JPS63128722A - Photo processing method - Google Patents

Photo processing method

Info

Publication number
JPS63128722A
JPS63128722A JP27751486A JP27751486A JPS63128722A JP S63128722 A JPS63128722 A JP S63128722A JP 27751486 A JP27751486 A JP 27751486A JP 27751486 A JP27751486 A JP 27751486A JP S63128722 A JPS63128722 A JP S63128722A
Authority
JP
Japan
Prior art keywords
ultraviolet light
ultraviolet rays
ultraviolet
electric field
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27751486A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Takashi Inushima
犬島 喬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP27751486A priority Critical patent/JPS63128722A/en
Publication of JPS63128722A publication Critical patent/JPS63128722A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent deterioration for a long-term use and to make intensity of ultraviolet rays be adjustable, by generating ultraviolet rays in a plasma generating chamber by the use of interaction between magnetic fields and an electric field and introducing the ultraviolet rays into a reaction space which is linked with the plasma generating chamber and performing photo processing of a processing surface. CONSTITUTION:A plasma generating chamber 2, where interaction between magnetic fields 5, 5' and an electric field is used to generate ultraviolet rays, is disposed on an upper part of a container 1'. Wavelengths of ultraviolet rays can be controlled by replacing gases introduced into the ultraviolet-ray generating device 2. An electric field energy is supplied to this space for ultraviolet-ray generation through a microwave power source 3, a tuning device 4, and a quartz window 18. A bubbling operation of a mercury bubbler 11 is performed by argon from a doping system 13, and mercury vapor and argon gas are also introduced from this system in order to generate the ultraviolet rays. The ultraviolet rays are generated in the ultraviolet-ray generating space 2 by the use of ECR plasma, and photo etching is performed on a processing surface of a substrate disposed in a reaction space 1 by the use of them.

Description

【発明の詳細な説明】 r発明の利用分野1 本発明は、電場および磁場の相互作用を利用して紫外光
を発生させ、この紫外光を用いて処理用表面に光処理を
行う光処理方法に関する。本発明は、光処理表面の光エ
ッチングおよび光化学反応を用いた紫外光クリーニング
(紫外光を用いるため、UVクリーニングまたはフォト
クリーニングともい′う)、光気相反応等の光処理を行
う。さらに本発明は、半導体集積回路(以下LSIとい
う)の工程の自動化および簡略化を行わんとするもので
ある。
Detailed Description of the Invention Field of Application of the Invention 1 The present invention provides an optical treatment method in which ultraviolet light is generated using the interaction of an electric field and a magnetic field, and the ultraviolet light is used to perform optical treatment on a surface to be treated. Regarding. The present invention performs phototreatment such as photoetching of a phototreated surface, ultraviolet cleaning using photochemical reaction (also referred to as UV cleaning or photocleaning because ultraviolet light is used), and photovapor phase reaction. Furthermore, the present invention aims to automate and simplify the process of semiconductor integrated circuits (hereinafter referred to as LSI).

r従来技術J 紫外光を用いた気相反応処理方法として、光エネルギに
より反応性気体を活性にさせて行う光エツチング法また
は光CVD法が知られている。
rPrior Art J As a gas phase reaction treatment method using ultraviolet light, a photoetching method or a photoCVD method is known, which is carried out by activating a reactive gas with light energy.

この紫外光発生の方式として、低圧水銀灯またはマイク
ロ波のみを用いた紫外光発生装置が知られている。しか
し、これらのいずれも発生させる紫外光の強さが十分で
はなかった。
As a method of generating ultraviolet light, an ultraviolet light generating device using only a low-pressure mercury lamp or microwave is known. However, in all of these methods, the intensity of the ultraviolet light generated was insufficient.

また強い紫外光をパルス状に発生させるエキシマレーザ
が知られている。
Furthermore, an excimer laser that generates intense ultraviolet light in a pulsed manner is known.

「従来技術の問題点j これら光処理を連続光により行うことが光CVD(化学
的被膜蒸積)方法においてきわめて重要である。しかし
この連続光を得る手段として、紫外光源に低圧水銀灯を
用いる時、その発光強度が十分でなく、結果として光処
理速度が小さく問題であった。このため強い紫外光を発
生させる手段が求められていた。
``Problems with the prior art j'' Performing these light treatments using continuous light is extremely important in the optical CVD (chemical film deposition) method. However, when using a low-pressure mercury lamp as the ultraviolet light source as a means to obtain this continuous light, However, the emission intensity was insufficient, resulting in a low light processing speed, which was a problem.Therefore, a means to generate strong ultraviolet light was needed.

