JPS63108723A - Apparatus and method for treating substrate surface - Google Patents

Apparatus and method for treating substrate surface

Info

Publication number
JPS63108723A
JPS63108723A JP25508786A JP25508786A JPS63108723A JP S63108723 A JPS63108723 A JP S63108723A JP 25508786 A JP25508786 A JP 25508786A JP 25508786 A JP25508786 A JP 25508786A JP S63108723 A JPS63108723 A JP S63108723A
Authority
JP
Japan
Prior art keywords
substrate
ultraviolet light
etching
plasma etching
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25508786A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP25508786A priority Critical patent/JPS63108723A/en
Publication of JPS63108723A publication Critical patent/JPS63108723A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the treating process, by providing an ultraviolet light emitting means and a plasma etching means within a single apparatus so that UV cleaning is performed simultaneously with or after ashing of photoresist. CONSTITUTION:A substrate 10 is disposed on a holder 10' in a stainless container 1' and heated by a heater 7 from the rear thereof, while 185 nm ultraviolet light is applied through a quartz window 20 by a spiral low-pressure mercury lamp 6 at 10-100 mW/cm<2>. A non-product gas, which is supplied from an etching system 13 to a resonance space 2, is activated and excited by the irradiation of the ultraviolet light and plasma etch the surface of the substrate. Simultaneously, any contaminant adsorbed on the substrate is photochemically reacted as well as is cleaned by the ultraviolet light. Then, the supply of microwaves is stopped or decreased substantially and the surface of the substrate is irradiated with ultraviolet light only or ultraviolet light weakened relatively, whereby the surface of the substrate can be UV cleaned without damaging it since there is no or an insignificant amount of ion species. In this manner, the cleaning can be performed by using isotropic plasma etching by irradiation of ultraviolet light and anisotropic plasma etching (ashing), properly and independently from each other.

Description

【発明の詳細な説明】 「発明の利用分野J 本発明は、基板の処理表面内を同一装置内でプラズマエ
ツチングおよび光化学反応を用いた光クリーニング(紫
外光を用いるためuvクリーニングまたはフォトクリー
ニングという)を行う装置およびその装置を用いた表面
処理方法に関する。さらに本発明は、その同じ反応系内
で前記した工程に先立ち、電磁エネルギ例えばサイクロ
トロン共鳴を用いることによりフォトレジストをマスク
として異方性エツチングを行い、半導体集積回路(以下
しSt という)の工程の自動化および簡略化を行わん
とするものである。
Detailed Description of the Invention "Field of Application of the Invention J The present invention relates to optical cleaning (called UV cleaning or photocleaning because ultraviolet light is used) of the processing surface of a substrate using plasma etching and photochemical reaction in the same apparatus. The present invention also relates to an apparatus for performing etching and a surface treatment method using the apparatus.Furthermore, the present invention relates to anisotropic etching using electromagnetic energy, for example, cyclotron resonance, using a photoresist as a mask, in the same reaction system prior to the above-mentioned steps. The aim is to automate and simplify the process of semiconductor integrated circuits (hereinafter referred to as St).

r従来技術J 気相反応処理装置として、プラズマエツチング方法、光
エネルギにより反応性気体を活性にさせる光エツチング
法が知られている。前者は処理速度が速いという特徴を
有するが、基板表面に損傷を与える懸念がある。他方、
後者は処理速度は遅いが、表面に損傷を与えないという
特徴を有する。
rPrior Art J As a gas phase reaction treatment apparatus, a plasma etching method and a photoetching method in which a reactive gas is activated by light energy are known. The former has the feature of high processing speed, but there is a concern that it may damage the substrate surface. On the other hand,
The latter has a slow processing speed, but has the characteristic that it does not damage the surface.

これらはそれぞれが独立した装置であり、耳互いにそれ
ぞれの特徴を用いた相乗効果を有せしめる試みはなかっ
た。
Each of these is an independent device, and there has been no attempt to create a synergistic effect using their respective features.

