JPS63128168A - Production of alloyed and zinc plated steel sheet having excellent deep drawability - Google Patents

Production of alloyed and zinc plated steel sheet having excellent deep drawability

Info

Publication number
JPS63128168A
JPS63128168A JP27297586A JP27297586A JPS63128168A JP S63128168 A JPS63128168 A JP S63128168A JP 27297586 A JP27297586 A JP 27297586A JP 27297586 A JP27297586 A JP 27297586A JP S63128168 A JPS63128168 A JP S63128168A
Authority
JP
Japan
Prior art keywords
steel
plating
alloyed
steel sheet
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27297586A
Other languages
Japanese (ja)
Other versions
JPH07103463B2 (en
Inventor
Nobuhiko Sakai
伸彦 酒井
Yukio Uchida
幸夫 内田
Eizo Wada
栄造 和田
Yusuke Hirose
広瀬 祐輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP61272975A priority Critical patent/JPH07103463B2/en
Publication of JPS63128168A publication Critical patent/JPS63128168A/en
Publication of JPH07103463B2 publication Critical patent/JPH07103463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve powdering resistance by maintaining a base plate temp. as low as possible and limiting an alloying temp. and time to a specific range at the time of subjecting a low-carbon Ti killed steel having a specific compsn. to zinc plating by vapor deposition. CONSTITUTION:The low-carbon Ti killed steel contg., by weight %, <=0.010 C, <0.15 Si, 0.15-0.85 Mn, 0.05-0.30 Ti and contg., as impurities, <= 0.020 P, <=0.20 S, and <=0.050 solAl is subjected to Zn-plating by vapor deposition. The temp. of the steel sheet just before the plating is set at 180-280 deg.C at this time. The adhesiveness of the plating layer is defective if the steel sheet temp. is to low and, therefore, said temp. is kept at >=180 deg.C. Said temp. is kept at <=280 deg.C in order to minimize the diffusion from the steel into the plating layer. The steel sheet is then heated for 1-50hr at 220-320 deg.C in a nonoxidative atmosphere in a batch annealing furnace. The alloyed and zinc-plated steel sheet having the alloyed plating layer contg. 8.0-12.0% iron concn. and the excellent deep drawability and powdering resistance is obtd.

Description

【発明の詳細な説明】 [技術分野] 本発明は深絞り性に優れ、かつ耐パウダリング性に優れ
た合金化蒸着亜鉛メッキ鋼板を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing an alloyed vapor-deposited galvanized steel sheet having excellent deep drawability and powdering resistance.

[従来技術] 一般に深絞り加工用鋼板としてA文ギルド鋼およびTi
キルド鋼が知らている。ところでTiキルド鋼をベース
とした合金化蒸着亜鉛メッキ鋼板はAfLキルド鋼と同
条件で合金化処理した場合、加工時にメッキ層のフレー
キングを生じ易い問題がある。この原因はTiキルド鋼
はAMギルド鋼・等に比べて鋼中の鉄がメッキ層に拡散
し易く、メッキ層中の平均鉄濃度が過剰になるためであ
ると考えられる。Tiキルド鋼とAnキルド鋼について
蒸着亜鉛メッキを施し、その後、メッキ層表面まで合金
化゛した場合、亜鉛メッキ層中の鉄の濃度勾配の一例を
第1図に示す0図示されるAnキルド鋼ではメッキ表面
からメッキ層の深部にかけて鉄濃度が約5−6.5%で
あり、該メッキ層深部から鋼板との界面の間で鉄濃度勾
配が急激に上昇している。一方、Tiキルド鋼では1表
層付近の鉄濃度はA9.ギルド鋼と同じ5〜6zである
が。
[Prior art] Generally, A-shaped guild steel and Ti steel are used as steel sheets for deep drawing.
Killed steel is known. By the way, when an alloyed vapor deposited galvanized steel sheet based on Ti killed steel is alloyed under the same conditions as AfL killed steel, there is a problem in that the plated layer tends to flake during processing. The reason for this is thought to be that iron in the Ti-killed steel diffuses into the plating layer more easily than in the AM guild steel, and the average iron concentration in the plating layer becomes excessive. An example of the iron concentration gradient in the galvanized layer is shown in Figure 1 when vapor deposited galvanizing is applied to Ti killed steel and An killed steel, and then alloyed to the surface of the plated layer. In this case, the iron concentration is about 5-6.5% from the plating surface to the deep part of the plating layer, and the iron concentration gradient increases rapidly from the deep part of the plating layer to the interface with the steel plate. On the other hand, in Ti-killed steel, the iron concentration near the first surface layer is A9. It's the same 5~6z as Guild Steel.