また、強い紫外光源として知られているエキシマレーザ
は不連続光であり、かつその照射面積が2〜4cm”と
きわめて小さく、工業的に特殊な応用しかできず、本発
明で求めている大面積でがっ連続光を得る手段にはまっ
たくなり得ない。
Furthermore, the excimer laser, which is known as a strong ultraviolet light source, emits discontinuous light and has an extremely small irradiation area of 2 to 4 cm. Therefore, it can only be used in special industrial applications, and the large area required by the present invention It cannot be used as a means to obtain continuous light.

r問題を解決すべき手段J 本発明は、かかる要請に答えるための磁場および電場の
相互作用を利用した紫外光を発生させる光発生装置を用
いた光処理方法である。
Means to Solve the r Problem J The present invention is a light processing method using a light generating device that generates ultraviolet light using the interaction of a magnetic field and an electric field in order to meet such demands.

この装置を用いて、本発明の磁場および電場の相互作用
を利用して発生させた紫外光を用い、紫外光クリーニン
グ(紫外光を用いたUvクリーニング)またはUVエツ
チングまたは光CVD (気相被膜形成)等の大面積か
つ連続光によって初めて可能な紫外光処理を同一反応装
置内で行わせることが可能となる。
Using this device, ultraviolet light cleaning (Uv cleaning using ultraviolet light), UV etching, or photoCVD (vapor phase film formation) is performed using ultraviolet light generated using the interaction of the magnetic field and electric field of the present invention. ) etc., it becomes possible to carry out ultraviolet light treatment in the same reaction device, which is possible only with large area and continuous light.

さらに本発明においては、磁場および電場の相互作用、
特に電子サイクロトロン共鳴(ECRともいう)条件を
利用して紫外光を発生させ、この共鳴領域を利用して強
紫外光源を生成する。このためBCR条件下での紫外光
の発生用には、このプラズマ空間内にアルゴン、重水素
、クリプトンまたは水銀の1つまたは複数種を導入し、
これらの気体の共鳴発光を用いて強い紫外光を生成せし
めている。
Furthermore, in the present invention, the interaction of a magnetic field and an electric field,
In particular, electron cyclotron resonance (also referred to as ECR) conditions are used to generate ultraviolet light, and this resonance region is used to generate a strong ultraviolet light source. Therefore, for the generation of ultraviolet light under BCR conditions, one or more of argon, deuterium, krypton or mercury is introduced into this plasma space;
The resonance emission of these gases is used to generate strong ultraviolet light.

その結果、直径20cmもの大面積で、かつ185nm
またはそれ以下の波長の紫外光を10mW/cm2また
はそれ以上の強い照度で作ることができるようになった
As a result, it has a large area of 20 cm in diameter and a diameter of 185 nm.
It has become possible to generate ultraviolet light with a wavelength of 10 mW/cm2 or more at a strong illuminance of 10 mW/cm2 or more.

「作用」 するとこの電磁エネルギを利用した紫外光源の強光のた
め、被形成面上に形成されてしまっているナチュラル・
オキサイドを光分解して除去し、さらに真空ポンプから
のオイル蒸気の逆流によるハイドロカーボンも光分解せ
しめて気体化し、被処理面への吸着を防ぐこともできる
。加えて、この紫外光クリーニングの際、基板の被形成
面が酸素を特に嫌う材料、例えばGaAs等m−v化合
物にあっては、クリーニング用反応性気体としてアンモ
ニア、水素等還元雰囲気用気体中にこの材料を配設させ
る。そしてこれらの気体に強紫外光を照射して励起させ
、表面の汚物を除去する。さらに処理用被形成面がフォ
トレジスト等の有機物の場合は、酸素を導入し、これを
紫外光により活性化または分解させて処理表面に触れさ
せることにより、その表面の汚物、不要物をエツチング
(アッシング)して除去する。
``Effect'' Then, due to the strong light of the ultraviolet light source that uses this electromagnetic energy, the natural light that has been formed on the surface to be formed is removed.
Oxide can be photolyzed and removed, and hydrocarbons caused by backflow of oil vapor from the vacuum pump can also be photolyzed and gasified to prevent adsorption to the surface to be treated. In addition, during this ultraviolet light cleaning, if the surface of the substrate to be formed is made of a material that particularly dislikes oxygen, for example an m-v compound such as GaAs, a reactive gas for cleaning such as ammonia or hydrogen may be added to the reducing atmosphere gas. Place this material. These gases are then irradiated with strong ultraviolet light to excite them and remove dirt from the surface. Furthermore, if the surface to be processed is an organic material such as photoresist, by introducing oxygen and activating or decomposing it with ultraviolet light and bringing it into contact with the processing surface, dirt and unnecessary materials on the surface can be etched ( ashing).