さらに加えて、フォトレジストをマスクとして基板表面
の異方性エッチをこれらの工程に先立つ同一装置内で行
う試みはなかった。
In addition, there has been no attempt to perform anisotropic etching of the substrate surface using a photoresist as a mask in the same apparatus prior to these steps.

r問題を解決すべき手段j 本発明は、これらの問題を解決するため、被形成面のプ
ラズマエツチング、特にフォトレジストのプラズマアッ
シングを行い、さらにこの工程と同時またはその後の工
程として、紫外光を用いたUVクリーニング(紫外光を
用いたクリーニング)を同一反応装置内で行わんとする
ものである。特に同一反応系とした1つの反応装置内に
紫外光発光手段と、プラズマエツチング手段とを有する
In order to solve these problems, the present invention performs plasma etching of the surface to be formed, particularly plasma ashing of the photoresist, and further irradiates ultraviolet light at the same time as this step or as a subsequent step. The UV cleaning (cleaning using ultraviolet light) used is to be performed in the same reaction apparatus. In particular, an ultraviolet light emitting means and a plasma etching means are provided in one reaction apparatus having the same reaction system.

さらに本発明においては、紫外光をプラズマアッシング
を含むプラズマエツチング中も実行せしめ、この活性状
態の気体を紫外光が照射されている雰囲気に導き、プラ
ズマエツチングの電磁エネルギの共鳴を行いつつ、活性
状態を持続するように光エネルギを与える。さらにこの
活性状態の反応性気体を被形成面に導き、この反応性気
体が被形成面上を「表面泳動」して等方性エツチングが
されるようにさせ得る。
Furthermore, in the present invention, ultraviolet light is applied during plasma etching including plasma ashing, and this activated gas is introduced into an atmosphere irradiated with ultraviolet light, and while the electromagnetic energy of plasma etching resonates, the active gas is Gives light energy to last. Furthermore, the activated reactive gas can be directed to the surface to be formed, and the reactive gas can be caused to "surface migrate" over the surface, resulting in isotropic etching.

「作用j するとこのプラズマエツチングとともに、光励起の技術
により、被形成面上のナチュラル・オキサイドを除去し
、さらに真空ポンプからのオイル蒸気の逆流したハイド
ロカーボンの被形成面への吸着を防ぐことができる。加
えて、このUVクリーニングの際、基板の被形成面が酸
素を特に嫌う材料、例えばGaAs等■−■化合物にあ
っては、クリーニング用反応性気体としてアンモニア、
水素等還元雰囲気用気体を用い、この気体に紫外光励起
をさせて、またはまたはこれにマイクロ波励起を併用し
て行う。また被形成面がフォトレジスト等の有機物の場
合は、酸素を導入し、これを活性化して処理表面でエツ
チング(アッシング)を行う。
``Effect: Along with this plasma etching, the photoexcitation technology removes the natural oxide on the surface to be formed, and furthermore prevents the adsorption of hydrocarbons from the backflow of oil vapor from the vacuum pump onto the surface to be formed. In addition, during this UV cleaning, if the surface of the substrate to be formed is made of a material that particularly dislikes oxygen, such as a ■-■ compound such as GaAs, ammonia or ammonia may be used as a cleaning reactive gas.
This is carried out using a gas for a reducing atmosphere such as hydrogen, and excitation of this gas by ultraviolet light or in combination with microwave excitation. If the surface to be formed is an organic material such as photoresist, oxygen is introduced and activated to perform etching (ashing) on the treated surface.

本発明においては紫外光源とした。低圧水銀灯を用いて
185nmの波長の光(強度は好ましくは51/c11
12以上)を放射せしめることにより励起した反応性気
体の励起状態を持続できる。
In the present invention, an ultraviolet light source is used. A low-pressure mercury lamp is used to produce light with a wavelength of 185 nm (the intensity is preferably 51/c11).
12 or more), the excited state of the excited reactive gas can be maintained.

