準電圧
を印加している。また反転入力端子を抵抗43と温度検
出器Swとの接続点に接続している。
The main part of this control device 40 is constituted by an electric circuit shown in FIG. In FIG. 2, 43 is a resistor, which is connected to a constant voltage circuit 46 in series with a temperature detector Sw (for example, a thermistor). 42, 44.45 are resistors connected in series to the constant voltage circuit 46, 47 is a comparator whose non-inverting input terminal is connected to the connection point between the resistor 42 and the resistor 44, and the resistors 42, 44.45 are connected to this terminal. A reference voltage determined by 45 is applied. Further, the inverting input terminal is connected to the connection point between the resistor 43 and the temperature detector Sw.

従って、比較器47には設定温度に対応する基準電圧と
、温度検出器Swで検出きれる温度に対応する電圧とが
印加されている。49.50は直列に接続された正帰還
抵抗である。
Therefore, a reference voltage corresponding to the set temperature and a voltage corresponding to the temperature that can be detected by the temperature detector Sw are applied to the comparator 47. 49.50 is a positive feedback resistor connected in series.

48は比較器47の出力がHレベル電圧の時に通電(L
レベル電圧の時に遮断)きれるリレーであり、常開接片
51を有している。52は外気温度検出器S。(温度が
24℃以下で接点を開き、25°C以上に上昇すれば接
点を再び閉じる。)を介して通電が制御されるリレーで
あり、常開接片53と、常開接片54とを有している。
48 is energized (L) when the output of the comparator 47 is an H level voltage.
This is a relay that can be cut off when the voltage is at level level, and has a normally open contact piece 51. 52 is an outside air temperature detector S. (The contact opens when the temperature is below 24°C, and closes again when the temperature rises above 25°C.) It is a relay whose energization is controlled through a normally open contact piece 53 and a normally open contact piece 54. have.

この常開接片53は抵抗45と並列に接続きれ、常開接
片54は正帰還抵抗50と並列に接続されている。
This normally open contact piece 53 is connected in parallel with the resistor 45, and the normally open contact piece 54 is connected in parallel with the positive feedback resistor 50.

尚、55は常開接片51で通電が制御されるリレーであ
り、このリレーの常開接片で送風機39用モータの運転
が制御きれる。
Note that 55 is a relay whose energization is controlled by a normally open contact piece 51, and the operation of the motor for the blower 39 can be controlled by the normally open contact piece of this relay.

まず外気温度が高く、外気温度検出器S。の接点が閉じ
ており、リレー52が通電されている時、すなわち常開
接片53が閉じ、常開接片54が閉じている時は、比較
器47の非反転入力端子に印加される基準電圧は抵抗4
2.44で定まる。この基準電圧に対応する温度をto
oCとする。この時帰還抵抗49に基づいて定まる帰還
電流に対応する温度幅をα。’C(ディファレンシャル
)とする。温度検出器Swには負特性サーミスタを用い
ているので、冷却水の温度の低下と共に抵抗値が増す。
First, the outside air temperature is high, so the outside air temperature detector S is used. When the contacts are closed and the relay 52 is energized, i.e. when the normally open contact 53 is closed and the normally open contact 54 is closed, the reference applied to the non-inverting input terminal of the comparator 47 Voltage is resistance 4
It is determined by 2.44. The temperature corresponding to this reference voltage is to
Let it be oC. At this time, the temperature range corresponding to the feedback current determined based on the feedback resistor 49 is α. 'C (differential). Since a negative characteristic thermistor is used for the temperature detector Sw, the resistance value increases as the temperature of the cooling water decreases.