本発明においては、紫外光源としてECR条件を利用し
た水銀の共鳴発光波長の185no+の光(強度は好ま
しくは10mW /cm”以上)を放射せしめることに
より、励起した反応性気体の励起状態を持続できる。
In the present invention, the excited state of the excited reactive gas can be maintained by emitting 185no+ light (with an intensity of preferably 10 mW/cm" or more) having the resonance emission wavelength of mercury using ECR conditions as an ultraviolet light source. .

紫外光を発生させる空間と処理面を有する基板を配設す
る反応空間との間には、紫外光に対し透光性を有する窓
を設ける。この窓によりクリーニングに用いる気体と混
合しないように遮蔽した。
A window that is transparent to ultraviolet light is provided between a space where ultraviolet light is generated and a reaction space where a substrate having a processing surface is disposed. This window was used to shield the gas from mixing with the gas used for cleaning.

その結果、発生空間に水銀、重水素等が存在しても、処
理空間では任意の種類の気体雰囲気または任意の圧力と
することができる。
As a result, even if mercury, deuterium, etc. are present in the generation space, any type of gas atmosphere or any pressure can be provided in the processing space.

さらに室温〜500℃の温度で基板を加熱することによ
り、この基板の被形成面上の不要物のエツチングを助長
させることができる。
Further, by heating the substrate at a temperature of room temperature to 500° C., etching of unnecessary materials on the surface of the substrate to be formed can be promoted.

以下に実施例に従い本発明を示す。The present invention will be illustrated below with reference to Examples.

「実施例11 第1図は本発明の磁界マイクロ波励起型紫外光発生光源
およびそれを用いた処理型装置の概要を示す。
Embodiment 11 FIG. 1 shows an outline of a magnetic field microwave excitation type ultraviolet light generating light source of the present invention and a processing type device using the same.

図面において、ステンレス容器(1゛)内に反応空間(
1)を構成させている。この容器は、基板(10)の取
り出し口(1”)を有し、下部に基板(10)を基板ホ
ルダ(10’)に設け、その裏側にはハロゲンランプヒ
ータ(7)を設は加熱している。他方、容器(1゛)の
上部には、紫外光源を発生させる磁場(5)。
In the drawing, there is a reaction space (
1) is configured. This container has an outlet (1'') for taking out the substrate (10), the substrate (10) is placed in a substrate holder (10') at the bottom, and a halogen lamp heater (7) is installed on the back side to heat the container. On the other hand, at the top of the container (1) is a magnetic field (5) that generates an ultraviolet light source.

(5゛)および電場の相互作用を用いるプラズマ発生室
(2)(紫外光を発生させるためのプラズマ発生空間、
即ち紫外光発生空間)を有する。この紫外光発生装置(
2)に導入する気体を換えて、紫外光の波長を制御せし
める。この紫外光発生用空間にマイクロ波電源(3)、
チューニング装置(4)、石英窓(18)をへて電場エ
ネルギを供給する。そして紫外光を発生させる場合には
、ドーピング系(13)より水銀バブラ(11)をアル
ゴンでバブルさせ、水銀蒸気およびアルゴンガスを例え
ば(24)より導入し紫外光を発生させる。さらにドー
ピング系(13)より、エツチングまたはアッシング用
反応性気体を(26)より導入し、(25)よりアルゴ
ンを導入し、紫外光(2日)により反応性気体を活性化
する方式を用いてもよい。窓(19)は紫外光に対し透
光性を有する。
(5゛) and plasma generation chamber (2) using electric field interaction (plasma generation space for generating ultraviolet light,
In other words, it has an ultraviolet light generation space). This ultraviolet light generator (
2) The wavelength of the ultraviolet light is controlled by changing the gas introduced. In this ultraviolet light generation space, a microwave power source (3),
Electric field energy is supplied through the tuning device (4) and the quartz window (18). When generating ultraviolet light, the mercury bubbler (11) is bubbled with argon from the doping system (13), and mercury vapor and argon gas are introduced, for example, from (24) to generate ultraviolet light. Furthermore, a reactive gas for etching or ashing was introduced from the doping system (13) through (26), argon was introduced through (25), and the reactive gas was activated by ultraviolet light (2 days). Good too. The window (19) is transparent to ultraviolet light.