メッキ層中間部から深部にかけての鉄濃度が、AIギル
ド鋼に比べ高くなっている。このようにTiギルド鋼は
A交キルド鋼に比べ、鉄濃度の高い合金化メッキ層を有
することが分る。このため、蒸着亜鉛メッキされたTi
キルド鋼をA見キルド鋼と同条件で合金化処理を行なう
と合金化が過度に進行し、メッキ層中の平均鉄濃度がA
nキルド鋼の場合より 1.5〜2.0%高くなり、平
均鉄濃度が過剰となる結果、耐パウダリング性が低下し
加工時にメッキ層が剥離損傷し易くなる問題がある。
The iron concentration from the middle to the deep part of the plating layer is higher than that of AI guild steel. It can thus be seen that the Ti-guild steel has an alloyed plating layer with a higher iron concentration than the A-cross-killed steel. For this reason, the evaporated galvanized Ti
If killed steel is alloyed under the same conditions as killed steel, alloying will proceed excessively and the average iron concentration in the plating layer will be A.
The iron concentration is 1.5 to 2.0% higher than that of n-killed steel, resulting in an excessive average iron concentration, resulting in a problem that the powdering resistance decreases and the plating layer is easily damaged by peeling during processing.

[問題解決の知見] 本発明者等は1以上のようにTiキルド鋼に合金化蒸着
亜鉛メッキを施す場合に、A立キルド鋼と同条件で合金
化処理を施すと合金化が過度に進行し、耐パウダリング
性が低下する問題のあることを見出し、この問題を解消
する方法として、低炭素Tiキルド鋼について、その蒸
着メッキ直前の基板温度を出来るだけ低く維持し、かつ
合金化温度と時間を所定の範囲に制限することにより。
[Knowledge for solving the problem] The present inventors found that when alloying vapor deposited galvanizing is applied to Ti-killed steel as described in 1. above, alloying progresses excessively when the alloying treatment is performed under the same conditions as A-stand killed steel. However, we discovered that there was a problem of reduced powdering resistance, and as a way to solve this problem, we tried to maintain the substrate temperature as low as possible immediately before vapor deposition plating for low carbon Ti killed steel, and to maintain the temperature of the substrate as low as possible just before the vapor deposition plating, and to reduce the alloying temperature. By limiting the time to a predetermined range.

合金層中の平均Fe濃度を8.0〜12.0重量%に制
御すれば、耐パウダリング性の良好な合金化亜鉛メッキ
Tiキルド鋼を得ることが出来る知見を得た。
We have found that by controlling the average Fe concentration in the alloy layer to 8.0 to 12.0% by weight, it is possible to obtain alloyed galvanized Ti killed steel with good powdering resistance.

本発明によれば、低炭素チタンキルド鋼(C≦o、ot
o重Wig 、  S i <0.15i4% 、 M
 n : 0.15〜0.85重ffi$ 、 T i
 : 0.05〜0.30重i%および不可避的不純物
トシテP≦0.020重量$ 、S≦0.020重J1
% 、 5oIAl≦0.050重iB)を蒸着亜鉛メ
ッキする際、メッキ直前の鋼板温度を180〜280℃
に設定し、その後、バッチ焼鈍炉内で非酸化性雰囲気で
220〜320℃、1〜50時間加熱することにより、
鉄濃度が8.0〜12.0重量%の合金化メッキ層を有
する合金化亜鉛メッキ鋼板を製造することを特徴とする
方法が提供される。
According to the present invention, low carbon titanium killed steel (C≦o, ot
o WeightWig, S i <0.15i4%, M
n: 0.15-0.85 ffi$, Ti
: 0.05 to 0.30 weight i% and unavoidable impurities P≦0.020 weight $, S≦0.020 weight J1
%, 5oIAl≦0.050weight iB), the steel plate temperature immediately before plating is set at 180 to 280℃.
and then heated in a non-oxidizing atmosphere in a batch annealing furnace at 220-320°C for 1-50 hours.
A method is provided, characterized in that it produces an alloyed galvanized steel sheet having an alloyed plated layer with an iron concentration of 8.0 to 12.0% by weight.