すなわち比較器47の反転入力端子に印加される電圧が
増加される。従って冷却水の温度tが“t2=tO℃“
の時は反転入力端子に印加される電圧が非反転入力端子
に印加される基準電圧より低いので比較器47の出力は
Hレベル電圧となっている。この出力で非反転入力端子
には抵抗49を介して帰還がかけられており、反転入力
端子に印加される電圧が非反転入力端子に印加諮れる基
準電圧+帰還電流による電圧以上とならなければ比較器
47の出力がLレベル電圧に反転しない状態である。す
なわち、冷却水の温度tが“t≦t0−α。。C”とな
らなければリレー48電圧となると非反転入力端子への
帰還がなくなるので、非反転入力端子に印加される電圧
は基準電圧のみとなる。すなわち冷却水温度tが“t≧
t。”に上昇するまで比較器47の出力かLレベル電圧
に維持される。
That is, the voltage applied to the inverting input terminal of comparator 47 is increased. Therefore, the temperature t of the cooling water is "t2=tO℃"
At this time, the voltage applied to the inverting input terminal is lower than the reference voltage applied to the non-inverting input terminal, so the output of the comparator 47 is an H level voltage. With this output, feedback is applied to the non-inverting input terminal via a resistor 49, and the voltage applied to the inverting input terminal must be equal to or higher than the voltage calculated by the reference voltage + feedback current applied to the non-inverting input terminal. This is a state in which the output of the comparator 47 is not inverted to an L level voltage. In other words, if the temperature t of the cooling water does not satisfy "t≦t0-α..C", the relay 48 voltage will not be fed back to the non-inverting input terminal, so the voltage applied to the non-inverting input terminal will be the reference voltage. Only. In other words, the cooling water temperature t is “t≧
t. The output of the comparator 47 is maintained at the L level voltage until the voltage rises to ``.''.

従ってモータ41は冷却水の温度tがt≦t。−α。゛
となった時に停止状態となり、温度tが“t≧t0゛ま
で高くなると運転を再開する。
Therefore, the temperature t of the cooling water of the motor 41 is t≦t. −α. When temperature t reaches t0, operation is resumed.

次に外気温度が低く、外気温度検出器S。の接点が開い
ており、リレー52の通電が遮断されている時、すなわ
ち、常開接片53が開き、常開接片54が開いている時
は、比較器47の非反転入力端子に印加跡れる基準電圧
は抵抗42 、44 。
Next, the outside temperature is low, so the outside temperature detector S. When the contact is open and the relay 52 is de-energized, that is, when the normally open contact piece 53 is open and the normally open contact piece 54 is open, a voltage is applied to the non-inverting input terminal of the comparator 47. The reference voltage that can be traced is the resistors 42 and 44.

45で定まる。この基準電圧に対応する温度はt。−t
l’cとなる。(常閉接片53が閉じている時に比べて
基準電圧は高くなる。この分作動温度が低くなる。)こ
の時帰還抵抗49.50に基づいて定まる帰還電流に対
応する温度幅はα。−α8°C(帰還抵抗値が増えた分
帰還電流が減り、温度幅も小さくなる。) 従って外気温度がFife、JRと同じように、モータ
41は冷却水の温度tが“t≦to  t+  (α0
−α、)゛となった時に停止状態となり、温度tが“t
≧t o  t I”C”まで高くなると運転を再開す
る。
It is determined by 45. The temperature corresponding to this reference voltage is t. -t
It becomes l'c. (The reference voltage is higher than when the normally closed contact piece 53 is closed. The operating temperature is lowered accordingly.) At this time, the temperature range corresponding to the feedback current determined based on the feedback resistor 49.50 is α. -α8°C (As the feedback resistance value increases, the feedback current decreases, and the temperature range also becomes smaller.) Therefore, just as the outside temperature is Fife and JR, the motor 41 has a cooling water temperature t of “t≦to t+”. (α0
-α, )゛, it becomes stopped and the temperature t becomes “t
When the temperature reaches ≧t o t I”C”, operation is restarted.

尚、上記実施例では、t0キ29°C,t o−t s
る。
In addition, in the above example, t0ki 29°C, tot s
Ru.

以上のように構成された冷温水制御装置を用いて吸収冷
凍機の運転を行なった場合、冷却水の温度変化は第4図
に示すようになる。外気温度が高い時には、一般に冷却
負荷も大きく送風機39用のモータ41の運転と停止と
の切換りによる冷却水の温度変化率が小さくなるので送
風機41の制御による冷却水温度の応答の遅れも小さく
なり冷却水温度のオーバーシュートも小さくなる。よっ
て冷却水温度tはほぼ25.6<t<29.4の範囲に
制御される。
When an absorption refrigerator is operated using the cold/hot water control device configured as described above, the temperature change of the cooling water is as shown in FIG. 4. When the outside air temperature is high, the cooling load is generally large and the rate of change in temperature of the cooling water due to switching between operation and stop of the motor 41 for the blower 39 is small, so the delay in response of the cooling water temperature due to control of the blower 41 is also small. This also reduces the overshoot of the cooling water temperature. Therefore, the cooling water temperature t is controlled within the range of approximately 25.6<t<29.4.