かくして紫外光をECRプラズマを用いて紫外光発生用
空間(2)にて発生せしめ、これらを用いて反応空間(
1)に配設された基板の処理用表面で光エッチングを行
うことが可能となった。
In this way, ultraviolet light is generated in the ultraviolet light generation space (2) using ECR plasma, and these are used to generate ultraviolet light in the reaction space (2).
It became possible to perform photoetching on the processing surface of the substrate arranged in 1).

「実験例1j この実験例は実施例1の装置を用い、珪素半導体の光エ
ツチング表面の紫外光クリーニングを行った応用例であ
る。
Experimental Example 1j This experimental example is an application example in which the apparatus of Example 1 was used to perform ultraviolet light cleaning of the photo-etched surface of a silicon semiconductor.

基板のシリコン半導体上に酸化珪素およびその上にフォ
トレジストが形成されたものを用いた。
A substrate in which silicon oxide was formed on a silicon semiconductor and a photoresist was formed thereon was used.

このフォトレジストをマスクとして、酸化珪素のECR
プラズマを用いて異方性エツチングを行い、2500人
/分のエツチング速度で酸化珪素の異方性エツチングを
行うことができた。即ち、第1図のマイクロ波は、(3
)より2.45GHzの周波数、30〜500−の出力
、例えば200−で供給した。磁石(5) 、 (5’
)の共鳴磁場強度は875ガウスとした。紫外光発生空
間(2)の圧力は0.002 torr、非生成物気体
として(25)よりアルゴンを50cc/分で供給した
Using this photoresist as a mask, ECR of silicon oxide
Anisotropic etching was performed using plasma, and silicon oxide could be anisotropically etched at an etching rate of 2,500 people/min. That is, the microwave in Figure 1 is (3
) at a frequency of 2.45 GHz and an output of 30 to 500, for example 200. Magnet (5), (5'
) was set to have a resonant magnetic field strength of 875 Gauss. The pressure in the ultraviolet light generation space (2) was 0.002 torr, and argon was supplied as a non-product gas from (25) at a rate of 50 cc/min.

そして水銀およびアルゴンを(24)より紫外光発生空
間(2)に加え、185 nmの強紫外光を発生させた
。不要アルゴンはバルブ(14’)、 (15’)より
排気した。
Then, mercury and argon were added to the ultraviolet light generation space (2) from (24) to generate strong ultraviolet light of 185 nm. Unnecessary argon was exhausted from valves (14') and (15').

この時反応室(1)内の圧力は10〜100torrと
して、オゾンまたは酸素ラジカルが残存する有機物(2
7)との反応を助長させた。
At this time, the pressure in the reaction chamber (1) is set at 10 to 100 torr, and the organic matter (2
7).

かくしてシリコン半導体上の炭化水素等の汚物を除去す
ることができた。
In this way, contaminants such as hydrocarbons on the silicon semiconductor could be removed.

このエツチングされる対象物は酸化珪素のみならず、窒
化珪素、シリコン半導体、金属珪化物、合金その他エレ
クトロニクス応用機器、例えば半導体集積回路の製造プ
ロセスを必要とするすべてをエツチング用の反応性気体
を変えることにより実施することができる。
The object to be etched is not only silicon oxide, but also silicon nitride, silicon semiconductors, metal silicides, alloys, and other electronics application equipment, such as all that require the manufacturing process of semiconductor integrated circuits. It can be implemented by

「実験例2」 この実験例は基板上に窒化珪素被膜を光気相反応方法に
より形成させたものである。
"Experimental Example 2" In this experimental example, a silicon nitride film was formed on a substrate by a photovapor phase reaction method.