本発明においては、次の組成(重量%)を有する低炭素
Tiキルド鋼が用いられる。
In the present invention, a low carbon Ti killed steel having the following composition (% by weight) is used.

深絞り用鋼板として用いられるTiキルド鋼は極低炭素
鋼であり、通常C≦o、oio重量%のものが用いられ
る。またSiはS i <0.15重量%が好ましい、
 Siが0.15より多いと、メッキ密着性が低下する
。この密着性を向上させるには基板温度を上げる必要が
あるが、Tiキルド鋼の場合、Feの拡散が早く基板温
度を上げると、メッキ層と鋼板との界面に脆弱な合金層
が発生する問題が生じる。したがって、Tiキルド鋼の
Si含有量は0.15wt$以下が望ましい、Mnは主
に強度を高める成分であり、 0.15〜0.85重量
%が好ましい。
Ti-killed steel used as a steel plate for deep drawing is an extremely low carbon steel, and usually has C≦o and oio weight %. Moreover, Si is preferably Si<0.15% by weight,
When Si is more than 0.15, plating adhesion decreases. In order to improve this adhesion, it is necessary to raise the substrate temperature, but in the case of Ti-killed steel, Fe diffuses quickly and when the substrate temperature is raised, a weak alloy layer is generated at the interface between the plating layer and the steel plate. occurs. Therefore, the Si content of the Ti-killed steel is preferably 0.15 wt$ or less, and Mn is a component that mainly increases strength, and is preferably 0.15 to 0.85 wt%.

0.15重着%より少ないと充分な強度が保たれず、他
方、0.85重量%を越えても、メッキ密着性その他の
品質上の問題は生じないが0.85wt$以上のMnを
含有しても、それ以上の強度の上昇は望めない。
If the Mn content is less than 0.15 wt%, sufficient strength cannot be maintained; on the other hand, if it exceeds 0.85 wt%, no problems with plating adhesion or other quality will occur; Even if it is contained, no further increase in strength can be expected.

Tiは0.05〜0.30重量%である。これは通常の
深絞り用Tiキルド鋼と同程度の含有量である。
Ti is 0.05 to 0.30% by weight. This content is comparable to that of ordinary Ti killed steel for deep drawing.

一般に深絞り用鋼板としてTiは鋼中のCを固定するた
めに通常Cの4倍量程度の含有量が必要であり、更に鋼
中の不純物としての窒素量を勘案し、上記含有量に定め
られる。
Generally, in steel sheets for deep drawing, the content of Ti is required to be about four times the amount of normal C in order to fix C in the steel.Furthermore, taking into account the amount of nitrogen as an impurity in the steel, the above content is set. It will be done.

その他に、不可避的不純物としてP≦0.020重量%
、S≦0.020重量%、5olAI≦0.050重量
%が含まれる。これらは普通鋼の不純物レベルと同一で
ある。
In addition, P≦0.020% by weight as unavoidable impurities
, S≦0.020% by weight, and 5olAI≦0.050% by weight. These are the same impurity levels as ordinary steel.