一方、外気温度が低い時には、一般に冷却負荷も小さく
送風機39用のモータ41の運転と停止との初産りによ
る冷却水の温度変化率が大きくなるので送風機41の制
御による冷却水温度の応答のずれによる温度変化も大き
くなる。従って冷却水温度のオーバーシュートも大きく
なるが、その分送風損39用のモータ41が停止になる
冷却水の温度を高くし、かつモータ41の運転が再開す
る冷却水の温度を低くして、このオーバーシュートで冷
却水温度が大きく変動するのを防止し、このようにして
第4図に示すように冷却水温度tをほぼ25.6<t<
29.4の範囲に制御することができる。
On the other hand, when the outside air temperature is low, the cooling load is generally small and the rate of change in the temperature of the cooling water due to the initial operation and stopping of the motor 41 for the blower 39 becomes large, so the response of the cooling water temperature due to the control of the blower 41 may vary. Temperature changes due to this increase will also increase. Therefore, the overshoot of the cooling water temperature increases, but the temperature of the cooling water at which the motor 41 for the wind blowing loss 39 stops is increased accordingly, and the temperature of the cooling water at which the operation of the motor 41 resumes is lowered. This overshoot prevents the cooling water temperature from fluctuating greatly, and in this way, as shown in FIG.
It can be controlled within the range of 29.4.

このように外気温度が低い時には、冷却水温度が正側へ
オーバーシュートする分をモータ41の運転が再開する
温度を低くすることによって防止し、冷却水温度が負側
へオーバーシュートする分をモータ41の運転が停止す
る温度を高くすることによって防止するものである。
In this way, when the outside air temperature is low, the overshoot of the cooling water temperature to the positive side is prevented by lowering the temperature at which the motor 41 resumes operation, and the overshoot of the cooling water temperature to the negative side is prevented by lowering the temperature at which the motor 41 restarts. This is prevented by increasing the temperature at which the operation of 41 stops.

従って、低負荷時に冷却水の最低温度が過度に低下する
ことがなく、冷媒凍結や吸収液の結晶等による吸収冷凍
機の故障を防止することができる。
Therefore, the minimum temperature of the cooling water does not drop excessively during low loads, and failures of the absorption refrigerator due to freezing of the refrigerant, crystallization of the absorption liquid, etc. can be prevented.

(ト)発明の効果 以上のように本発明は、発生器、水冷式凝縮器、蒸発器
、吸収器及び凝縮器の冷却水管系にクーリングタワーを
有し、前記凝縮器の冷却水温度が高いときにクーリング
タワーの送風機を運転し、同じく冷却水温度が低いとき
に送風運転を停止するようにクーリングタワーの送風機
用モータを制御する冷却水制御装置を備えた吸収冷凍機
において、この制御装置には外気温度が低いときに送風
機用モータの運転と送風停止との温度幅を小きくする機
構が設けられているので、外気温度が低く、冷却水温度
の制御に応答遅れが生じ冷却水温度の変化に大きなオー
バーシュートが生じる時でも、このオーバーシュートを
補うように送風機用モータの運転と送風停止との温度幅
を小さくし、冷却水温度の変動範囲を外気温度が高い時
の変動範囲とほぼ同じにすることができる。
(g) Effects of the invention As described above, the present invention has a cooling tower in the cooling water pipe system of the generator, water-cooled condenser, evaporator, absorber, and condenser, and when the cooling water temperature of the condenser is high. In an absorption chiller equipped with a cooling water control device that controls the cooling tower blower motor to operate the cooling tower blower motor when the cooling water temperature is low and to stop the blower operation when the cooling water temperature is low, this control device has a control device that controls the outside air temperature. The system is equipped with a mechanism that reduces the temperature range between operating the blower motor and stopping the blower when the temperature is low. Even when overshoot occurs, the temperature range between when the blower motor operates and when the blower stops is made small to compensate for this overshoot, making the range of fluctuation in the cooling water temperature almost the same as the range of fluctuation when the outside air temperature is high. be able to.