実験例1と同様に磁石(5) 、 (5’ ”)により
875ガウスを作った。ドーピング系(26)により、
ジシラン(SigL)またはトリシラン(Si!Hs)
 とアンモニア(NH3)とを導入した。NH3/(S
i2H4または5iJa) =10とし、反応圧力を1
0torr、基板温度を300℃とした。すると窒化珪
素を30人/分および50人/分の被膜成長速度で得た
。その結果、これまでの低圧水銀灯を用いた直接励起方
式においては10〜15人7分であつたのに比べ、2〜
4倍の高い実用化が十分可能な成長速度をあった。さら
に被膜の最大膜厚としてそれぞれ1800人、2400
人を得ることができた。これまでの低圧水銀灯を用いた
場合、最大1000人までしかできなかったことを考え
ると実用上1nP等の化合物半導体の反射防止膜として
有効に使うことができる。
As in Experimental Example 1, 875 Gauss was created using the magnets (5) and (5''').With the doping system (26),
Disilane (SigL) or trisilane (Si!Hs)
and ammonia (NH3) were introduced. NH3/(S
i2H4 or 5iJa) = 10, and the reaction pressure was 1
The temperature was 0 torr and the substrate temperature was 300°C. Silicon nitride was then obtained at film growth rates of 30 and 50 people/min. As a result, compared to the previous direct excitation method using a low-pressure mercury lamp, which required 10 to 15 people and 7 minutes, the
The growth rate was sufficient to enable practical use four times as high. Furthermore, the maximum film thickness of the coating is 1800 and 2400, respectively.
I was able to get people. Considering that conventional low-pressure mercury lamps could only be used for up to 1,000 people, it can be effectively used as an anti-reflection coating for compound semiconductors such as 1nP.

この形成被膜は、シラン(SiH4)と酸素(02)と
の反応による酸化珪素、トリメチルアルミニューム(T
!’IA)と酸素(02)との反応によるアルミナを形
成してもよい。さらにジシランまたはトリシランを用い
て珪素半導体の形成も可能である。さらに金属を形成し
てもよい。
This formed film is made of silicon oxide and trimethylaluminum (T) by the reaction between silane (SiH4) and oxygen (02).
! 'IA) and oxygen (02) to form alumina. Furthermore, it is also possible to form a silicon semiconductor using disilane or trisilane. Furthermore, metal may be formed.

「効果1 本発明は、以上の説明より明らかなどと(、紫外光源と
してマイクロ波と磁場とを用いたものである。
``Effect 1 As is clear from the above explanation, the present invention uses microwaves and a magnetic field as an ultraviolet light source.

本発明は、これまでの光処理装置の如く水銀灯を用いな
いため、紫外光源が長期使用により劣化することがなく
、その紫外光の強度も磁場の強度を変えることにより調
整できるようになった。
Since the present invention does not use a mercury lamp unlike conventional light processing devices, the ultraviolet light source does not deteriorate due to long-term use, and the intensity of the ultraviolet light can also be adjusted by changing the intensity of the magnetic field.

更に本発明は、予め付着または形成された汚物、または
被膜形成直後または反応炉内で新たに吸着する汚物を紫
外光クリーニングで除去した。
Furthermore, in the present invention, dirt that has adhered or formed in advance, or dirt that is newly adsorbed immediately after film formation or in the reactor, is removed by ultraviolet light cleaning.

本発明の第1図では基板の上表面側にエツチングまたは
被膜形成処理を行った。しかしこの図面を上下逆とし、
基板を下側または横(垂直方向)とし、光源、共鳴装置
を上側または横側に配設してもよいことはいうまでもな
い。
In FIG. 1 of the present invention, etching or film formation treatment was performed on the upper surface side of the substrate. However, if this drawing is turned upside down,
It goes without saying that the substrate may be placed on the bottom or on the side (in the vertical direction), and the light source and the resonator may be placed on the top or on the side.

また本発明において、反応空間と紫外光発生空間とが同
一圧力である場合、さらに紫外光発生用手段に用いる気
体が高価または有毒でない場合、または磁場のビンチン
グにより紫外光発生用気体が反応空間に放出しにくい場
合は窓(第1図(19))を除去してもよい。
In addition, in the present invention, when the reaction space and the ultraviolet light generation space have the same pressure, and the gas used for the ultraviolet light generation means is not expensive or toxic, or when the ultraviolet light generation gas is brought into the reaction space by binning of the magnetic field. If release is difficult, the window (Fig. 1 (19)) may be removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁場を用いた紫外光処理を示す。 1・・・・反応空間 4・・・・チューニング装置 5.5°・・・磁石 9・・・・排気ポンプ 10、10’・・基板、基板ホルダ 11・・・・水銀バブラ 13・・・・ドーピング系 14.15 ・・バルブ 14″、15° ・バルブ FIG. 1 shows ultraviolet light treatment using a magnetic field according to the present invention. 1...Reaction space 4...Tuning device 5.5°...Magnet 9...exhaust pump 10, 10'... Board, board holder 11...Mercury bubbler 13...Doping system 14.15...Valve 14″, 15°・Valve