UVクリーニングはその反応炉内を大気圧または減圧下
とする。還元雰囲気で行う場合、アンモニアを主として
用いた。するとこのアンモニアは、185nmの紫外光
で分解し、活性水素を容易に放出し、ナチュラル・オキ
サイド例えば SiO□ + 4 H→ 51+  211□0↑Cn
Hz6B +  mH−+  n’clIa↑として表
面をクリーニングできるからである。また酸化雰囲気で
UVクリーニングを行う場合、酸素を用いた。すると CnHz+++z + mO−”  n’coz + 
n”820  ↑で気化除去ができる。
For UV cleaning, the inside of the reactor is kept under atmospheric pressure or reduced pressure. When carried out in a reducing atmosphere, ammonia was mainly used. This ammonia is then decomposed by 185 nm ultraviolet light, easily releasing active hydrogen, and forming natural oxides such as SiO□ + 4 H→ 51+ 211□0↑Cn
This is because the surface can be cleaned as Hz6B + mH-+ n'clIa↑. Further, when UV cleaning was performed in an oxidizing atmosphere, oxygen was used. Then, CnHz+++z + mO−” n'coz +
Vaporization can be removed with n”820 ↑.

さらにプラズマエツチングを用いるサイクロトロン共鳴
は不活性気体または非生成物気体(分解または反応をし
てもそれ自体は気体しか生じない気体)を用いる。不活
性気体としてはアルゴンが代表的なものである。しかし
ヘリューム、ネオン、クリプトンを用いてもよい。非生
成物気体としては酸化物気体の場合は酸素、酸化窒素(
N20.NO。
Furthermore, cyclotron resonance using plasma etching uses an inert gas or a non-product gas (a gas that itself produces only a gas when decomposed or reacted). Argon is a typical inert gas. However, helium, neon, or krypton may also be used. In the case of oxide gases, non-product gases include oxygen, nitrogen oxide (
N20. No.

NO,)、酸化炭素(CO,C0z)、水(H□0)又
窒化物気体としては窒素(NZ)、アンモニア(NH3
)、ヒドラジン(!’hH4)、弗化炭素(NF:l、
NZF&)またはこれらにキャリアガスまたは水素(H
□)を混合した気体が代表的なものである。
NO, ), carbon oxide (CO, COz), water (H□0), and as nitride gases, nitrogen (NZ), ammonia (NH3
), hydrazine (!'hH4), carbon fluoride (NF:l,
NZF&) or these with a carrier gas or hydrogen (H
A typical example is a gas mixture of □).

これらの非生成物気体をサイクロトロン共鳴させて活性
化せしめ、処理表面を有する基板上に導く。かくして活
性の非生成物気体により処理面をエツチングさせること
ができる。特に処理面を等方性エツチングを行うため、
このエツチング室の上方より同時に波長185nn+ 
(300nm以下の波長の紫外光)の紫外光を照射し、
処理表面の全面に均一な活性気体を広げる。さらに室温
〜500℃の温度で基板を加熱することにより、この基
板の被形成面上の不要物のエツチングを助長させること
ができる。
These non-product gases are activated by cyclotron resonance and directed onto a substrate having a treated surface. Thus, the active non-product gas can etch the treated surface. In particular, since the treated surface is isotropically etched,
From above this etching chamber, the wavelength of 185nn+ is etched simultaneously.
(ultraviolet light with a wavelength of 300 nm or less) is irradiated,
Spread the activated gas uniformly over the entire surface to be treated. Further, by heating the substrate at a temperature of room temperature to 500° C., etching of unnecessary materials on the surface of the substrate to be formed can be promoted.

本発明はECRのみのエツチングを行うと異方性エツチ
ングを行い、ECRと紫外光との併用を行うと等方性エ
ツチングを行う。さらに紫外光のみのUVクリーニング
においては、表面の残存物を等方的に除去することを利
用している。これはF、CRエツチングのエツチング用
気体のガス流には直接的であり、異方性エツチングに適
応する。U7かし紫外光を照射するとエツチング用活性
気体はエツチングされる処理表面を泳動(表面泳動)し
、等方性エツチングを助長する特性を利用している。
In the present invention, anisotropic etching is performed when only ECR is used, and isotropic etching is performed when ECR and ultraviolet light are used together. Furthermore, UV cleaning using only ultraviolet light utilizes isotropic removal of surface residue. This is direct to the gas flow of the etching gas for F, CR etching, and is suitable for anisotropic etching. When U7 is irradiated with ultraviolet light, the active gas for etching migrates on the surface to be etched (surface migration), utilizing the property of promoting isotropic etching.