上記Tiキルド鋼について、メッキ直前の鋼板温度を1
80〜280℃に設定して蒸着亜鉛メッキを施す、一般
に蒸着亜鉛メッキにおいては、メッキ時の基板温度が低
く過ぎると亜鉛メッキ層の密着性が不良になるので通常
基板温度を180℃以上に保持する。他方、蒸着メッキ
においては亜鉛蒸気が鋼板表面に凝縮してメッキ層を形
成するので亜鉛の凝縮熱により基盤の温度が上昇する。
Regarding the above Ti-killed steel, the temperature of the steel plate immediately before plating was set to 1
Vapor-deposited galvanizing is performed at a temperature of 80 to 280°C. Generally, in vapor-deposited galvanizing, if the substrate temperature during plating is too low, the adhesion of the galvanized layer will be poor, so the substrate temperature is usually kept at 180°C or higher. do. On the other hand, in vapor deposition plating, zinc vapor condenses on the surface of the steel sheet to form a plating layer, so the temperature of the base increases due to the heat of condensation of the zinc.

その他、蒸着室内の巻付ロールからの熱伝達も基板温度
を上昇させる要因となる。従ってメッキ直前の基板温度
が必要以上に高いと上記凝縮熱や熱伝達により一層基板
温度が上昇し、これに起因してメッキ層と鋼板との界面
付近に脆弱な合金層が発達してメー、キ層の密着性を損
なう問題を生じる。−例ではノー2キ後の鋼帯温度が3
60℃前後になると約35秒経過後に0.1〜1.0ル
の合金層が発達し、銅帯温度が410℃以上になると5
秒以下で上記層厚の合金層が発達する。このため上記合
金層の発達を防止するため、上記温度上昇を考慮しメッ
キ直前の鋼帯の基板温度を予め厚目付けの場合には18
θ〜280℃、薄目付けの場合には180〜300℃に
調整している。本発明においてはTiキルド鋼Aiキル
ド鋼に比べ、合金化しやすい為、更に通常の基板温度よ
り低く、厚目付けの場合に180〜260℃薄目付けの
場合に180〜280℃に調整し、鋼中からメッキ層へ
の鉄の拡散を最少限に抑える。
In addition, heat transfer from the winding rolls in the deposition chamber is also a factor that increases the substrate temperature. Therefore, if the substrate temperature immediately before plating is higher than necessary, the substrate temperature will rise further due to the above-mentioned condensation heat and heat transfer, and this will cause a fragile alloy layer to develop near the interface between the plating layer and the steel plate. This causes a problem of impairing the adhesion of the layer. - In the example, the steel strip temperature after 2-ki is 3
When the temperature reaches around 60°C, an alloy layer of 0.1 to 1.0 liters develops after about 35 seconds, and when the copper strip temperature reaches 410°C or higher, an alloy layer of 0.1 to 1.0 l develops.
An alloy layer of the above thickness develops in seconds or less. Therefore, in order to prevent the development of the alloy layer, the substrate temperature of the steel strip immediately before plating should be adjusted to 18.
The temperature is adjusted to θ to 280°C, and 180 to 300°C in the case of a thin basis weight. In the present invention, since Ti-killed steel is easier to alloy than Ai-killed steel, the temperature of the substrate is lower than the normal substrate temperature, adjusted to 180-260℃ for thick coatings and 180-280℃ for thin coatings. Minimize diffusion of iron from the plated layer to the plated layer.

上記蒸着メッキの後に合金化処理を施す。After the vapor deposition plating described above, alloying treatment is performed.

一般にバッチ焼鈍による合金化処理としては、鋼板の酸
化を防止するため、非酸化性雰囲気で。
Generally, batch annealing is performed in a non-oxidizing atmosphere to prevent oxidation of the steel plate.