Claims (1)

【特許請求の範囲】 1、減圧状態に保持されたプラズマ発生室、該発生室を
囲んで設けられた磁場発生手段、前記プラズマ発生室に
マイクロ波を供給する手段および前記プラズマ発生室に
紫外光を発生させるための気体を導入する手段を有し、
磁場および電場の相互作用を利用して紫外光をプラズマ
発生室にて発生させるとともに、前記紫外光を前記プラ
ズマ発生室に連結して設けられた反応空間に導出し、処
理用表面を光処理することを特徴とする光処理方法。 2、特許請求の範囲第1項において、光処理は光クリー
ニングまたは光アッシングを行うことを特徴とする光処
理方法。 3、特許請求の範囲第1項において、光処理は表面に被
膜形成を行うことを特徴とする光処理方法。
[Scope of Claims] 1. A plasma generation chamber maintained in a reduced pressure state, a magnetic field generation means provided surrounding the generation chamber, a means for supplying microwaves to the plasma generation chamber, and a means for supplying ultraviolet light to the plasma generation chamber. having means for introducing a gas to generate
Ultraviolet light is generated in a plasma generation chamber using the interaction of a magnetic field and an electric field, and the ultraviolet light is led to a reaction space connected to the plasma generation chamber to optically treat the surface to be treated. A light processing method characterized by: 2. The optical processing method according to claim 1, wherein the optical processing comprises optical cleaning or optical ashing. 3. The optical processing method according to claim 1, wherein the optical processing comprises forming a film on the surface.
JP27751486A 1986-11-19 1986-11-19 Photo processing method Pending JPS63128722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27751486A JPS63128722A (en) 1986-11-19 1986-11-19 Photo processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27751486A JPS63128722A (en) 1986-11-19 1986-11-19 Photo processing method

Publications (1)

Publication Number Publication Date
JPS63128722A true JPS63128722A (en) 1988-06-01

Family

ID=17584658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27751486A Pending JPS63128722A (en) 1986-11-19 1986-11-19 Photo processing method

Country Status (1)

Country Link
JP (1) JPS63128722A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245122A (en) * 1985-08-23 1987-02-27 Hitachi Ltd Treater
JPS63117424A (en) * 1986-11-05 1988-05-21 Semiconductor Energy Lab Co Ltd Substrate surface treatment device and substrate surface treatment method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245122A (en) * 1985-08-23 1987-02-27 Hitachi Ltd Treater
JPS63117424A (en) * 1986-11-05 1988-05-21 Semiconductor Energy Lab Co Ltd Substrate surface treatment device and substrate surface treatment method

Similar Documents

Publication Publication Date Title
US8187389B2 (en) Method of removing resist and apparatus therefor
WO2004093175A1 (en) Hydrogen plasma downflow processing method and hydrogen plasma downflow processing apparatus
JPS6289882A (en) Vapor phase etching method
JP2700297B2 (en) Processing method
TW564480B (en) Method and apparatus for radical oxidation of silicon
JPS63128722A (en) Photo processing method
JP2535517B2 (en) Processing method
JPS63128723A (en) Light emitting device
JP2511810B2 (en) Processing method
JPS63117424A (en) Substrate surface treatment device and substrate surface treatment method
JPS63117426A (en) Photo treatment device
KR100363846B1 (en) Method for removing photoresist in semiconductor device
JPS60202928A (en) Optical pumping reaction device
JP2532353B2 (en) Vapor phase etching method and apparatus
JPS61163633A (en) Method for surface treatment by discharge lamp
JPS61230326A (en) Vapor growth apparatus
JPH04307734A (en) Ashing apparatus
JPS61163634A (en) Method for surface treatment by discharge lamp
JPH0294430A (en) Photo-assisted cvd apparatus
JPS63108723A (en) Apparatus and method for treating substrate surface
JPH0517291A (en) Treatment of substrate for deposition of diamond thin film
JPH04130628A (en) Dry etching method
JPH0831447B2 (en) Vapor phase etching method
JPH05308064A (en) 'on the spot' elimination method and device of silicon natural oxide film
JPH0474430B2 (en)