このため、選択的に設けられたフォトレジストを用いて
、基板の酸化珪素、半導体その他の被膜の異方性エツチ
ングをECRエツチング(シアワーエッチングともいう
)で実施する。その後、反応性気体の種類を変え、紫外
光を照射しつつ活性化し、フォトレジストのみを除去す
る。さらにフォトレジストの残存物、その他の汚物を除
去するため、紫外光のみを照射しUVクリーニングを行
う。
For this purpose, selectively applied photoresist is used to perform anisotropic etching of silicon oxide, semiconductor, and other films on the substrate by ECR etching (also called sheer etching). Thereafter, the type of reactive gas is changed and activated while irradiating with ultraviolet light to remove only the photoresist. Further, in order to remove photoresist residue and other dirt, UV cleaning is performed by irradiating only ultraviolet light.

かくして基板を選択的に異方性エッチを行い、それに伴
うフォトレジストの除去および表面の清浄化を連続的に
行うことができるようになった。
In this way, it has become possible to perform selective anisotropic etching of the substrate, and to perform subsequent removal of the photoresist and cleaning of the surface continuously.

以下に実施例に従い本発明を示す。The present invention will be illustrated below with reference to Examples.

実施例1 第1図は本発明のUVクリーニング型マイクロ波励起の
エツチング装置の概要を示す。
Embodiment 1 FIG. 1 shows an outline of a UV cleaning type microwave excitation etching apparatus of the present invention.

図面において、ステンレス容器(1°)内に反応空間(
1)を構成させている。この容器は、基板(10)の取
り出し口(1”)を有し、下部に基板(10)を基板ホ
ルダ(10″)に設け、その裏側にはハロゲンランプヒ
ータ(7)を設け、加熱している。他方、容器(1′)
の上部には、渦巻き型を有し中央部に合成石英窓(20
)を有する低圧水銀灯(6)により185nmを有する
紫外光を基板上に5mW/cm2以上(好ましくは10
〜ioomW/cm”)の強度となるように照射してい
る。
In the drawing, there is a reaction space (1°) inside a stainless steel container (1°).
1) is configured. This container has an outlet (1'') for taking out the substrate (10), the substrate (10) is placed in a substrate holder (10'') at the bottom, and a halogen lamp heater (7) is installed on the back side to heat the container. ing. On the other hand, the container (1')
The upper part has a spiral-shaped synthetic quartz window (20
) with a low-pressure mercury lamp (6) that emits ultraviolet light with a wavelength of 185 nm onto the substrate at a rate of 5 mW/cm2 or more (preferably 10 mW/cm2 or more).
˜ioomW/cm”).

また非生成物気体をエツチング系(13)よりステンレ
ス(2゛)で作られた共鳴空間(2)に供給する。
In addition, non-product gas is supplied from the etching system (13) to the resonance space (2) made of stainless steel (2').

するとこの気体にマイクロ波を供給することのない場合
でも共鳴空間(2)を経て反応空間(1)に到り、ここ
で紫外光源(6)よりの照射を受け、活性化、励起する
。そしてこの活性化した気体が基板(10)の被形成面
上に触れ、その表面をプラズマエツチングまたはプラズ
マアッシングする。同時に照射された紫外光によりここ
に吸着した汚物は紫外光に直接照射され、光化学反応を
し、併せてUVクリーニングが行われる。
Then, even if this gas is not supplied with microwaves, it passes through the resonance space (2) and reaches the reaction space (1), where it is irradiated by the ultraviolet light source (6) and is activated and excited. This activated gas then comes into contact with the surface of the substrate (10) to perform plasma etching or plasma ashing on the surface. The dirt adsorbed here by the simultaneously irradiated ultraviolet light is directly irradiated with the ultraviolet light, causing a photochemical reaction, and UV cleaning is also performed.

この後、マイクロ波の供給を停止またはきわめて弱くし
、紫外光のみまたは紫外光を相対的に十分弱くして照射
し、基板の処理表面を照射する。
Thereafter, the supply of microwaves is stopped or made very weak, and the treatment surface of the substrate is irradiated with only ultraviolet light or with sufficiently weak ultraviolet light.