lrJ熱処理を行なう、コイル形状はタイ!・コイル、
オープンコイルいずれの形状でもよい、処理温度、時間
はメッキ付着量、および目標F e rij率により変
更しうる。第2図に合金化処理のヒートサイクルを、第
3図に合金化処理範囲を示す、第2図のヒートサイクル
は合金化処理後、100℃以下まで炉内を非酸化性雰囲
気にて冷却した場合を示し、炉内の非酸化性雰囲気は、
N2をベースとし、それにN2を3〜75%含有した組
成をもつガスからなる。またガス中のCO,Co2e度
はいずれも0〜lotである。
The coil shape is tied with lrJ heat treatment! ·coil,
Any shape of open coil may be used, and the processing temperature and time may be changed depending on the amount of plating deposited and the target F e rij rate. Figure 2 shows the heat cycle for alloying treatment, and Figure 3 shows the range of alloying treatment. In the heat cycle in Figure 2, after alloying treatment, the inside of the furnace was cooled to below 100°C in a non-oxidizing atmosphere. In this case, the non-oxidizing atmosphere in the furnace is
It consists of a gas having a composition based on N2 and containing 3 to 75% N2. Moreover, the CO and Co2e degrees in the gas are both 0 to a lot.

第3図は、Fe量率8′〜12%を含む合金化処理条件
の範囲を示し、図中、実線ab内の範囲はA文ギルド鋼
ベース、破t!cdでかこまれた点線領域がTiキルド
鋼ベースの場合を示す0合金化処理時間をlhr以上と
したのは、実験上それ以丁の均熱時間では、炉温か低下
しなかったためであり、又、50時間以下としたのは、
それ以上では生産性が向上しないためである。
FIG. 3 shows the range of alloying treatment conditions including Fe content of 8' to 12%. The dotted line area surrounded by cd indicates the case of Ti-killed steel base.The reason why the alloying treatment time was set to 1hr or more was because the furnace temperature did not decrease with soaking time longer than 1hr in the experiment, and , 50 hours or less was set as
This is because productivity cannot be improved beyond that.

[実施例および比較例] 第4図に示す連続式真空蒸着亜鉛メッキ装置を用いてT
i キルド鋼に亜鉛メッキを施した。なお1図中1は鋼
板、2は前処理炉、3a、3bは真空シールロール室、
4a、4bは真空蒸着室、5は冷却室である。操業条件
を次表に示す。
[Example and Comparative Example] T
i Killed steel is galvanized. In addition, in 1 figure, 1 is a steel plate, 2 is a pretreatment furnace, 3a, 3b is a vacuum seal roll chamber,
4a and 4b are vacuum deposition chambers, and 5 is a cooling chamber. The operating conditions are shown in the table below.

なお、片面メッキを施す場合には、第1真空蒸着メッキ
室4a、または第2真空蒸着メッキ室4bのいずれか一
方だけで真空蒸着Znメッキすればよい。
In addition, when performing single-sided plating, vacuum evaporation Zn plating may be performed only in either the first vacuum evaporation plating chamber 4a or the second vacuum evaporation plating chamber 4b.

これらの真空蒸着Znメッキ鋼板をバッチ焼鈍炉中で加
熱し合金化処理し、合金化Znメッキ鋼板を製造した0
合金化処理条件を次表に示す。
These vacuum-deposited Zn-plated steel sheets were heated and alloyed in a batch annealing furnace to produce alloyed Zn-plated steel sheets.
The alloying treatment conditions are shown in the table below.

付着量、基板温度、加熱温度、保持時間の組合せと製造
された鋼板の表面外観、加工性(#パウダリング性)を
調べた結果を第1表に示す、耐パウダリング性は6t、
 180°曲げ、曲げ戻し後に内側のパウダリング発生
状況で評価した0次に、比較のため蒸着時の基板温度お
よび合金化時の加熱温度、保持時間を第2表に示す条件
に設定し、その他は実施例と同様にして亜鉛メッキの合
金化処理を行った。この結果を第2表に示す。
Table 1 shows the results of examining the combinations of adhesion amount, substrate temperature, heating temperature, and holding time, as well as the surface appearance and workability (#powdering property) of the manufactured steel sheets.The powdering resistance was 6t,
After 180° bending and unbending, the powdering on the inside was evaluated. For comparison, the substrate temperature during vapor deposition, the heating temperature during alloying, and the holding time were set to the conditions shown in Table 2, and other conditions were set as shown in Table 2. Alloying treatment for zinc plating was carried out in the same manner as in the examples. The results are shown in Table 2.