すなわち、外気温度が低い時には冷却水の温度が過度に
低下するのを抑制し、冷媒凍結や吸収液の結晶等による
吸収冷凍機の故障を抑制できるものである。
That is, when the outside air temperature is low, it is possible to prevent the temperature of the cooling water from dropping excessively, and to prevent malfunctions of the absorption refrigerator due to freezing of the refrigerant, crystallization of the absorption liquid, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の冷却水制御装置の実施例を用いる吸収
冷凍機の概略構成図、第2図は第1図に示した冷却水制
御装置の要部電気回路図、第3図は第2図に示した回路
の動作を示す説明図、第4図は第2図に示した制御装置
を用いた時の冷却水の温度変化を示す説明図である。 1・・・発生器、  4・・・水冷式凝縮器、  6・
・・蒸発器、  7・・・吸収器、  35・・・クー
リングタワー、39・・・送風機、  40・・・冷却
水制御装置、 41・・・モータ。
FIG. 1 is a schematic configuration diagram of an absorption refrigerator using an embodiment of the cooling water control device of the present invention, FIG. 2 is an electrical circuit diagram of the main part of the cooling water control device shown in FIG. 1, and FIG. 2 is an explanatory diagram showing the operation of the circuit shown in FIG. 2, and FIG. 4 is an explanatory diagram showing the temperature change of cooling water when the control device shown in FIG. 2 is used. 1... Generator, 4... Water-cooled condenser, 6.
... Evaporator, 7. Absorber, 35. Cooling tower, 39. Blower, 40. Cooling water control device, 41. Motor.

Claims (1)

【特許請求の範囲】[Claims] (1)発生器、水冷式凝縮器、蒸発器、吸収器及び凝縮
器の冷却水管系にクーリングタワーを有し、前記凝縮器
の冷却水温度が高いときにクーリングタワーの送風機を
運転し、同じく冷却水温度が低いときに送風運転を停止
するようにクーリングタワーの送風機用モータを制御す
る冷却水制御装置を備えた吸収冷凍機において、この制
御装置には外気温度が低いときに送風機用モータの運転
開始温度と送風停止温度との温度幅を小さくする機構が
設けられていることを特徴とする吸収冷凍機の冷却水制
御装置。
(1) A cooling tower is provided in the cooling water pipe system of the generator, water-cooled condenser, evaporator, absorber, and condenser, and when the cooling water temperature of the condenser is high, the blower of the cooling tower is operated, and the cooling water In an absorption chiller equipped with a cooling water control device that controls the blower motor of the cooling tower to stop blowing operation when the outside temperature is low, this control device has a control device that controls the temperature at which the blower motor starts operating when the outside temperature is low. A cooling water control device for an absorption chiller, characterized in that a mechanism is provided to reduce the temperature range between the temperature and the blowing stop temperature.
JP27587186A 1986-11-19 1986-11-19 Cooling water controller for absorption refrigerator Pending JPS63129263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27587186A JPS63129263A (en) 1986-11-19 1986-11-19 Cooling water controller for absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27587186A JPS63129263A (en) 1986-11-19 1986-11-19 Cooling water controller for absorption refrigerator

Publications (1)

Publication Number Publication Date
JPS63129263A true JPS63129263A (en) 1988-06-01

Family

ID=17561595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27587186A Pending JPS63129263A (en) 1986-11-19 1986-11-19 Cooling water controller for absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS63129263A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263780A (en) * 1992-03-19 1993-10-12 Hitachi Ltd Pumping device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263780A (en) * 1992-03-19 1993-10-12 Hitachi Ltd Pumping device

Similar Documents

Publication Publication Date Title
US3968833A (en) Method for heat recovery in ventilation installations
JP2560550B2 (en) Absorption cooling / heating device and control method thereof
US20200348059A1 (en) System for deicing an external evaporator for heat pump systems
JPS63129263A (en) Cooling water controller for absorption refrigerator
JPH08114360A (en) Double effective absorption type water cooler/heater
JPH049555A (en) Absorbing type cold water or hot water device
JPS62186178A (en) Absorption refrigerator
US3625021A (en) Overload control for absorbent refrigeration system
JPS6330938Y2 (en)
JP3081472B2 (en) Control method of absorption refrigerator
JP3303303B2 (en) Annual cooling control device for air conditioner
KR200334265Y1 (en) Heating and cooling system of a absorption chiller-heater for preventing rupture due to frozen
JPS58127066A (en) Controller for engine waste-heat recovery absorption type refrigerator
JP2001050605A (en) Method for operating water-cooled air conditioner
JP2744034B2 (en) Absorption refrigerator
JP3203039B2 (en) Absorption refrigerator
KR800001166B1 (en) Defrosting apparatus for refrigerator
JPH07218022A (en) Controller for absorption chilled and warm water machine
JP3126884B2 (en) Air conditioner using absorption refrigerator
JP3197725B2 (en) Air conditioner using absorption refrigerator
JPH07133967A (en) Air conditioner using absorption freezer
JPS63176965A (en) Double effect air-cooling type water chiller and heater
JPS629163A (en) Heat pump for air-conditioning
JP2703570B2 (en) Cooling system
JPS6155022B2 (en)