するとここではプラズマ化されたイオン種がないまたは
十分ないため、基板表面を損傷することなく、いわゆる
UVクリーニングを行うことができた。
Then, since there were no or sufficient ion species turned into plasma, so-called UV cleaning could be performed without damaging the substrate surface.

実験例1 この実験例は実施例1の装置を用い、酸化珪素の異方性
エッチおよびその上のフォトレジストの等方性エッチ、
さらに表面のUVクリーニングを行ったものである。こ
の処理工程の縦断面図群を第2図に示す。
Experimental Example 1 This experimental example uses the apparatus of Example 1 to perform anisotropic etching of silicon oxide, isotropic etching of photoresist thereon,
Furthermore, the surface was subjected to UV cleaning. A group of longitudinal cross-sectional views of this treatment step is shown in FIG.

基板(10)のシリコン半導体上に酸化珪素(21)お
よびその上にフォトレジスト(22)が形成されたもの
を用いた。このフォトレジストをマスクとしてECRエ
ツチングを行い、第2図(B)に示す如く、2500八
/分のエツチング速度で酸化珪素の異方性エツチング(
23)を行うことができた。即ち、マイクロ波は2.4
5GHzの周波数を有し、30〜500讐の出力、例え
ば200Wで調整した。磁場(5) 、 (5“)の共
鳴強度は875ガウスとした。反応空間の圧力は0゜0
02torr、非生成物気体として(18)よりアルゴ
ンを50cc/分で供給した。加えて弗化窒素(NF3
)を(16)より20cc/分で供給した。
A substrate (10) in which silicon oxide (21) was formed on a silicon semiconductor and a photoresist (22) was formed thereon was used. ECR etching was performed using this photoresist as a mask, and as shown in FIG. 2(B), silicon oxide was anisotropically etched (
23). That is, the microwave is 2.4
It has a frequency of 5 GHz and is regulated with a power of 30 to 500 GHz, for example 200 W. The resonance intensity of the magnetic fields (5) and (5") was set to 875 Gauss. The pressure in the reaction space was 0°0
02 torr, and argon was supplied from (18) at 50 cc/min as a non-product gas. In addition, nitrogen fluoride (NF3
) was supplied from (16) at 20 cc/min.

このエツチングが完了した後、紫外光を導入し、酸素を
(13)より導入した。するとフォトレジスト(22)
はECRプラズマエツチング、即ちのアッシングにより
(24)の部分のレジストを除去した。しかしフォトレ
ジストが形成されていない面にも炭化水素(25)が付
着しやすい。このため、このプラズマエツチングとUv
ランプをオンとし、この基板上の全面に紫外光を照射し
た。
After this etching was completed, ultraviolet light was introduced and oxygen was introduced from (13). Then photoresist (22)
The resist at the portion (24) was removed by ECR plasma etching, ie, ashing. However, hydrocarbons (25) tend to adhere to surfaces where photoresist is not formed. Therefore, this plasma etching and UV
The lamp was turned on and the entire surface of the substrate was irradiated with ultraviolet light.

紫外光(6)は低圧水銀灯を用い、185nmの光を放
出させた。
As the ultraviolet light (6), a low-pressure mercury lamp was used to emit light of 185 nm.

このUVクリーニングを行うため、反応室内の圧力は1
0〜100 torr とし、オゾンまたは酸素ラジカ
ルが残有する有機物(25)との反応を助長させた。
To perform this UV cleaning, the pressure inside the reaction chamber is 1
The pressure was set at 0 to 100 torr to promote the reaction between ozone or oxygen radicals and the remaining organic matter (25).

かくして第2図(D)に示す如く、フォトレジストを完
全に除去し、かつ選択エッチされた酸化珪素は異方性エ
ッチを鋭〈実施することが可能となった。
In this way, as shown in FIG. 2(D), the photoresist was completely removed and the selectively etched silicon oxide became able to be sharply anisotropically etched.