第1表 第1表つづき 第2表 上記結果から明らかなように、本実施例の合金化亜鉛メ
ッキ鋼板はいずれも良好な表面外観と加工性を具えてい
るが、比較例のものは合金層中に亜鉛が残存し、あるい
は加工性に劣る。
Table 1 Table 1 Continued Table 2 As is clear from the above results, the alloyed galvanized steel sheets of this example all have good surface appearance and workability, but the comparative example has an alloy layer. Zinc remains inside or the workability is poor.

[発明の効果] 本発明の製造方法によれば、チタンキルド鋼に合金化亜
鉛メッキを施す際、最適な鉄量率の合金化層を形成する
ことができ、表面外観、深絞り性および耐パウダリング
性に優れた合金化亜鉛メッキ鋼板を得ることができる。
[Effects of the Invention] According to the manufacturing method of the present invention, when applying alloyed zinc plating to titanium killed steel, it is possible to form an alloyed layer with an optimal iron content ratio, and improve the surface appearance, deep drawability, and powder resistance. An alloyed galvanized steel sheet with excellent ring properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はチタンキルド鋼とアルミギルド鋼について合金
層中の鉄濃度を示すグラフ、第2図は合金化処理のヒー
トサイクルを示すグラフ、第3図は合金化時間と処理温
度との関係を示すグラフ、第4図は連褪式真空蒸着メッ
キ装置の一例を示す概略図である。 図面中 1−鋼板、2−前処理炉、3a、3b−真空シ
ール口−ル室、4a、4b−真空蒸着室。 5−冷却室 第1図 1“孟  (ノブA)f)       羽−石  G
仰り刃え)第2図 呵M Chr) 第3図 1    2     5     lO2050処y
L哨M(hr)
Figure 1 is a graph showing the iron concentration in the alloy layer for titanium killed steel and aluminum guild steel, Figure 2 is a graph showing the heat cycle of alloying treatment, and Figure 3 is a graph showing the relationship between alloying time and treatment temperature. The graph and FIG. 4 are schematic diagrams showing an example of a continuous vacuum evaporation plating apparatus. In the drawings: 1 - Steel plate, 2 - Pretreatment furnace, 3a, 3b - Vacuum sealing chamber, 4a, 4b - Vacuum deposition chamber. 5-Cooling chamber Figure 1 1 "Meng (Knob A) f) Feather - Stone G
Fig. 2 (M Chr) Fig. 3 1 2 5 lO2050 treatment
L guard M (hr)

Claims (1)

【特許請求の範囲】[Claims] (1)低炭素チタンキルド鋼(C≦0.010重量%、
Si<0.15重量%、Mn:0.15〜0.85重量
%、Ti:0.05〜0.30重量%および不可避的不
純物としてP≦0.020重量%、S≦0.020重量
%、so|A|≦0.050重量%)を蒸着亜鉛メッキ
する際、メッキ直前の鋼板温度を180〜280℃に設
定し、その後、バッチ焼鈍炉内で非酸化性雰囲気で22
0〜320℃、1〜50時間加熱することにより、鉄濃
度が8.0〜12.0重量%の合金化メッキ層を有する
合金化亜鉛メッキ鋼板を製造することを特徴とする方法
(1) Low carbon titanium killed steel (C≦0.010% by weight,
Si<0.15% by weight, Mn: 0.15-0.85% by weight, Ti: 0.05-0.30% by weight, and unavoidable impurities such as P≦0.020% by weight, S≦0.020% by weight. %, so |
A method of producing an alloyed galvanized steel sheet having an alloyed plated layer with an iron concentration of 8.0 to 12.0% by weight by heating at 0 to 320°C for 1 to 50 hours.
JP61272975A 1986-11-18 1986-11-18 Method for producing alloyed zinc plated steel sheet with excellent deep drawability Expired - Lifetime JPH07103463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61272975A JPH07103463B2 (en) 1986-11-18 1986-11-18 Method for producing alloyed zinc plated steel sheet with excellent deep drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61272975A JPH07103463B2 (en) 1986-11-18 1986-11-18 Method for producing alloyed zinc plated steel sheet with excellent deep drawability