このエツチングされる対象物は酸化珪素のみならず、窒
化珪素、シリコン半導体、金属珪化物その他半導体集積
回路の製造プロセスを必要とするすべてを対象として実
施することができる。
The object to be etched is not only silicon oxide, but also silicon nitride, silicon semiconductors, metal silicides, and all other materials that require the manufacturing process of semiconductor integrated circuits.

「効果J 本発明は、以上の説明より明らかなごとく、基板の処理
表面の有機物のプラズマエツチング(アッシング)およ
びその後の表面のUVクリーニングを行ったものである
。さらにフォトレジストをマスクとして行う基板の選択
的異方性エツチングとこの異方性エツチングの手段に加
えて紫外光を照射することにより等方性プラズマエツチ
ングを行うことを可とし、同じプラズマエツチング手段
により異方性エツチングおよび等方性エツチングを使い
分けることが可能となった。
``Effect J'' As is clear from the above description, the present invention involves plasma etching (ashing) of organic matter on the treated surface of a substrate and subsequent UV cleaning of the surface. In addition to selective anisotropic etching and this anisotropic etching method, it is possible to perform isotropic plasma etching by irradiating ultraviolet light, and the same plasma etching method can perform anisotropic etching and isotropic etching. It became possible to use them properly.

さらに本発明は、予め付着または形成された汚物、また
は被膜形成直後または反応炉内で新たに吸着する汚物を
UVクリーニングで除去させた。
Furthermore, in the present invention, dirt that has been attached or formed in advance, or dirt that is newly adsorbed immediately after the film is formed or in the reactor, is removed by UV cleaning.

反応系にてマイクロ波励起CVD法で被膜を形成する。A film is formed in the reaction system by microwave-excited CVD.

本発明におけるUVクリーニング用の紫外光源として、
低圧水銀灯ではなくエキシマレーザ(波長100〜40
0nm)、アルゴンレーザ、窒素レーザ等を用いてもよ
いことはいうまでもない。
As an ultraviolet light source for UV cleaning in the present invention,
Excimer laser (wavelength 100-40
Needless to say, an argon laser, a nitrogen laser, etc. may also be used.

本発明の第1図は基板の上表面側にエツチング処理を行
った。しかしこの図面を上下逆とし、基板を下側または
横(垂直部)とし、光源、共鳴装置を上側または横倒と
してもよいことはいうまでもない。
In FIG. 1 of the present invention, etching treatment was performed on the upper surface side of the substrate. However, it goes without saying that this drawing may be turned upside down, the substrate may be placed on the bottom or on the side (vertical portion), and the light source and the resonator may be placed on the top or sideways.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光クリーニング式サイクロトロン共鳴
型光エッチ装置を示す。 第2図は本発明の工程を示す縦断面図である。
FIG. 1 shows an optical cleaning type cyclotron resonance type optical etching apparatus of the present invention. FIG. 2 is a longitudinal sectional view showing the steps of the present invention.

Claims (1)

【特許請求の範囲】 1、処理表面を有する基板と、プラズマ化された反応性
気体のイオン種により前記基板の処理表面をプラズマエ
ッチングで処理する手段と、紫外光により励起、分解ま
たは反応せしめた前記反応性気体により前記基板の処理
表面を処理せしめる手段とを有することを特徴とする基
板表面処理装置。 2、特許請求の範囲第1項において、プラズマエッチン
グにより処理する手段は電子サイクロトロン共鳴方式を
用いてすることを特徴とする基板表面処理装置。 3、処理表面を有する基板を配設し、前記基板上にプラ
ズマ化されたイオン種によりプラズマエッチングを行う
工程と、該工程と同時またはその後に紫外光により励起
、分解または反応した反応性気体を活性化せしめ、該気
体により前記処理層を処理する工程とを有することを特
徴とする基板表面処理方法。 4、基板の処理表面を有する面上に選択的に設けられた
フォトレジストと、該フォトレジストをマスクとして異
方性プラズマエッチを前記基板の処理表面に施す工程と
、紫外光を併用したプラズマエッチにより等方性エッチ
を施し前記フォトレジストを除去する工程と、紫外光照
射により紫外光クリーニングを行う工程とを有すること
を特徴とする基板表面処理方法。
[Claims] 1. A substrate having a treated surface, a means for treating the treated surface of the substrate by plasma etching using ion species of a reactive gas turned into plasma, and a means for causing excitation, decomposition or reaction with ultraviolet light. A substrate surface treatment apparatus comprising: means for treating the treatment surface of the substrate with the reactive gas. 2. A substrate surface treatment apparatus according to claim 1, wherein the plasma etching processing means uses an electron cyclotron resonance method. 3. A step of disposing a substrate having a treated surface and performing plasma etching with ion species turned into plasma on the substrate, and at the same time or after this step, a reactive gas excited, decomposed or reacted by ultraviolet light is removed. A substrate surface treatment method comprising the steps of activating the treatment layer and treating the treatment layer with the gas. 4. A photoresist selectively provided on the surface of the substrate having the treated surface, a step of applying anisotropic plasma etching to the treated surface of the substrate using the photoresist as a mask, and plasma etching using ultraviolet light in combination. A method for treating a surface of a substrate, the method comprising: removing the photoresist by performing isotropic etching; and performing ultraviolet cleaning by irradiating ultraviolet light.
JP25508786A 1986-10-27 1986-10-27 Apparatus and method for treating substrate surface Pending JPS63108723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25508786A JPS63108723A (en) 1986-10-27 1986-10-27 Apparatus and method for treating substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25508786A JPS63108723A (en) 1986-10-27 1986-10-27 Apparatus and method for treating substrate surface