Publications (2)

Publication Number Publication Date
JPS63128168A true JPS63128168A (en) 1988-05-31
JPH07103463B2 JPH07103463B2 (en) 1995-11-08

Family

ID=17521396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61272975A Expired - Lifetime JPH07103463B2 (en) 1986-11-18 1986-11-18 Method for producing alloyed zinc plated steel sheet with excellent deep drawability

Country Status (1)

Country Link
JP (1) JPH07103463B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283358A (en) * 1988-02-09 1989-11-14 Nisshin Steel Co Ltd Production of zinc alloyed galvanized titanium killed steel sheet having superior deep drawability
JPH05218333A (en) * 1991-08-31 1993-08-27 Samsung Electron Co Ltd Semiconductor memory device and its manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110143A (en) * 1978-02-17 1979-08-29 Mitsubishi Heavy Ind Ltd Zinc vacuum plating method and equipment
JPS5983765A (en) * 1982-11-05 1984-05-15 Nisshin Steel Co Ltd Manufacture of vacuum deposited galvanized steel sheet efficient in adhesion of plated metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110143A (en) * 1978-02-17 1979-08-29 Mitsubishi Heavy Ind Ltd Zinc vacuum plating method and equipment
JPS5983765A (en) * 1982-11-05 1984-05-15 Nisshin Steel Co Ltd Manufacture of vacuum deposited galvanized steel sheet efficient in adhesion of plated metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283358A (en) * 1988-02-09 1989-11-14 Nisshin Steel Co Ltd Production of zinc alloyed galvanized titanium killed steel sheet having superior deep drawability
JPH05218333A (en) * 1991-08-31 1993-08-27 Samsung Electron Co Ltd Semiconductor memory device and its manufacture

Also Published As

Publication number Publication date
JPH07103463B2 (en) 1995-11-08

Similar Documents

Publication Publication Date Title
JPH04333552A (en) Production of high tensile strength galvannealed steel sheet
US4837091A (en) Diffusion alloy steel foil
JPS63128168A (en) Production of alloyed and zinc plated steel sheet having excellent deep drawability
US5409553A (en) Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property
JPS6328857A (en) Alloyed zinc plated steel sheet and its production
JP2525165B2 (en) Method for manufacturing high strength galvanized steel sheet
JPH0797670A (en) Galvanizing method for silicon-containing steel sheet
KR102547364B1 (en) Hot-dip galvanized steel sheet using high-strength steel and method for manufacturing the same
US4878960A (en) Process for preparing alloyed-zinc-plated titanium-killed steel sheet having excellent deep-drawability
JP2000290764A (en) Hot dip aluminum-plated steel sheet excellent in heat- blackening resistance
JPH03191047A (en) Manufacture of alloyed hot-dip galvanized steel sheet having excellent press formability
KR910007949B1 (en) Process for preparing alloyed - zinc - plated titanium - killed steel sheet having excellent deep - drawability
JPH09310148A (en) High strength cold rolled steel sheet
JPH05106001A (en) Hot-dip galvanizing method for silicon-containing steel sheet
JPH01172553A (en) Alloying hot dip galvanized steel sheet and its production
JPH0354186B2 (en)
JPH01283358A (en) Production of zinc alloyed galvanized titanium killed steel sheet having superior deep drawability
JPH0413856A (en) Production of galvannealed steel sheet having superior corrosion resistance
KR0146886B1 (en) Method for manufacturing hot-dipped zn-alloy coated steel sheet for the good machinability and anti-corrossion
JPH0448062A (en) Production of galvannealed steel sheet
JPH02145777A (en) Production of alloyed hot-dip galvanized steel sheet excellent in workability and suitability for coating
JPH0413862A (en) Production of al alloy-plated steel material having superior heat and corrosion resistance
JPH07166370A (en) Al based plated steel sheet excellent in high temperature discoloration resistance and production thereof
JPH02166264A (en) Manufacture of alloyed hot dip galvanized steel sheet having excellent workability and coating characteristics
JPH06158285A (en) Production of al base vapor deposition plating material