Publications (1)

Publication Number Publication Date
JPS63108723A true JPS63108723A (en) 1988-05-13

Family

ID=17273945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25508786A Pending JPS63108723A (en) 1986-10-27 1986-10-27 Apparatus and method for treating substrate surface

Country Status (1)

Country Link
JP (1) JPS63108723A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117424A (en) * 1986-11-05 1988-05-21 Semiconductor Energy Lab Co Ltd Substrate surface treatment device and substrate surface treatment method
US5007981A (en) * 1989-02-27 1991-04-16 Hitachi, Ltd. Method of removing residual corrosive compounds by plasma etching followed by washing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245122A (en) * 1985-08-23 1987-02-27 Hitachi Ltd Treater
JPS62154736A (en) * 1985-12-27 1987-07-09 Hitachi Ltd Dry etching

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245122A (en) * 1985-08-23 1987-02-27 Hitachi Ltd Treater
JPS62154736A (en) * 1985-12-27 1987-07-09 Hitachi Ltd Dry etching

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117424A (en) * 1986-11-05 1988-05-21 Semiconductor Energy Lab Co Ltd Substrate surface treatment device and substrate surface treatment method
US5007981A (en) * 1989-02-27 1991-04-16 Hitachi, Ltd. Method of removing residual corrosive compounds by plasma etching followed by washing

Similar Documents

Publication Publication Date Title
JP2540583B2 (en) Substrate cleaning method and apparatus
JPH0496226A (en) Manufacture of semiconductor device
JPS63108723A (en) Apparatus and method for treating substrate surface
JP2700297B2 (en) Processing method
JPS6289882A (en) Vapor phase etching method
JP2535517B2 (en) Processing method
JPH09306892A (en) Cleaning method and semiconductor manufacturing apparatus
JPS63117424A (en) Substrate surface treatment device and substrate surface treatment method
JPH11323576A (en) Wet etching method
JP2511810B2 (en) Processing method
JPS63117426A (en) Photo treatment device
JP2532353B2 (en) Vapor phase etching method and apparatus
JPH0786240A (en) Surface treatment device
JPH01272120A (en) Dry ashing apparatus
JPH0831447B2 (en) Vapor phase etching method
JPH06333814A (en) Ashing device
JPS6191930A (en) Cleaning method of semiconductor substrate
JPS6236668A (en) Ashing method
JP2564663B2 (en) Vapor phase etching equipment
JPH03133125A (en) Resist ashing
JP6374735B2 (en) Vacuum processing apparatus and dry cleaning method
KR100585083B1 (en) Fabrication method for ultra thin gate oxide
JPH0517291A (en) Treatment of substrate for deposition of diamond thin film
JP2564664B2 (en) Vapor phase etching method
JPH11145115A (en) Cleaning method for ashing apparatus